Microwave Hydrodiffusion and Gravity (MHG) Extraction from Different Raw Materials with Cosmetic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples and Reagents
2.2. Extraction Procedures
2.3. Extracts Characterization
2.3.1. pH
2.3.2. Total Solid Content
2.3.3. Bioactive Profile
2.3.4. Capacity of Elastase and Tyrosinase Enzymatic Inhibition
2.3.5. Macronutrients Measurements
2.3.6. Color
2.3.7. Sun Protection Factor
2.4. Formulation of the Creams
Water Features
2.5. Creams Characterization
2.6. Statistical Analysis
3. Results and Discussion
3.1. Microwave Hydrodiffusion and Gravity (MHG)
3.2. Antioxidant Properties of the Gathered Liquid Extracts
3.3. Proximate Chemical Profile
3.4. Color Characteristics of the Extracts
3.5. Utilization of MHG Extracts on Cosmetic Formulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kozłowska, J.; Prus, W.; Stachowiak, N. Microparticles based on natural and synthetic polymers for cosmetic applications. Int. J. Boil. Macromol. 2019, 129, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S.M. Application of curcumin-loaded nanocarriers for food, drug and cosmetic purposes. Trends Food Sci. Technol. 2019, 88, 445–458. [Google Scholar] [CrossRef]
- An, J.; Lee, I.; Yi, Y. The Thermal Effects of Water Immersion on Health Outcomes: An Integrative Review. Int. J. Environ. Res. Public Health 2019, 16, 1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, S. Evaluation of the Role of Balneotherapy in Rehabilitation Medicine. J. Nippon. Med Sch. 2018, 85, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, E.B.; Vasques, C.I.; Gadia, R.; Chan, R.J.; Guerra, E.N.S.; Mezzomo, L.A.; De Luca Canto, G.; dos Reis, P.E.D. Topical interventions to prevent acute radiation dermatitis in head and neck cancer patients: A systematic review. Support. Care Cancer 2017, 25, 1001–1011. [Google Scholar] [CrossRef]
- Maarouf, M.; Saberian, C.; Lio, P.A.; Shi, V.Y. Head-and-neck dermatitis: Diagnostic difficulties and management pearls. Pediatr. Dermatol. 2018, 35, 748–753. [Google Scholar] [CrossRef]
- Zeichner, J.; Seite, S. From probiotic to prebiotic using thermal spring water. J. Drugs Dermatol. 2018, 17, 657–662. [Google Scholar]
- Afonso, T.; Moresco, R.; Uarrota, V.G.; Navarro, B.B.; Nunes, E.D.C.; Maraschin, M.; Rocha, M. UV-Vis and CIELAB Based Chemometric Characterization of Manihot esculenta Carotenoid Contents. J. Integr. Bioinform. 2017, 14, 20170056. [Google Scholar] [CrossRef]
- Morone, J.; Alfeus, A.; Vasconcelos, V.; Martins, R. Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals—A new bioactive approach. Algal Res. 2019, 41, 101541. [Google Scholar] [CrossRef]
- Wongwad, E.; Pingyod, C.; Saesong, T.; Waranuch, N.; Wisuitiprot, W.; Sritularak, B.; Temkitthawon, P.; Ingkaninan, K. Assessment of the bioactive components, antioxidant, antiglycation and anti-inflammatory properties of Aquilaria crassna Pierre ex Lecomte leaves. Ind. Crops Prod. 2019, 138, 111448. [Google Scholar] [CrossRef]
- González, N.; Ribeiro, D.; Fernandes, E.; Nogueira, D.R.; Conde, E.; Moure, A.; Vinardell, M.P.; Mitjans, M.; Domínguez, H. Potential use of Cytisus scoparius extracts in topical applications for skin protection against oxidative damage. J. Photochem. Photobiol. B Boil. 2013, 125, 83–89. [Google Scholar] [CrossRef]
- Lores, M.; Pajaro, M.; Alvarez-Casas, M.; Domínguez, J.; Garcia-Jares, C. Use of ethyl lactate to extract bioactive compounds from Cytisus scoparius: Comparison of pressurized liquid extraction and medium scale ambient temperature systems. Talanta 2015, 140, 134–142. [Google Scholar] [CrossRef]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Fernandes, I.P.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Ferreira, I.C.; Barreiro, M.F. Mushroom-based cosmeceutical ingredients: Microencapsulation and in vitro release profile. Ind. Crops Prod. 2018, 124, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Taofiq, O.; Rodrigues, F.; Barros, L.; Barreiro, M.F.; Ferreira, I.C.; Oliveira, M.B.P. Mushroom ethanolic extracts as cosmeceuticals ingredients: Safety and ex vivo skin permeation studies. Food Chem. Toxicol. 2019, 127, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Sena, L.M.; Zappelli, C.; Apone, F.; Barbulova, A.; Tito, A.; Leone, A.; Olivoero, T.; Ferracane, R.; Fogliano, V.; Colucci, G. Brassica rapa hairy root extracts promote skin depigmentation by modulating melanin production and distribution. J. Cosmet. Dermatol. 2018, 17, 246–257. [Google Scholar] [CrossRef]
- Subramanian, V.; Sahithya, D. Preliminary Screening of Selected Plant Extracts for Anti Tyrosinase Activity. J. Nat. Remedies 2016, 16, 18. [Google Scholar] [CrossRef] [Green Version]
- Laddha, A.P.; Kulkarni, Y.A. Tannins and vascular complications of Diabetes: An update. Phytomedicine 2019, 56, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Sillero, L.; Prado, R.; Andrés, M.A.; Labidi, J. Characterisation of bark of six species from mixed Atlantic forest. Ind. Crops Prod. 2019, 137, 276–284. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. Trends Analyt. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Razzaghi, S.E.; Arabhosseini, A.; Turk, M.; Soubrat, T.; Cendres, A.; Kianmehr, M.H.; Perino, S.; Chemat, F. Operational efficiencies of six microwave based extraction methods for orange peel oil. J. Food Eng. 2019, 241, 26–32. [Google Scholar] [CrossRef]
- Reyes-Ocampo, I.; Córdova-Aguilar, M.S.; Guzmán, G.; Blancas-Cabrera, A.; Ascanio, G. Solvent-free mechanical extraction of Opuntia ficus-indica mucilage. J. Food Process. Eng. 2019, 42, 12954. [Google Scholar] [CrossRef] [Green Version]
- Cendres, A.; Hoerlé, M.; Chemat, F.; Renard, C.M. Different compounds are extracted with different time courses from fruits during microwave hydrodiffusion: Examples and possible causes. Food Chem. 2014, 154, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Seoane, P.; Díaz-Reinoso, B.; Muñoz, G.-; Portela, C.F.D.A.; Domínguez, H. Innovative technologies for the extraction of saccharidic and phenolic fractions from Pleurotus eryngii. LWT 2019, 101, 774–782. [Google Scholar] [CrossRef]
- Benmoussa, H.; Elfalleh, W.; He, S.; Romdhane, M.; Benhamou, A.; Chawech, R. Microwave hydrodiffusion and gravity for rapid extraction of essential oil from Tunisian cumin (Cuminum cyminum L.) seeds: Optimization by response surface methodology. Ind. Crop. Prod. 2018, 124, 633–642. [Google Scholar] [CrossRef]
- Darvishi, H.; Azadbakht, M.; Rezaeiasl, A.; Farhang, A. Drying characteristics of sardine fish dried with microwave heating. J. Saudi Soc. Agric. Sci. 2013, 12, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimety of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol Viticult. 1965, 16, 144–148. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Boil. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Gadow, A.; Joubert, E.; Hansmann, C. Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea. Food Chem. 1997, 60, 73–77. [Google Scholar] [CrossRef]
- Khosa, M.K.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Riaz, H.; Aslam, K. Spectrophotometric quantification of antioxidant phytochemicals in juices from four different varieties of Citrus limon indigenous to Pakistan. J. Chem. Soc. Pak. 2011, 33, 188–192. [Google Scholar]
- Liyanaarachchi, G.D.; Samarasekera, J.K.R.R.; Mahanama, K.R.R.; Hemalal, K.D.P. Tyrosinase, elastase, hyaluronidase, inhibitory and antioxidant activity of Sri Lankan medicinal plants for novel cosmeceuticals. Ind. Crops Prod. 2018, 111, 597–605. [Google Scholar] [CrossRef]
- Chiari, M.; Joray, M.; Ruiz, G.; Palacios, S.; Carpinella, M. Tyrosinase inhibitory activity of native plants from central Argentina: Isolation of an active principle from Lithrea molleoides. Food Chem. 2010, 120, 10–14. [Google Scholar] [CrossRef]
- Balboa, E.M.; Rivas, S.; Moure, A.; Domínguez, H.; Parajó, J.C. Simultaneous Extraction and Depolymerization of Fucoidan from Sargassum muticum in Aqueous Media. Mar. Drugs 2013, 11, 4612–4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrote, G.; Domínguez, H.; Parajó, J.C. Manufacture of xylose-based fermentation media from corncobs by posthydrolysis of autohydrolysis liquors. Appl. Biochem. Biotechnol. 2001, 95, 195–208. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Kamal, I. Identification and Extraction Kinetics of Lipids Using UV Spectrophotometry. Technical Report. Available online: https://www.researchgate.net/publication/319128233_Identification_and_Extraction_Kinetics_of_Lipids_Using_UV_Spectrophotometry (accessed on 28 August 2017).
- Kaur, C.D.; Saraf, S. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Res. 2010, 2, 22–25. [Google Scholar]
- Mansur, J.S.; Breder, M.N.R.; Mansur, M.C.A.; Azulay, R.D. Determinação do fator de proteção solar por espectrofotometría. An. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Sayre, R.M.; Agin, P.P.; Levee, G.J.; Marlowe, E. A Comparison Of In Vivo And In Vitro Testing of Sunscreening Formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef]
- Balboa, E.M.; Soto, M.L.; Nogueira, D.R.; González-López, N.; Conde, E.; Moure, A.; Vinardell, M.P.; Mitjans, M.; Domínguez, H. Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Ind. Crops Prod. 2014, 58, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Dutra, E.A.; Oliveira, D.A.G.D.C.; Kedor-Hackmann, E.R.M.; Santoro, M.I.R.M. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Revista Brasileira de Ciências Farmacêuticas 2004, 40, 381–385. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, S.L.; Wang, X.; Huang, L.; Gonzalez, F.S.-M.; Yao, Y. Phytoglycogen Octenyl Succinate, an Amphiphilic Carbohydrate Nanoparticle, and ε-Polylysine To Improve Lipid Oxidative Stability of Emulsions. J. Agric. Food Chem. 2010, 58, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Vian, M.; Franco, V. Microwave Hydrodiffusion for Isolation of Natural Products. European Patent EP1,955,749A1, 13 August 2008. [Google Scholar]
- Makanjuola, S.A. Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea-ginger blend. Food Sci. Nutr. 2017, 5, 1179–1185. [Google Scholar] [CrossRef]
- López-Hortas, L.; Gely, M.; Falqué, E.; Domínguez, H.; Torres, M.D. Alternative environmental friendly process for dehydration of edible Undaria pinnatifida brown seaweed by microwave hydrodiffusion and gravity. J. Food Eng. 2019, 261, 15–25. [Google Scholar] [CrossRef]
- Ekezie, F.-G.C.; Sun, D.-W.; Cheng, J.-H. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci. Technol. 2017, 67, 160–172. [Google Scholar] [CrossRef]
- Iqbal, S.; Younas, U.; Chan, K.W.; Saeed, Z.; Shaheen, M.A.; Akhtar, N.; Majeed, A. Growth and antioxidant response of Brassica rapa var. rapa L. (turnip) irrigated with different compositions of paper and board mill (PBM) effluent. Chemosphere 2013, 91, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Rakic, S.; Petrović, S.; Kukić, J.; Jadranin, M.; Tesevic, V.; Povrenovic, D.; Siler-Marinkovic, S. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chem. 2007, 104, 830–834. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Remedi, R.D.; Sá, C.D.S.; Rodrigues, A.B.; Ramos, J.M.G.; Burkert, C.A.V.; Furlong, E.B.; Burkert, J.F.D.M. Use of agroindustrial byproducts as substrate for production of carotenoids with antioxidant potential by wild yeasts. Biocatal. Agric. Biotechnol. 2019, 20, 101208. [Google Scholar] [CrossRef]
- Neha, P.; Pandey-Rai, S. Biochemical activity and therapeutic role of antioxidants in plants and humans. In Plants as a Source of Natural Antioxidants; CABI Publishing: Wallingford, UK, 2014; pp. 191–224. [Google Scholar]
- Frede, K.; Schreiner, M.; Baldermann, S. Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis. J. Photochem. Photobiol. B Boil. 2019, 193, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Bessa, L.C.; Ferreira, M.C.; Rodrigues, C.E.; Batista, E.A.; Meirelles, A.J. Simulation and process design of continuous countercurrent ethanolic extraction of rice bran oil. J. Food Eng. 2017, 202, 99–113. [Google Scholar] [CrossRef]
- Page, J.C.; Arruda, N.P.; Freitas, S.P. Crude ethanolic extract from spent coffee grounds: Volatile and functional properties. Waste Manag. 2017, 69, 463–469. [Google Scholar] [CrossRef]
- Thavarajah, D.; Thavarajah, P.; Abare, A.; Basnagala, S.; Lacher, C.; Smith, P.; Combs, G.F. Mineral micronutrient and prebiotic carbohydrate profiles of USA-grown kale (Brassica oleracea L. var. acephala). J. Food Compos. Anal. 2016, 52, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Rachmawati, H.; Sundari, S.; Nabila, N.; Tandrasasmita, O.M.; Amalia, R.; Siahaan, T.J.; Tjandrawinata, R.R.; Ismaya, W.T. Orf239342 from the mushroom Agaricus bisporus is a mannose binding protein. Biochem. Biophys. Res. Commun. 2019, 515, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Y.; Song, C.; Ning, J.; Cui, Z. Characterization and functional analysis of a novel mannose-binding lectin from the swimming crab Portunus trituberculatus. Fish Shellfish. Immunol. 2019, 89, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Adekunte, A.; Tiwari, B.; Cullen, P.; Scannell, A.; O’Donnell, C. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Afonso, C.; Hirano, R.; Gaspar, A.; Chagas, E.; Carvalho, R.; Silva, F.; Leonardi, G.; Lopes, P.; Silva, C.; Yoshida, C. Biodegradable antioxidant chitosan films useful as an anti-aging skin mask. Int. J. Boil. Macromol. 2019, 132, 1262–1273. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Manera, F.; Brotons, J.; Fernandez-Zapata, J.; Simón, I.; Simón-Grao, S.; Alfosea-Simón, M.; Nicolás, J.M.; Valverde, J.; García-Sanchez, F. Changes in the content of chlorophylls and carotenoids in the rind of Fino 49 lemons during maturation and their relationship with parameters from the CIELAB color space. Sci. Hortic. 2019, 243, 252–260. [Google Scholar] [CrossRef]
- Bom, S.; Jorge, J.; Ribeiro, H.; Marto, J. A step forward on sustainability in the cosmetics industry: A review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Delgado-Outeiriño, I.; Araujo-Nespereira, P.; Cid-Fernández, J.; Mejuto, J.C.; Martínez-Carballo, E.; Simal-Gandara, J. Behaviour of thermal waters through granite rocks based on residence time and inorganic pattern. J. Hydrol. 2009, 373, 329–336. [Google Scholar] [CrossRef]
- Nurjanah; Luthfiyana, N.; Hidayat, T.; Nurilmala, M.; Anwar, E. Utilization of seaweed porridge Sargassum sp. and Eucheuma cottonii as cosmetic in protecting skin. IOP Conf. Ser. Earth Environ. Sci. 2019, 278, 012055. [Google Scholar]
- Ospina, M.; Montaña-Oviedo, K.; Díaz-Duque, Á; Toloza-Daza, H.; Narváez-Cuenca, C.-E. Utilization of fruit pomace, overripe fruit, and bush pruning residues from Andes berry (Rubus glaucus Benth) as antioxidants in an oil in water emulsion. Food Chem. 2019, 281, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Pandolsook, S.; Kupongsak, S. Storage stability of bleached rice bran wax organogels and water-in oil emulsions. J. Food Meas. Charact. 2019, 13, 431–443. [Google Scholar] [CrossRef]
- Houlden, R.J. Viscosity vs. rheology: Why it is important to formulators. Personal Care 2017. Available online: https://www.personalcaremagazine.com/story/24670/viscosity-vs-rheology-why-it-is-important-to-formulators (accessed on 22 November 2017).
- Houlden, R.J. The Influence of Rheology on Sunscreen Performance and SPF—Are Highly Thixtotropic Products Not Providing Enough Protection? TKS Publisher: Milan, Italy, 2018; Volume 13. [Google Scholar]
- López-Hortas, L.; Conde, E.; Falqué, E.; Domínguez, H.; Torres, M.D. Preparation of Hydrogels Composed of Bioactive Compounds from Aqueous Phase of Artichoke Obtained by MHG Technique. Food Bioprocess Technol. 2019, 12, 1304–1315. [Google Scholar] [CrossRef]
- López-Hortas, L.; Conde, E.; Falqué, E.; Domínguez, H.; Torres, M. Recovery of aqueous phase of broccoli obtained by MHG technique for development of hydrogels with antioxidant properties. LWT 2019, 107, 98–106. [Google Scholar] [CrossRef]
- Nooeaid, P.; Chuysinuan, P.; Techasakul, S. Alginate/gelatine hydrogels: characterisation and application of antioxidant release. Green Mater. 2017, 5, 1–12. [Google Scholar] [CrossRef]
- Pierson, J.T.; Perino-Issartier, S.; Ruiz, K.; Cravotto, G.; Chemat, F. Laboratory to pilot-scale optimization of microwave hydrodiffusion and gravity: Solvent-free polyphenols extraction from lettuce. Food Chem. 2016, 204, 108–114. [Google Scholar]
Composition (mg/g Raw Material Dry Weight) | Extraction Technique | Raw Materials | |||||
---|---|---|---|---|---|---|---|
C. scoparius | P. ostreatus | B. rapa | Q. robur | ||||
Whole | Into Quarters | ||||||
Monosaccharides | Glucose | MHG | 0.34 ± 0.00 j | 0.68 ± 0.00 i | 0.32 ± 0.00 m | 0.01 ± 0.00 g | 0.01 ± 0.00 k |
SLE | 10.60 ± 0.00 e | 2.89 ± 0.00 g | 9.31 ± 0.01 f | 0.01 ± 0.00 g | 0.10 ± 0.00 g | ||
Xylose | MHG | 0.08 ± 0.01 l | 0.17 ± 0.00 l | 0.17 ± 0.00 n | 0.03 ± 0.00 e | 0.01 ± 0.00 l | |
SLE | 2.36 ± 0.01 h | 0.47 ± 0.01 j | 1.03 ± 0.01 i | 0.03 ± 0.01 e | 0.03 ± 0.00 i | ||
Galactose | MHG | 0.04 ± 0.00 ll | 0.07 ± 0.00 m | 0.12 ± 0.01 ñ | 0.02 ± 0.01 f | 0.01 ± 0.00 k | |
SLE | 0.37 ± 0.00 j | 0.34 ± 0.00 k | 0.62 ± 0.01 k | 0.02 ± 0.01 f | 0.03 ± 0.00 j | ||
Rhamnose | MHG | 0.01 ± 0.00 m | 0.13 ± 0.00 ll | 0.05 ± 0.00 p | 0.01 ± 0.01 g | 0.03 ± 0.00 i | |
SLE | 0.13 ± 0.00 k | 0.16 ± 0.01 l | 0.39 ± 0.01 ll | 0.01 ± 0.00 g | 0.01 ± 0.00 k | ||
Arabinose | MHG | 0.45 ± 0.00 i | nd | 0.44 ± 0.00 l | nd | 0.07 ± 0.00 h | |
SLE | nd | nd | nd | nd | nd | ||
Mannose | MHG | 0.37 ± 0.00 j | 6.11 ± 0.03 f | 0.85 ± 0.00 j | 97.03 ± 2.78 b | 0.78 ± 0.00 e | |
SLE | 1537.0 ± 2.4 b | 1551.3 ± 2.8 b | 2253.5 ± 0.8 b | 96.44 ± 0.80 b | 107.20 ± 0.37 b | ||
Fructose | MHG | nd | 1.28 ± 0.01 h | 0.61 ± 0.01 k | 0.47 ± 0.31 d | 0.03 ± 0.00 j | |
SLE | 5.14 ± 0.48 f | 10.21 ± 0.39 e | 8.32 ± 0.01 g | 0.76 ± 0.65 c | 0.41 ± 0.02 f | ||
Oligosaccharides | O-glucose | MHG | nd | nd | 0.07 ± 0.00 o | 0.01 ± 0.00 h | 0.03 ± 0.00 j |
SLE | nd | 0.72 ± 0.00 i | nd | nd | 0.02 ± 0.05 k | ||
O-xylose | MHG | nd | nd | nd | nd | nd | |
SLE | 43.96 ± 0.15 d | 13.47 ± 0.02 d | 18.17 ± 0.10 e | nd | 0.43 ± 0.17 f | ||
O-galactose | MHG | nd | nd | nd | nd | nd | |
SLE | nd | nd | nd | nd | nd | ||
O-rhamnose | MHG | 54.33 ± 0.31 c | 572.3 ± 0.0 c | 599.2 ± 4.4 d | nd | 7.16 ± 2.24 c | |
SLE | nd | nd | nd | nd | nd | ||
O-arabinose | MHG | 3.42 ± 0.05 g | nd | 3.62 ± 0.05 h | nd | 0.01 ± 0.05 k,l | |
SLE | nd | nd | nd | nd | nd | ||
O-mannose | MHG | nd | 2.10 ± 0.39 g | nd | nd | 1.19 ± 0.22 d | |
SLE | 2880.5 ± 0.7 a | 4492.9 ± 0.6 a | 4059.0 ± 8.2 a | 166.5 ± 2.3 a | 271.2 ± 58.3 a | ||
O-fructose | MHG | nd | nd | 706.03 ± 1.62 c | nd | nd | |
SLE | nd | nd | nd | nd | nd |
Raw Materials | Extraction Technique | Coordinates | Magnitudes | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Lightness (L*) | a* | b* | Hue Angle (h°) | Chroma (C*) | Saturation (S*) | |||||
C. scoparius | MHG | 90.10 ± 0.03 a | 0.65 ± 0.01 b | −1.44 ± 0.02 f | 114.34 ± 0.12 d | 1.58 ± 0.01 e | 0.02 ± 0.00 b | |||
SLE | 87.50 ± 0.03 c | −1.06 ± 0.04 d | 3.09 ± 0.06 b | 108.14 ± 0.11 g | 3.27 ± 0.08 b | 0.04 ± 0.01 b | ||||
P. ostreatus | MHG | 90.07 ± 0.02 a | 0.71 ± 0.02 a | −1.59 ± 0.02 g | 114.11 ± 0.10 d | 1.74 ± 0.01 c | 0.02 ± 0.01 b | |||
SLE | 87.67 ± 0.05 c | 0.23 ± 0.04 c | −0.67 ± 0.02 d | 109.14 ± 0.13 f | 0.71 ± 0.02 i | 0.01 ± 0.00 b | ||||
B. rapa | MHG | 90.04 ± 0.02 a | 0.71 ± 0.02 a | −1.65 ± 0.01 g | 113.24 ± 0.10 e | 1.80 ± 0.01 c | 0.02 ± 0.01 b | |||
SLE | 83.99 ± 0.07 d | −6.45 ± 0.05 e | 13.38 ± 0.07 a | 115.77 ± 0.16 c | 14.85 ± 0.15 a | 0.18 ± 0.03 a | ||||
Q. robur | Whole | MHG | 90.15 ± 0.02 a | 0.66 ± 0.02 a,b | −1.23 ± 0.01 e | 118.22 ± 0.10 b | 1.40 ± 0.02 f | 0.02 ± 0.01 b | ||
SLE | 90.31 ± 0.04 a | 0.68 ± 0.01 a | −1.50 ± 0.07 f,g | 114.36 ± 0.14 d | 1.65 ± 0.01 d | 0.02 ± 0.00 b | ||||
Into quarters | MHG | 89.25 ± 0.03 b | 0.62 ± 0.04 b | −0.68 ± 0.04 d | 132.06 ± 0.13 a | 0.92 ± 0.01 h | 0.01 ± 0.00 b | |||
SLE | 89.64 ± 0.05 b | 0.29 ± 0.03 c | 1.27 ± 0.08 c | 67.21 ± 0.15 h | 1.33 ± 0.01 g | 0.01 ± 0.00 b | ||||
MHG | Total Color Difference (ΔE*) | Hue Difference (ΔH*) | ||||||||
SLE | C. scoparius | 5.50 | SLE | C. scoparius | 4.54 | |||||
P. ostreatus | 2.61 | P. ostreatus | 0.13 | |||||||
B. rapa | 17.71 | B. rapa | 10.34 | |||||||
Q. robur | Whole | 0.31 | Q. robur | Whole | 0.10 | |||||
Into quarters | 2.02 | Into quarters | 1.93 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Hortas, L.; Falqué, E.; Domínguez, H.; Torres, M.D. Microwave Hydrodiffusion and Gravity (MHG) Extraction from Different Raw Materials with Cosmetic Applications. Molecules 2020, 25, 92. https://doi.org/10.3390/molecules25010092
López-Hortas L, Falqué E, Domínguez H, Torres MD. Microwave Hydrodiffusion and Gravity (MHG) Extraction from Different Raw Materials with Cosmetic Applications. Molecules. 2020; 25(1):92. https://doi.org/10.3390/molecules25010092
Chicago/Turabian StyleLópez-Hortas, Lucía, Elena Falqué, Herminia Domínguez, and María Dolores Torres. 2020. "Microwave Hydrodiffusion and Gravity (MHG) Extraction from Different Raw Materials with Cosmetic Applications" Molecules 25, no. 1: 92. https://doi.org/10.3390/molecules25010092
APA StyleLópez-Hortas, L., Falqué, E., Domínguez, H., & Torres, M. D. (2020). Microwave Hydrodiffusion and Gravity (MHG) Extraction from Different Raw Materials with Cosmetic Applications. Molecules, 25(1), 92. https://doi.org/10.3390/molecules25010092