Phytochemical Profiles and Cellular Antioxidant Activities in Chestnut (Castanea mollissima BL.) Kernels of Five Different Cultivars
Abstract
:1. Introduction
2. Results
2.1. Phenolic Contents of Five Different Chestnut Cultivars
2.2. Flavonoid Contents of Five Different Chestnut Cultivars
2.3. Phenolic Profiles of Five Different Chestnut Cultivars
2.4. Total Antioxidant Activities of Five Different Chestnut Cultivars
2.5. Cellular Antioxidant Activities of Five Different Chestnut Cultivars
2.6. Correlation Analysis among Phenolics and Antioxidant Activities
3. Discussion
3.1. Phenolics in Chestnut Were Underestimated
3.2. Phytochemical Profiles of Chestnut Kernel
3.3. Antioxidant Activities of Chestnut Kernel
4. Materials and Methods
4.1. Materials Preparation
4.2. Phytochemical Extraction
4.3. Determination of Phenolic and Flavonoid Contents
4.4. Determination of Phytochemical Profiles
4.5. Evaluation of Total Antioxidant Activity
4.6. Evaluation of Cellular Antioxidant Activity
4.7. Statistics Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Vasconcelos, M.; Bennett, R.N.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Composition of european chestnut (Castanea sativa Mill.) and association with health effects: Fresh and processed products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Erturk, U.; Mert, C.; Soylu, A. Chemical composition of fruits of some important chestnut cultivars. Braz. Arch. Biol. Technol. 2006, 49, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Otles, S.; Selek, I. Phenolic compounds and antioxidant activities of chestnut (Castanea sativa Mill.) fruits. Qual. Assur. Saf. Crop. Foods 2012, 4, 199–205. [Google Scholar] [CrossRef]
- Neri, L.; Dimitri, G.; Sacchetti, G. Chemical composition and antioxidant activity of cured chestnuts from three sweet chestnut (Castanea sativa Mill.) ecotypes from italy. J. Food Compos. Anal. 2010, 23, 23–29. [Google Scholar] [CrossRef]
- Lv, J.; Zhao, Y.; Wang, J.; Ouyang, J.; Wang, F. Effects of environmental factors on functional properties of chinese chestnut (Castanea mollissima) protein isolates. Eur. Food Res. Technol. 2014, 240, 463–469. [Google Scholar] [CrossRef]
- Seo, K.H.; Lee, J.Y.; Debnath, T.; Kim, Y.M.; Park, J.Y.; Kim, Y.O.; Park, S.J.; Lim, B.O. DNA protection and antioxidant potential of chestnut shell extracts. J. Food Biochem. 2016, 40, 20–30. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res. 2018, 130, 213–240. [Google Scholar] [CrossRef]
- Mazzoni, L.; Perez-Lopez, P.; Giampieri, F.; Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Quiles, J.L.; Mezzetti, B.; Battino, M. The genetic aspects of berries: From field to health. J. Sci. Food Agric. 2016, 96, 365–371. [Google Scholar] [CrossRef]
- Abbasi, A.M.; Liu, F.; Guo, X.; Fu, X.; Li, T.; Liu, R.H. Phytochemical composition, cellular antioxidant capacity and antiproliferative activity in mango (Mangifera indica L.) pulp and peel. Int. J. Food Sci. Technol. 2017, 52, 817–826. [Google Scholar] [CrossRef]
- Anion, C.M.; Tabart, J.; Kevers, C.; Niculaua, M.; Filimon, R.; Beceanu, D.; Dommes, J. Antioxidant potential of different plum cultivars during storage. Food Chem. 2014, 146, 485–491. [Google Scholar]
- Chang, X.; Ye, Y.; Pan, J.; Lin, Z.; Qiu, J.; Guo, X.; Lu, Y. Comparative assessment of phytochemical profiles and antioxidant activities in selected five varieties of wampee (Clausena lansium) fruits. Int. J. Food Sci. Technol. 2018, 53, 2680–2686. [Google Scholar] [CrossRef]
- Liu, H.; Cao, J.; Jiang, W. Evaluation and comparison of vitamin c, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. Lwt-Food Sci. Technol. 2015, 63, 1042–1048. [Google Scholar] [CrossRef]
- Reche, J.; Hernandez, F.; Almansa, M.S.; Carbonell-Barrachina, A.A.; Legua, P.; Amoros, A. Effects of organic and conventional farming on the physicochemical and functional properties of jujube fruit. Lwt-Food Sci. Technol. 2019, 99, 438–444. [Google Scholar] [CrossRef]
- Zielinska, M.; Zielinska, D. Effects of freezing, convective and microwave-vacuum drying on the content of bioactive compounds and color of cranberries. Lwt-Food Sci. Technol. 2019, 104, 202–209. [Google Scholar] [CrossRef]
- Abe, L.T.; Lajolo, F.M.; Genovese, M.I. Comparison of phenol content and antioxidant capacity of nuts. Cienc. E Tecnol. De Aliment. 2010, 30, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, C.; Ciudad, C.J.; Noe, V.; Izquierdo-Pulido, M. Health benefits of walnut polyphenols: An exploration beyond their lipid profile. Crit. Rev. Food Sci. Nutr. 2017, 57, 3373–3383. [Google Scholar] [CrossRef] [Green Version]
- Viera-Alcaide, I.; Hamdi, A.; Jimenez-Araujo, A.; Rodriguez-Arcos, R.; Espejo-Calvo, J.A.; Guillen-Bejarano, R. Nutritional composition and antioxidant activity of different walnut varieties (Juglans regia L.) from nerpio (spain) in comparison to commercial varieties. Grasas Y Aceites 2019, 70. [Google Scholar] [CrossRef]
- Ersan, S.; Ustundag, O.G.; Carle, R.; Schweiggert, R.M. Identification of phenolic compounds in red and green pistachio (Pistacia vera L.) hulls (exo- and mesocarp) by hplc-dad-esi-(hr)-msn. J. Agric. Food Chem. 2016, 64, 5334–5344. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Salvador, M.D.; Fregapane, G.; Gomez-Alonso, S. Comprehensive study of the phenolic compound profile and antioxidant activity of eight pistachio cultivars and their residual cakes and virgin oils. J. Agric. Food Chem. 2019, 67, 3583–3594. [Google Scholar] [CrossRef] [PubMed]
- Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Galinanes, C.; Freire, M.S.; Gonzalez-Alvarez, J. Antioxidant activity of phenolic extracts from chestnut fruit and forest industries residues. Eur. J. Wood Wood Prod. 2015, 73, 651–659. [Google Scholar] [CrossRef]
- Liu, F.; Chang, X.; Hu, X.; Brennan, C.S.; Guo, X. Effect of thermal processing on phenolic profiles and antioxidant activities in Castanea mollissima. Int. J. Food Sci. Technol. 2017, 52, 439–447. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, F.; Abbasi, A.M.; Chang, X.; Guo, X. Effect of steaming processing on phenolic profiles and cellular antioxidant activities of Castanea mollissima. Molecules 2019, 24, 703. [Google Scholar] [CrossRef] [Green Version]
- de Vasconcelos, M.; Bennett, R.N.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Industrial processing effects on chestnut fruits (Castanea sativa Mill.). 2. Crude protein, free amino acids and phenolic phytochemicals. Int. J. Food Sci. Technol. 2009, 44, 2613–2619. [Google Scholar]
- Barros, A.; Nunes, F.M.; Goncalves, B.; Bennett, R.N.; Silva, A.P. Effect of cooking on total vitamin c contents and antioxidant activity of sweet chestnuts (Castanea sativa Mill.). Food Chem. 2011, 128, 165–172. [Google Scholar] [CrossRef]
- Castro-Vazquez, L.; Alanon, M.E.; Ricardo-Da-Silva, J.M.; Perez-Coello, M.S.; Laureano, O. Study of phenolic potential of seasoned and toasted portuguese wood species (Quercus pyrenaica and Castanea sativa). J. Int. Des Sci. De La Vigne Et Du Vin 2013, 47, 311–319. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Perez-Jimenez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the phenol-explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Kang, X.M.; He, X.J.; Dong, M.; Zhang, Q.Y.; Liu, R.H. Cellular antioxidant activity of common fruits. J. Agric. Food Chem. 2008, 56, 8418–8426. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Shi, X.; Li, Q.; Xie, S.; Wu, Y.; Ouyang, J. Nutritional quality of chinese chestnut and effect of cooking on its bioactive compounds and antioxidant activity. J. Food Process. Preserv. 2016, 40, 1383–1390. [Google Scholar] [CrossRef]
- Brat, P.; George, S.; Bellamy, A.; Du Chaffaut, L.; Scalbert, A.; Mennen, L.; Arnault, N.; Amiot, M.J. Daily polyphenol intake in france from fruit and vegetables. J. Nutr. 2006, 136, 2368–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchiz, A.; Pedrosa, M.M.; Guillamon, E.; Arribas, C.; Cabellos, B.; Linacero, R.; Cuadrado, C. Influence of boiling and autoclave processing on the phenolic content, antioxidant activity and functional properties of pistachio, cashew and chestnut flours. Lwt-Food Sci. Technol. 2019, 105, 250–256. [Google Scholar] [CrossRef]
- Guo, X.; Li, T.; Tang, K.; Liu, R.H. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). J. Agric. Food Chem. 2012, 60, 11050–11055. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, K.L.; Liu, R.H. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 2007, 55, 8896–8907. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Components | Conjugated Way | MF | DH | CS | HG | FY |
---|---|---|---|---|---|---|
Ferulic acid | free | ND | 0.16 ± 0.01a | ND | ND | ND |
bound | 0.44 ± 0.08a | 0.41 ± 0.04a | 0.40 ± 0.10a | 0.40 ± 0.06a | 0.32 ± 0.07a | |
Chlorogenic acid | free | 4.71 ± 0.01a | 4.72 ± 0.01a | 4.75 ± 0.01a | 4.75 ± 0.01a | 4.69 ± 0.01a |
bound | 11.18 ± 0.25a | 12.22 ± 1.83a | 11.12 ± 1.83a | 11.25 ± 0.84a | 9.75 ± 1.40a | |
Gallic acid | free | 11.30 ± 0.09a | 13.29 ± 1.58a | 10.79 ± 2.41a | 13.56 ± 0.80a | 13.35 ± 2.93a |
bound | 2.38 ± 0.79ab | 1.64 ± 0.03b | 2.59 ± 0.22ab | 1.89 ± 0.57ab | 3.01 ± 0.70a | |
Vanallic acid | free | 2.07 ± 0.04b | 2.09 ± 0.06b | 2.08 ± 0.15b | 2.13 ± 0.06ab | 2.28 ± 0.02a |
bound | 1.08 ± 0.03a | 1.14 ± 0.13a | 1.10 ± 0.02a | 1.39 ± 0.13a | 1.39 ± 0.23a | |
Syringate | free | 1.69 ± 0.01c | 1.70 ± 0.01b | 1.63 ± 0.01d | 1.73 ± 0.01a | 1.64 ± 0.01d |
bound | 1.49 ± 0.01ab | 1.15 ± 0.30b | 1.77 ± 0.16a | 1.66 ± 0.03a | 1.57 ± 0.08a | |
7-hydroxycoumarin | free | ND | ND | ND | ND | ND |
bound | 1.96 ± 0.18a | 1.80 ± 0.17b | 1.95 ± 0.09a | 1.73 ± 0.15c | 1.79 ± 0.05b | |
Quercetin | free | 1.84 ± 0.01a | 1.84 ± 0.01a | 1.85 ± 0.01a | 1.84 ± 0.01a | 1.85 ± 0.01a |
bound | 5.25 ± 0.52a | 6.14 ± 0.72a | 7.05 ± 1.67a | 6.60 ± 0.21a | 5.80 ± 0.09a | |
quercetin 3-rhamnoside | free | ND | 1.83 ± 0.03a | 1.77 ± 0.01b | ND | ND |
bound | 2.36 ± 0.34b | 3.66 ± 0.88a | 2.33 ± 0.21b | 2.15 ± 0.18b | 1.89± 0.05b |
Cultivars | CAA Value (Nmol QE/g FW) | Cellular Uptake (%) | ||||
---|---|---|---|---|---|---|
No PBS Wash | PBS Wash | |||||
Free | Bound | Free | Bound | Free | Bound | |
MF | 1.39 ± 0.22b | 0.20 ± 0.01ab | ND | ND | ND | ND |
DH | 2.22 ± 0.22a | 0.18 ± 0.03b | ND | ND | ND | ND |
CS | 2.40 ± 0.03a | 0.33 ± 0.08a | 1.54 ± 0.11a | 0.47 ± 0.01a | 64.17 | 142.42 |
HG | 2.69 ± 0.28a | 0.29 ± 0.05ab | 0.59 ± 0.09b | ND | 21.92 | ND |
FY | 2.72 ± 0.23a | 0.33 ± 0.07a | 1.62 ± 0.07a | ND | 59.56 | ND |
Correlation | TORAC | TCAA-No | TCAA-Wash | TPC | TFC |
---|---|---|---|---|---|
TORAC | − | 0.54* | 0.69 ** | 0.54 * | 0.05 |
TCAA-No | − | − | 0.61 * | 0.71 ** | −0.097 |
TCAA-wash | − | − | − | 0.61 * | −0.241 |
TPC | − | − | − | − | 0.203 |
TFC | − | − | − | − | − |
TFA | −0.46 | −0.36 | −0.59 * | −0.66 ** | −0.31 |
TCA | 0.02 | −0.14 | −0.34 | −0.37 | −0.12 |
TGA | 0.20 | 0.37 | 0.12 | 0.57 * | 0.09 |
TVA | 0.21 | 0.63* | 0.28 | 0.80 ** | 0.30 |
TS | 0.60 * | 0.36 | 0.50 | 0.31 | 0.36 |
T7H | 0.04 | −0.33 | 0.07 | −0.41 | −0.02 |
TQ | 0.57 * | 0.49 | 0.40 | 0.13 | −0.23 |
TQ3 | −0.19 | −0.07 | −0.16 | −0.57 * | −0.81 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; Liu, F.; Lin, Z.; Qiu, J.; Peng, C.; Lu, Y.; Guo, X. Phytochemical Profiles and Cellular Antioxidant Activities in Chestnut (Castanea mollissima BL.) Kernels of Five Different Cultivars. Molecules 2020, 25, 178. https://doi.org/10.3390/molecules25010178
Chang X, Liu F, Lin Z, Qiu J, Peng C, Lu Y, Guo X. Phytochemical Profiles and Cellular Antioxidant Activities in Chestnut (Castanea mollissima BL.) Kernels of Five Different Cultivars. Molecules. 2020; 25(1):178. https://doi.org/10.3390/molecules25010178
Chicago/Turabian StyleChang, Xiaoxiao, Fengyuan Liu, Zhixiong Lin, Jishui Qiu, Cheng Peng, Yusheng Lu, and Xinbo Guo. 2020. "Phytochemical Profiles and Cellular Antioxidant Activities in Chestnut (Castanea mollissima BL.) Kernels of Five Different Cultivars" Molecules 25, no. 1: 178. https://doi.org/10.3390/molecules25010178
APA StyleChang, X., Liu, F., Lin, Z., Qiu, J., Peng, C., Lu, Y., & Guo, X. (2020). Phytochemical Profiles and Cellular Antioxidant Activities in Chestnut (Castanea mollissima BL.) Kernels of Five Different Cultivars. Molecules, 25(1), 178. https://doi.org/10.3390/molecules25010178