Supplementary Materials

Anthelmintic A-Type Procyanidins and Further Characterization of the Phenolic Composition of a Root Extract from *Paullinia pinnata*

Verena Spiegler^{1*}

¹ Institute for Pharmaceutical Biology and Phytochemistry, University of Münster, Germany; E-mail: verena.spiegler@uni-muenster.de

* Correspondence: verena.spiegler@uni-muenster.de

Table S1. ¹H and ¹³C NMR data of 1 and 2 (CD₃OD, 280 K).

Table S2: ¹H and ¹³C NMR data of 3a, 4 and 5 (CD₃OD, 280 K).

Figure S1: MS/MS spectra and proposed fragmentation patterns (modified from [28]) of (**a**) compound **6** and (**b**) compound **1**.

Figure S2: +ESI-qTOF chromatograms of (**a**) compound **1**, (**b**) **1** after 72 h of incubation during the anthelmintic assay without addition of ascorbic acid and (**c**) plus 0.01 % ascorbic acid.

Figure S3 (a) – (f): 1D- and 2D-NMR spectra of compound 15.

Figure S4 (a) – (f): 1D- and 2D-NMR spectra of compound 17.

Figure S5 (a) – (f): 1D- and 2D-NMR spectra of compound 18.

Figure S6 (a) - (d): 1D- and 2D-NMR spectra of compound 19.

Figure S7: 1H NMR spectrum of compound 1 (CD3OD, 600 MHz, 280 K).

Figure S8: ¹H NMR spectrum of compound 2 (CD₃OD, 600 MHz, 280 K).

Figure S9: ¹H NMR spectrum of compound 3 (CD₃OD, 600 MHz, 280 K).

Figure S10: ¹H NMR spectrum of compound 3a (CDCl₃, 600 MHz, 299 K).

Figure S11: ¹H NMR spectrum of compound 4 (CD₃OD, 600 MHz, 280 K).

Figure S12: ¹H NMR spectrum of compound 5 (CD₃OD, 600 MHz, 280 K).

Figure S13: ¹H NMR spectrum of compound 6 (CD₃OD, 600 MHz, 280 K).

Figure S14: ¹H NMR spectrum of compound 7 (CDCl₃, 600 MHz).

Figure S15: ¹H NMR spectrum of compound 8 (CDCl₃, 600 MHz).

Figure S16: 1H NMR spectrum of compound 9 (CD3OD, 600 MHz).

Figure S17: ¹H NMR spectrum of compound 10 (acetone-*d*₆, 600 MHz).

Figure S18: ¹H NMR spectrum of compound 11 (acetone-d₆, 600 MHz).

Figure S19: ¹H NMR spectrum of compound 12 (acetone-d₆, 600 MHz).

Figure S20: 1H NMR spectrum of compound 13 (acetone-d6, 600 MHz).

Figure S21: ¹H NMR spectrum of compound 14 (CD₃OD, 600 MHz).

Figure S22: ¹H NMR spectrum of compound 16 (D₂O, 600 MHz).

		1		2			
Ring	No.	$\delta_C m$	δ _H m (J/Hz)	$\delta c m$	$\delta_{\rm H} m (J/{\rm Hz})$		
Unit I	1101	00111					
C	2	100.0. C		100.1. C			
C	3	67.2 . CH	3.27. d (3.5)	67.1. CH	3.31 *		
	4	28.8. CH	4.14 d (3.5)	29.0. CH	3.95. d (3.5)		
А	5	156.8. C		156.6. C			
	6	98.3. CH	5.96. d (2.4)	97.9. CH	5.84. d (2.4)		
	7	157.8. C		158.0. C			
	8	96.6. CH	6.00. d (2.4)	96.5. CH	5.99. d (2.4)		
	9	154.2. C	0.000, 0 (200)	154.0. C			
	10	104.9. C		104.1. C			
В	1'	132.5. C		132.3. C			
D	2'	115.8 CH	7 02 d (1 9)	1157 CH	7.01 d(2.1)		
	3'	145.8 C	7.02, u (1.9)	145 3 C	,, a (2.1)		
	4'	146.6 C		145.6 C			
	5'	1157 CH	6 76*	1157 CH	6 80 d (8 3)		
	5 6'	1199 CH	6.82 dd (8.2, 1.9)	119.8 CH	6.84 dd (8.3, 2.3)		
Unit II	U	119.9, en	0.02, 00 (0.2, 1.9)	119.0, en	0.01 dd, (0.0, 2.0)		
F	2	78.9, CH	5.70, br s	84.54, CH	4.61, d (9.6)		
	3	72.6, CH	4.11 m	73.92, CH	4.56, d (9.5)		
	4	38.3, CH	4.56 s	39.08, CH	4.51, d (8.8)		
D	5	155.8, C		155.43, C			
	6	96.1, CH	5.79, s	97.2, CH	5.79, s		
	7	151.1. C	,	151.2. C	,		
	8	106.4, C		106.9, C			
	9	151.8, C		152.3, C			
	10	106.7. C		109.0. C			
Е	1'	131.8, C		131.1, C			
	2'	116.7. CH	7.32, d (2.0)	116.5. CH	7.19. d (2.0)		
	3'	145.9. C		146.2. C			
	4'	146.3. C		146.7. C			
	5'	116.0. CH	6.84. d (8.2)	116.3. CH	6.89. d (8.1)		
	6'	121.4. CH	7.20. dd (8.3. 2.0)	121.2. CH	7.14. dd (8.2. 2.0)		
Unit III	-	. , -	,,,	. , -			
	2	80.3, CH	4.40, s	79.7, CH	4.37, brs		
	3	67.5, CH	3.86, m	67.7, CH	4.07, d (4.4)		
	4	29.9, CH ₂	2.83, m	30.1, CH ₂	2.87, dd (17.0, 4.9)		
		,	,	,	2.78, brd (16.9)		
	5	156.0, C		156.25, C			
	6	96.4, CH	6.10, s	96.5, CH	6.08, s		
	7	155.6, C		156.2, C			
	8	108.9, C		108.6, C			
	9	155.8, C		155.3, C			
	10	100.0, C		100.9, C			
	1′	133.2, C		133.0, C			
	2'	115.5, CH	6.83, d (1.7)	115.3, CH	6.98, d (1.9)		
	3'	145.3, C		145.9, C	. ,		
	4′	145.5, C		146.7, C			
	5'	115.7, CH	6.82, d (8.2)	116.0, CH	6.83, d (8.2)		
	6'	1194 CH	6 73*	119.3. CH	6 88 dd (8 3 1 9)		

Table S1. ¹H and ¹³C NMR data of 1 and 2 (CD₃OD, 280 K).

*Multiplicity not determined due to overlapping signals

		<u>3a</u>		4					
						-		5	
Ring	No.	$\delta_{\rm C} m$	$\delta_{\rm H} m \left(J/{\rm Hz} \right)$	$\delta_{\rm C} m$	$\delta_{\rm H} m \left(J/{\rm Hz} \right)$	Ring	No.	$\delta_{\rm C} m$	$\delta_{\rm H} m \left(J/{\rm Hz} \right)$
Unit I						Unit I			
С	2	74.1, CH	5.55, brs	77.0, CH	4.94, s	С	2	100.1, C	
	3	70.8, CH	5.25, brt (1.5)	73.2, CH	3.86, d (3.8)		3	66.8, CH	3.28, d (3.6)
	4	34.7, CH	4.68, s	37.3, CH	4.71, brs		4	28.9, CH	4.24, d (3.6)
A	5	$150.0, C^{1}$		157.9, C		А	5	156.7, C	
	6	110.2, CH	6.72, d (2.3)	96.4, CH	5.95, d (2.1)		6	98.3, CH	5.98, d (2.4)
	7	$147.5, C^{1}$		158.2, C			7	157.9, C	
	8	107.9, CH	6.77, d (2.3)	96.0, CH	5.98, d (2.2)		8	96.5, CH	6.06, d (2.3)
	9	154.9, C		155.6, C	, , ,		9	154.2, C	
	10	111.1. C		101.8. C			10	104.9. C	
В	1'	136.0, C		132.4, C		В	1'	132.3, C	
	2'	123.2, CH	7.53, d (2.2)	115.3, CH	6.81*		2'	115.8, CH	7.15, d (1.9)
	3'	142.0, C		145.5, C			3'	145.5, C	
	4′	143.2, C		145.8, C			4′	146.7, C	
	5'	123.5, CH	7.14, d (8.1)	115.8, CH	6.64, d (8.2)		5'	116.1, CH	6.89, d (8.3)
	6'	124.5, CH	7.24, dd (8.4, 1.9)	119.2, CH	6.53, dd (8.3, 1.0)		6'	119.9, CH	6.91*
Unit II						Unit II			
F	2	97.3, C		100.3, C		F	2	78.7, CH	5.65, s
	3	67.4, CH	5.00, d (3.9)	66.5, CH	3.40, d (3.4)		3	72.4, CH	4.06, brs
	4	28.0, CH	4.55, d (3.9)	29.1, CH	4.23, d (3.4)		4	38.4, CH	4.43, s
D	5	148.0, C		155.4, C		D	5	154.2, C	
	6	117.5, C		99.5, CH	5.93, s		6	107.6, C	
	7	148.7, C		156.8, C			7	148.4, C	
	8	109.5, CH	7.01, s	108.3, C			8	106.9, C	
	9	152.3, C		155.3, C			9	150.3, C	
	10	113.4, C		105.0, C			10	107.2, C	
E	1'	135.3, C		132.4, C		E	1'	131.6, C	
	2'	125.5, CH	7.64, d (2.0)	115.6, CH	7.24, d (1.7)		2'	116.7, CH	7.31, d (2.0)
	3'	141.94, C		145.6, C			3'	145.9, C	
	4'	142.8, C		146.6, C			4′	146.3, C	
	5'	123.2, CH	7.27, d (8.6)	115.9, CH	6.83*		5'	115.9, CH	6.83, d (8.2)
	6'	125.3, CH	7.58, dd (8.6, 2.2)	120.0, CH	6.97, dd (8.3, 1.7)		6'	121.4, CH	7.22, dd (8.3, 2.0)

Table S2: ¹H and ¹³C NMR data of **3a**, **4** and **5** (CD₃OD, 280 K).

Unit III						Unit III			
Ι	2	76.3, CH	5.49, d (2.0)	78.9, CH	5.71, s	Ι	2	80.1, CH	4.10, d (2.3)
	3	70.2, CH	5.21, m	72.6, CH	4.11, brs		3	67.4, CH	3.61, m
	4	33.7, CH	4.58, d (1.9)	38.4, CH	4.56, brs		4	29.7, CH ₂	2.78, brs
G	5	150.0, C		155.9, C		G	5	155.5, C	
	6	104.9, CH	6.52, s	95.9, CH	5.74, s		6	96.5, CH	6.08, s
	7	150.4, C		151.0, C			7	156.1, C	
	8	108.8, C		106.3, C			8	108.8, C	
	9	151.7, C		151.8, C			9	155.6, C	
	10	108.1, C		106.7, C			10	99.8, C	
Н	1'	134.6, C		131.7, C		Н	1′	132.8, C	
	2'	121.9, CH	7.39, d (1.7)	116.7, CH	7.33, d (2.0)		2'	115.4, CH	6.64, d (1.9)
	3'	141.9, C		145.9, C			3'	145.7, C	
	4'	142.3, C		146.3, C			4′	145.4, C	
	5'	123.1, CH	7.11, d (8.3)	116.1, CH	6.84, d (8.3)		5'	115.8, CH	6.71, d (8.1)
	6'	125.7, CH	7.20, dd (8.5, 2.1)	121.4, CH	7.21, dd (8.3, 2.0)		6'	119.2, CH	6.25, dd (8.2, 1.7)
Unit IV						Unit II'			
L	2	76.8, CH	5.15, brs	80.2, CH	4.40, brs		2	76.6, CH	4.74, s
	3	65.5, CH	5.52, dt (4.7, 1.7)	67.6, CH	3.86, brs		3	71.2, CH	4.10, d (2.3)
	4	26.5, CH ₂	3.05, dd (18.0, 4.6)	29.9, CH ₂	2.83, brs		4	37.6, CH	4.38, s
			2.97, brd (18.0)						
J	5	148.7, C		156.0, C			5	159.4, C	
	6	111.0, CH	6.58, s	96.2, CH	6.10, s		6	96.6, CH	5.88, d (2.3)
	7	147.5, C		155.8, C			7	159.6, C	
	8	118.5, C		108.8, C			8	96.1, CH	5.93, d (2.3)
	9	151.9, C		155.9, C			9	158.0, C	
	10	110.3, C		99.8, C			10	99.2, C	
Κ	1'	135.6, C		133.1, C			1'	131.6, C	
	2'	121.6, CH	7.25, d (1.9)	115.3, CH	6.81*		2'	116.8, CH	7.11, d (1.3)
	3'	141.6, C		145.4, C			3'	145.9, C	
	4'	142.0, C		145.8, C			4'	146.3, C	
	5'	123.2, CH	7.15, d (8.0)	115.9, CH	6.80*		5'	116.1, CH	6.91*
	6'	123.5, CH	7.13, dd (8.4, 1.9)	119.3, CH	6.75, dd (8.3, 2.4)		6'	120.7, CH	6.92*

¹Interchangeable. * Multiplicity not determined due to overlapping signals.

Figure S1: MS/MS spectra and proposed fragmentation patterns (modified from [28]) of (**a**) compound **6** and (**b**) compound **1**, showing characteristic fragments and respective measured *m*/*z* values.

Figure S2: +ESI-qTOF chromatograms of (**a**) compound **1**, (**b**) **1** after 72 h of incubation during the anthelmintic assay without addition of ascorbic acid and (**c**) plus 0.01 % ascorbic acid. Arrows indicate formation of minor side products 1 and 2 during incubation time. Formation of 2 was generally prevented by addition of ascorbic acid.

Figure S3: 1D- and 2D-NMR spectra of compound 15.

a) ¹H NMR spectrum of compound **15** (D₂O, 600 MHz).

c) COSY spectrum of compound 15 (D2O, 600 MHz).

d) HSCQ spectrum of compound 15 (D₂O, 600 MHz).

e) HMBC spectrum of compound 15 (D₂O, 600 MHz).

f) NOESY spectrum of compound $\mathbf{15}$ (D2O, 600 MHz).

Figure S4: 1D- and 2D-NMR spectra of compound 17.

a) ^{1}H NMR spectrum of compound 17 (D2O, 600 MHz). $_{\text{spi_5573}\text{-Proton_01}}$

_8.0

c) HMBC spectrum of compound 17 (D₂O, 600 MHz).

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5 f2 (ppm)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

e) TOCSY spectrum of compound 17 (D₂O, 600 MHz).

f) NOESY spectrum of compound 17 (D₂O, 600 MHz).

Figure S5: 1D- and 2D-NMR spectra of compound 18.

c) HMBC spectrum of compound 18 (D₂O, 600 MHz).

d) COSY spectrum of compound 18 (D₂O, 600 MHz).

e) TOCSY spectrum of compound 18 (D₂O, 600 MHz).

f) H2BCAD spectrum of compound $\mathbf{18}$ (D2O, 600 MHz).

Figure S6: 1D- and 2D-NMR spectra of compound 19.

7.0

6.5

6.0

5.5

5.0

3.5

4.0

3.0

2.5

2.0

1.5

1.0

Figure S7: ¹H NMR spectrum of compound **1** (CD₃OD, 600 MHz, 280 K). Peak assignment was performed for major rotamers only.

Figure S8: ¹H NMR spectrum of compound 2 (CD₃OD, 600 MHz, 280 K). Peak assignment was performed for major rotamers only.

Figure S9: ¹H NMR spectrum of compound 3 (CD₃OD, 600 MHz, 280 K). Peak assignment was performed for major rotamers only.

Figure S10: ¹H NMR spectrum of compound **3a** (CDCl₃, 600 MHz, 299 K). Peak assignment was performed for major rotamers only. 2.34 – 1.22 ppm: signals of acetate groups.

Figure S11: ¹H NMR spectrum of compound **4** (CD₃OD, 600 MHz, 280 K). Peak assignment was performed for major rotamers only.

Figure S12: ¹H NMR spectrum of compound **5** (CD₃OD, 600 MHz, 280 K). Peak assignment was performed for major rotamers only.

Figure S13: ¹H NMR spectrum of compound 6 (CD₃OD, 600 MHz, 280 K).

Figure S14: ¹H NMR spectrum of compound **7** (spectrum 2, top) compared to a spectrum of the reference compound (spectrum 1, bottom), (CDCl₃, 600 MHz).

Figure S15: ¹H NMR spectrum of compound 8 (CDCl₃, 600 MHz).

Figure S17: ¹H NMR spectrum of compound 10 (acetone-d₆, 600 MHz).

Figure S18: ¹H NMR spectrum of compound 11 (acetone-d₆, 600 MHz).

Figure S19: ¹H NMR spectrum of compound 12 (acetone-d₆, 600 MHz).

Figure S20: 1H NMR spectrum of compound 13 (acetone-d6, 600 MHz).

Figure S21: ¹H NMR spectrum of compound 14 (CD₃OD, 600 MHz).

Figure S22: ¹H NMR spectrum of compound 16 (D₂O, 600 MHz).

