Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Isolation of the Oil
4.3. Analysis of the Essential Oil
4.4. Identification and Quantitation of the Oil Components
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soza, V.L.; Olmstead, R.G. Molecular systematiucs of tribe Rubieae (Rubiaceaea): Evolution of major clades, development of leaf-like whorls, and biogeography. Taxon 2010, 59, 755–771. [Google Scholar] [CrossRef]
- Yang, L.-E.; Meng, Y.; Peng, D.-L.; Nie, Z.-L.; Sun, H. Molecular phylogeny of Galium, L of the tribe Rubieae (Rubiaceae)-Emphasis on Chinese species and recognition of a new genus Pseudogalium. Mol. Phylog. Evol. 2018, 126, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Pignatti, S. Flora D’Italia; Edagricole: Bologna, Italy, 1982. [Google Scholar]
- Mocan, A.; Crisan, G.; Vlase, L.; Ivănescu, B.; Bădărău, A.S.; Arsene, A.L. Phytochemical investigations of four gallium species (Rubiaceae) from Romania. Farmacia 2016, 64, 95–99. [Google Scholar]
- Clapham, A.R.; Tutin, T.G.; Warburg, E.F. Flora of the British Isles; Cambridge University Press: London, UK, 1962. [Google Scholar]
- Medicinal Herbs. Available online: http://www.naturalmedicinalherbs.net/herbs/c/cruciata-laevipes=crosswort.php (accessed on 15 May 2020).
- Montacchini, F.; Caramiello Lomagno, R.; Forneris, G.; Piervittori, R. Carta della vegetazione della valle di Susa ed evidenziazione dell’influsso antropico. In Consiglio Nazionale delle Ricerche; CNR: Torino, Italy, 1982. [Google Scholar]
- Al-Snafi, A.E. Galium verum-A review. Indo Am. J. Pharm. Sci. 2018, 5, 2142–2149. [Google Scholar]
- Martins, D.; Nunez, C.V. Secondary metabolites from Rubiaceae species. Molecules 2015, 20, 13422–13495. [Google Scholar] [CrossRef]
- Borisov, M.I. Chemical studies on Galium tauricum. Farmatsevtychnyi Zhurnal 1967, 22, 56–59. [Google Scholar]
- Borisov, M.I. Coumarins of the genus Asperula and Galium. Chem. Nat. Compd. 1974, 10, 78. [Google Scholar] [CrossRef]
- Borisov, M.I.; Borisyuk, U.G. A phytochemical study on Galium cruciata. Farmatsevtychnyi Zhurnal 1965, 20, 63–66. [Google Scholar]
- Plouvier, V. Recherche de l’arbutoside et l’asperuloside chez quelques Rubiacees. Presense du monotropeoside chez les Liquidambar (Hamamelidaceae). Compt. Rendus Acad. Sci. 1964, 258, 735. [Google Scholar]
- Ergun, F.; Kusmenoglu, S.; Sender, B. High-performance liquid chromatograpic determination of iridoids in Cruciata taurica. J. Liq. Chromatogr. 1984, 7, 1985–1989. [Google Scholar] [CrossRef]
- De Rosa, S.; Mitova, M.; Handjieva, N.; Çali, I. Coumarin glucosides from Cruciata taurica. Phytochemistry 2002, 59, 447–450. [Google Scholar] [CrossRef]
- Mitova, M.I.; Anchev, M.E.; Panev, S.G.; Handjieva, N.V.; Popov, S.S. Coumarins and iridoids from Crucianella graeca, Cruciata glabra, Cruciata laevipes and Cruciata pedemontana (Rubiaceae). Zeitschrift Für Naturforschung C 1996, 51, 631–634. [Google Scholar] [CrossRef]
- Demirezer, L.O.; Gürbüz, F.; Güvenalp, Z.; Ströch, K.; Zeeck, A. Iridoids, flavonoids and monoterpene glycosides from Galium verum subsp. verum. Turk. J. Chem. 2006, 30, 525–534. [Google Scholar]
- Il’ina, T.V.; Kovaleva, A.M.; Goryachaya, O.V.; Vinogradov, B.A. Terpenoids and aromatic compounds from essential oils of Cruciata laevipes and C. glabra. Chem. Nat. Comp. 2013, 48, 1106–1108. [Google Scholar] [CrossRef]
- Il’ina, T.V.; Kovaleva, A.M.; Goryachaya, O.V.; Vinogradov, B.A. Essential oils of Galium salicifolium flowers and herb. Chem. Nat. Comp. 2012, 48, 151–152. [Google Scholar] [CrossRef]
- Il’ina, T.V.; Kovaleva, A.M.; Goryachaya, O.V.; Vinogradov, B.A. Essential oil from Galium verum flowers. Chem. Nat. Comp. 2009, 45, 587–588. [Google Scholar] [CrossRef]
- Il’ina, T.V.; Kovaleva, A.M.; Goryachaya, O.V.; Komissarenko, A.N. Terpenoids and aromatic compounds in essential oils of the herbs Galium hercynicum and G. humifusum. Chem. Nat. Comp. 2011, 47, 130–131. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Plant responses to insect herbivory: The emerging molecular analysis. Ann. Rev. Plant Biol. 2002, 53, 299–328. [Google Scholar] [CrossRef]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Bylka, W.; Matlawska, I.; Franski, R. Essential oil composition of Taraxacum officinale. Acta Physiol. Plant. 2010, 32, 231–234. [Google Scholar] [CrossRef]
- Yang, J.Y.; Kim, M.G.; Park, J.H.; Hong, S.T.; Lee, H.S. Evaluation of benzaldehyde derivatives from Morinda officinalis as anti-mite agents with dual function as acaricide and mite indicator. Sci. Rep. 2014, 4, 7149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Lee, N.H.; Yang, Y.C.; Lee, H.S. Food protective effects of 3-methylbenzaldehyde derived from Myosotis arvensis and its analogues against Tyrophagus putrescentiae. Sci. Rep. 2017, 7, 6608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Kang, L. Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal. Behav. 2011, 6, 369–371. [Google Scholar] [CrossRef] [Green Version]
- Norge, K.; Becerra, J.X. Germacrene D, a common sesquiterpene in the genus Bursera (Burseraceae). Molecules 2009, 14, 5289–5297. [Google Scholar]
- Zito, P.; Dotteri, S.; Sajeva, M. Floral volatiles in a sapromyophilous plant and their importance in attracting house fkly pollinators. J. Chem. Ecol. 2015, 41, 340–349. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Tollsten, L.; Bergstrom, G. Floral scents—A checklist of volatile compounds isolated by headspace techniques. Phytochemistry 1993, 33, 253–280. [Google Scholar] [CrossRef]
- Hatanaka, A. The biogeneration of green odour by green leaves. Phytochemistry 1993, 34, 1201–1218. [Google Scholar] [CrossRef]
- Matsui, K. Green leaf volatiles: Hydroperoxyde lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 2006, 9, 274–280. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of plant volatiles. Plant Physiol. 2004, 135, 1893–1902. [Google Scholar] [CrossRef] [Green Version]
- Boatright, J.; Negre, F.; Chen, X.; Kish, C.M.; Wood, B.; Peel, G.; Orlova, I.; Gang, D.; Rhodes, D.; Dudareva, N. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 2004, 135, 1993–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Löfstedt, C.; Hansson, B.S.; Ibarra, F.; Francke, W. Sex pheromone mimicry in the early spider orchid (Ophrys sphegoides): Patterns of hydrocarbons as the key mechanism for pollination by sexual deception. J. Comp. Physiol. A 2000, 186, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Mant, J.; Brändli, C.; Vereecken, N.J.; Schulz, C.M.; Francke, W.; Schiestl, F.P. Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid Ophrys exaltata. J. Chem. Ecol. 2005, 31, 1765–1787. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrode, S.D. The effects of plant epicuticular waxy blooms on attachment and effectiveness o predatory insects. Arthropod Struct. Dev. 2004, 33, 91–102. [Google Scholar] [CrossRef]
- Vitalini, S.; Madeo, M.; Tava, A.; Iriti, M.; Vallone, L.; Avato, P.; Cocuzza, C.E.; Simonetti, P.; Argentieri, M.P. Chemical profile, antioxidant and antimicrobial activities of Achillea Moscata Wulfen, an endemic species from Alps. Molecules 2016, 21, 830. [Google Scholar] [CrossRef] [Green Version]
- Argentieri, M.P.; Madeo, M.; Avato, P.; Iriti, M.; Vitalini, S. Polyphenol content and bioactivity of Achillea moschata from the Italian and Swiss Alps. Zeitschrift Für Naturforschung C 2020, 75, 57–64. [Google Scholar] [CrossRef]
- Limem-Ben Amor, I.; Boubaker, J.; Sgaier, M.B.; Skandrani, I.; Bhouri, W.; Neffati, A.; Kilani, S.; Bouhlel, I.; Gherida, K.; Chekir-Gherida, L. Phytochemistry and biological activities of Phlomis species. J. Ethnopharmacol. 2009, 125, 183–202. [Google Scholar] [CrossRef]
- Casiglia, S.; Bruno, M.; Bramucci, M.; Quassinti, L.; Lupidi, G.; Fiorini, D.; Maggi, F. Kundmannia sicula (L.) DC: A rich source of germacrene D. J. Essent. Oil Res. 2017, 29, 437–442. [Google Scholar] [CrossRef]
- NIST/EPA/NIH. Mass Spectral Database; Version 2.1; Perkin-Elmer Instrument LLC: Waltham, MA, USA, 2000.
- Joulain, D.; Konig, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; EB Verlag: Hamburg, Germany, 1998. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publ. Corp.: Carol Stream, IL, USA, 2007. [Google Scholar]
Sample Availability: Samples of the essential oils are available from the authors. |
Galium verum | Cruciata laevipez | ||||||||
---|---|---|---|---|---|---|---|---|---|
Leaves | Flowers | Whole Plant | |||||||
Compound a | AI tab b | AI c | % | μg/g | % | μg/g | % | μg/g | |
1 | 3-Methyl-3-buten-1-ol | 731 | 737 | - | - | 1.78 ± 0.12 | 3.96 ± 0.21 | 0.22 ± 0.03 | 0.17 ± 0.02 |
2 | 3-Methyl-1-butanol | 740 | 741 | - | - | - | - | 0.36 ± 0.06 | 0.29 ± 0.04 |
3 | Pentanol | 765 | 768 | tr | tr | 1.07 ± 0.19 | 2.38 ± 0.46 | 0.33 ± 0.12 | 0.27 ± 0.09 |
4 | cis-2-Penten-1-ol | 771 | 775 | 1.73 ± 0.57 | 0.75 ± 0.26 | tr | tr | 0.29 ± 0.08 | 0.23 ± 0.06 |
5 | Hexanal | 799 | 799 | 0.81 ± 0.26 | 0.35 ± 0.11 | 0.52 ± 0.07 | 1.15 ± 0.17 | 0.55 ± 0.06 | 0.44 ± 0.06 |
6 | 4-Hydroxy-4-methyl pentan-2-one | 831 | 837 | - | - | - | - | 0.51 ± 0.07 | 0.41 ± 0.06 |
7 | trans-2-Hexenal | 851 | 851 | tr | tr | - | - | 0.47 ± 0.06 | 0.38 ± 0.06 |
8 | cis-3-Hexen-1-ol | 855 | 854 | 17.34 ± 2.41 | 7.49 ± 0.87 | 3.35 ± 0.13 | 7.47 ± 0.40 | 9.69 ± 1.18 | 7.84 ± 1.17 |
9 | Hexanol | 870 | 869 | 0.39 ± 0.11 | 0.17 ± 0.04 | 2.26 ± 0.10 | 5.03 ± 0.14 | 0.27 ± 0.04 | 0.22 ± 0.04 |
10 | Heptanal | 904 | 902 | 0.10 ± 0.04 | 0.04 ± 0.02 | - | - | 0.16 ± 0.02 | 0.13 ± 0.02 |
11 | trans-2-Heptenal | 958 | 955 | - | - | - | - | 0.26 ± 0.01 | 0.21 ± 0.01 |
12 | Benzaldehyde | 960 | 959 | 1.08 ± 0.06 | 0.47 ± 0.04 | 0.30 ± 0.03 | 0.67 ± 0.08 | 2.05 ± 0.21 | 1.66 ± 0.21 |
13 | Oct-1-en-3-ol | 980 | 981 | 0.20 ± 0.02 | 0.09 ± 0.00 | tr | tr | 1.92 ± 0.38 | 1.56 ± 0.35 |
14 | 6-Methyl-5-hepten-2-ol | 992 | 991 | tr | tr | - | - | 0.17 ± 0.03 | 0.14 ± 0.03 |
15 | Decane | 1000 | 999 | - | - | - | - | 0.29 ± 0.02 | 0.24 ± 0.02 |
16 | cis-3-Hexenylacetate | 1004 | 1005 | 3.46 ± 1.30 | 1.50 ± 0.60 | 1.12 ± 0.02 | 2.50 ± 0.04 | 2.44 ± 0.27 | 1.97 ± 0.28 |
17 | 2,4-Heptadienal | 1005 | 1007 | 0.16 ± 0.02 | 0.07 ± 0.01 | - | - | 0.21 ± 0.01 | 0.17 ± 0.01 |
18 | Benzyl alcohol | 1042 | 1034 | 4.37 ± 0.01 | 1.89 ± 0.04 | 1.98 ± 0.04 | 4.42 ± 0.15 | 8.30 ± 0.24 | 6.71 ± 0.24 |
19 | Phenylacetaldehyde | 1051 | 1042 | 5.19 ± 0.62 | 2.25 ± 0.32 | 3.43 ± 0.23 | 7.63 ± 0.62 | 7.74 ± 0.41 | 6.26 ± 0.52 |
20 | Linalool | 1099 | 1099 | 0.51 ± 0.07 | 0.22 ± 0.04 | 0.29 ± 0.02 | 0.65 ± 0.05 | 0.21 ± 0.02 | 0.17 ± 0.02 |
21 | Nonanal | 1104 | 1104 | 0.38 ± 0.10 | 0.16 ± 0.04 | 1.85 ± 0.02 | 4.12 ± 0.02 | 0.48 ± 0.04 | 0.38 ± 0.0.3 |
22 | 2-Phenylethanol | 1106 | 1110 | 1.68 ± 0.28 | 0.73 ± 0.14 | 1.64 ± 0.08 | 3.66 ± 0.24 | 1.16 ± 0.12 | 0.91 ± 0.09 |
23 | 2-Methylbenzaldehyde | 1152 d | 1153 | 26.27 ± 1.07 | 11.59 ± 0.73 | 24.04 ± 1.07 | 53.54 ± 3.12 | 0.21 ± 0.02 | 0.16 ± 0.01 |
24 | 4-Methylbenzaldehyde | 1171 d | 1173 | 7.31 ± 1.49 | 3.16 ± 0.57 | 8.45 ± 0.57 | 18.80 ± 1.01 | 0.33 ± 0.05 | 0.26 ± 0.03 |
25 | Borneol | 1165 | 1174 | - | - | - | - | 4.07 ± 0.43 | 3.21 ± 0.32 |
26 | Methyl salicylate | 1190 | 1192 | 0.30 ± 0.02 | 0.13 ± 0.01 | 0.39 ± 0.03 | 0.87 ± 0.07 | 0.28 ± 0.02 | 0.22 ± 0.01 |
27 | α-Terpineol | 1194 | 1195 | 0.21 ± 0.03 | 0.09 ± 0.01 | 0.12 ± 0.03 | 0.26 ± 0.06 | 0.58 ± 0.01 | 0.46 ± 0.01 |
28 | Dodecane | 1200 | 1200 | 0.44 ± 0.02 | 0.19 ± 0.01 | 0.15 ± 0.01 | 0.33 ± 0.02 | 0.31 ± 0.01 | 0.24 ± 0.01 |
29 | Decanal | 1206 | 1205 | 0.27 ± 0.06 | 0.12 ± 0.03 | 0.37 ± 0.06 | 0.83 ± 0.13 | 0.23 ± 0.02 | 0.18 ± 0.01 |
30 | β-Cyclocitral | 1217 | 1222 | 0.49 ± 0.01 | 0.21 ± 0.01 | 0.06 ± 0.01 | 0.14 ± 0.03 | 0.23 ± 0.02 | 0.18 ± 0.02 |
31 | Geraniol | 1249 | 1251 | 0.65 ± 0.04 | 0.28 ± 0.01 | 0.22 ± 0.02 | 0.49 ± 0.03 | 0.18 ± 0.03 | 0.14 ± 0.02 |
32 | trans-2-Decenal | 1260 | 1262 | 0.04 ± 0.03 | 0.02 ± 0.02 | 0.08 ± 0.02 | 0.17 ± 0.04 | 0.14 ± 0.01 | 0.11 ± 0.01 |
33 | Indole | 1290 | 1293 | 0.20 ± 0.02 | 0.09 ± 0.01 | - | - | 0.34 ± 0.04 | 0.27 ± 0.03 |
34 | p-Vinylguaiacol | 1309 | 1308 | 0.51 ± 0.29 | 0.22 ± 0.12 | 0.85 ± 0.04 | 1.90 ± 0.07 | 0.30 ± 0.02 | 0.24 ± 0.01 |
35 | 2,4-Decadienal | 1315 | 1318 | 0.21 ± 0.06 | 0.09 ± 0.03 | 0.14 ± 0.01 | 0.31 ± 0.01 | - | - |
36 | Eugenol | 1356 | 1351 | 1.12 ± 0.09 | 0.49 ± 0.03 | 0.20 ± 0.04 | 0.45 ± 0.09 | 3.67 ± 0.39 | 2.89 ± 0.29 |
37 | α-Copaene | 1374 | 1377 | 0.14 ± 0.02 | 0.06 ± 0.01 | 0.09 ± 0.03 | 0.20 ± 0.06 | 0.16 ± 0.02 | 0.13 ± 0.02 |
38 | β-Bourbonene | 1388 | 1384 | 0.93 ± 0.01 | 0.40 ± 0.01 | 0.24 ± 0.05 | 0.53 ± 0.11 | 0.61 ± 0.04 | 0.48 ± 0.04 |
39 | Isolongifolene | 1390 | 1391 | - | - | - | - | 0.24 ± 0.03 | 0.19 ± 0.03 |
40 | Tetradecane | 1400 | 1399 | 0.22 ± 0.05 | 0.09 ± 0.02 | 0.13 ± 0.03 | 0.29 ± 0.07 | 0.21 ± 0.01 | 0.16 ± 0.01 |
41 | Dodecanal | 1408 | 1408 | 0.96 ± 0.05 | 0.42 ± 0.03 | 3.03 ± 0.32 | 6.75 ± 0.62 | - | - |
42 | β-Caryophyllene | 1417 | 1424 | 0.09 ± 0.03 | 0.04 ± 0.01 | 1.33 ± 0.10 | 2.95 ± 0.18 | 19.90 ± 2.32 | 15.68 ± 1.92 |
43 | α-Humulene | 1452 | 1461 | - | - | - | - | 2.51 ± 0.04 | 1.98 ± 0.04 |
44 | allo-Aromadendrene | 1458 | 1466 | - | - | - | - | 0.22 ± 0.01 | 0.17 ± 0.01 |
45 | Germacrene D | 1484 | 1475 | 0.44 ± 0.18 | 0.19 ± 0.07 | 27.70 ± 1.67 | 61.63 ± 2.87 | - | - |
46 | trans-β-Ionone | 1487 | 1480 | - | - | - | - | 0.15 ± 0.01 | 0.12 ± 0.01 |
47 | trans-Muurola-4(14),5-diene | 1493 | 1486 | - | - | - | - | 7.60 ± 0.42 | 5.99 ± 0.37 |
48 | Bicyclogermacrene | 1500 | 1498 | 0.26 ± 0.08 | 0.11 ± 0.04 | 1.18 ± 0.35 | 2.63 ± 0.82 | - | - |
49 | cis-γ-Bisabolene | 1514 | 1514 | 0.10 ± 0.03 | 0.04 ± 0.01 | 0.51 ± 0.07 | 1.14 ± 0.16 | - | - |
50 | δ-Cadinene | 1522 | 1519 | 0.27 ± 0.06 | 0.12 ± 0.03 | 0.10 ± 0.01 | 0.22 ± 0.01 | 0.39 ± 0.02 | 0.31 ± 0.02 |
51 | trans-Nerolidol | 1561 | 1560 | 0.46 ± 0.15 | 0.20 ± 0.07 | 0.30 ± 0.03 | 0.67 ± 0.08 | - | - |
52 | C15H22O MW = 218 | - | 1579 | - | - | - | - | 0.70 ± 0.06 | 0.50 ± 0.05 |
53 | C15H24O MW = 220 | - | 1588 | - | - | - | - | 0.79 ± 0.06 | 0.62 ± 0.04 |
54 | C15H24O MW = 220 | - | 1640 | - | - | - | - | 1.01 ± 0.02 | 0.80 ± 0.01 |
55 | C15H24O MW = 220 | - | 1644 | - | - | - | - | 1.20 ± 0.05 | 0.95 ± 0.04 |
56 | Eudesma-4,(15),7-dien-1β-ol | 1687 | 1690 | - | - | - | - | 2.60 ± 0.16 | 2.05 ± 0.14 |
57 | Pentadecanal | 1709 d | 1705 | 0.16 ± 0.03 | 0.07 ± 0.02 | 0.06 ± 0.01 | 0.14 ± 0.02 | 0.19 ± 0.02 | 0.15 ± 0.02 |
58 | Tetradecanoic acid | 1764 d | 1759 | 0.33 ± 0.02 | 0.14 ± 0.01 | - | - | 0.15 ± 0.02 | 0.12 ± 0.02 |
59 | Hexadecanal | 1815 d | 1816 | 0.25 ± 0.09 | 0.11 ± 0.04 | 0.36 ± 0.05 | 0.81 ± 0.13 | - | - |
60 | Hexahydrofarnesylacetone | 1838 d | 1840 | 0.35 ± 0.13 | 0.15 ± 0.06 | 0.08 ± 0.01 | 0.19 ± 0.02 | 0.24 ± 0.02 | 0.19 ± 0.01 |
61 | Hexadecanoic acid | 1965 d | 1961 | 0.70 ± 0.33 | 0.31 ± 0.15 | 0.10 ± 0.01 | 0.22 ± 0.02 | 2.52 ± 0.36 | 1.98 ± 0.27 |
62 | Eicosane | 2000 | 1999 | 0.22 ± 0.04 | 0.10 ± 0.02 | - | - | 0.20 ± 0.05 | 0.16 ± 0.04 |
63 | cis-Phytol | 2079 d | 2081 | 1.72 ± 0.23 | 0.74 ± 0.12 | 0.30 ± 0.02 | 0.66 ± 0.06 | 2.65 ± 0.65 | 2.09 ± 0.52 |
64 | Heneicosane | 2100 | 2100 | 0.62 ± 0.10 | 0.27 ± 0.05 | 0.34 ± 0.02 | 0.76 ± 0.05 | - | - |
65 | trans-Phytol | 2121 d | 2119 | 0.36 ± 0.11 | 0.16 ± 0.05 | 0.05 ± 0.00 | 0.11 ± 0.01 | 0.27 ± 0.03 | 0.21 ± 0.02 |
66 | Linolenic acid | 2137 d | 2136 | 0.16 ± 0.13 | 0.07 ± 0.06 | tr | tr | 1.60 ± 0.30 | 1.26 ± 0.24 |
67 | Tricosane | 2300 | 2300 | 1.62 ± 0.17 | 0.70 ± 0.06 | 0.71 ± 0.06 | 1.55 ± 0.16 | 0.54 ± 0.04 | 0.43 ± 0.04 |
68 | Tetracosane | 2400 | 2400 | 0.38 ± 0.08 | 0.17 ± 0.04 | 0.14 ± 0.02 | 0.30 ± 0.05 | 0.23 ± 0.01 | 0.18 ± 0.01 |
69 | Pentacosane | 2500 | 2500 | 0.59 ± 0.12 | 0.25 ± 0.05 | 0.16 ± 0.03 | 0.36 ± 0.08 | 0.52 ± 0.08 | 0.41 ± 0.07 |
70 | Hexacosane | 2600 | 2600 | 0.12 ± 0.03 | 0.05 ± 0.01 | - | - | 0.09 ± 0.03 | 0.07 ± 0.02 |
71 | Eptacosane | 2700 | 2700 | 0.72 ± 0.14 | 0.31 ± 0.05 | 0.16 ± 0.03 | 0.35 ± 0.06 | 0.37 ± 0.01 | 0.30 ± 0.01 |
72 | Octacosane | 2800 | 2800 | - | - | - | - | 0.05 ± 0.01 | 0.04 ± 0.01 |
73 | Squalene | 2829 d | 2828 | 0.70 ± 0.24 | 0.31 ± 0.11 | - | - | 0.20 ± 0.02 | 0.16 ± 0.02 |
74 | Nonacosane | 2900 | 2901 | 2.98 ± 0.21 | 1.29 ± 0.12 | 0.36 ± 0.05 | 0.80 ± 0.12 | 0.80 ± 0.05 | 0.63 ± 0.03 |
75 | Entriacontane | 3100 | 3102 | 0.54 ± 0.23 | 0.23 ± 0.09 | 0.04 ± 0.02 | 0.10 ± 0.05 | 0.24 ± 0.04 | 0.19 ± 0.03 |
Aldehydes | 43.71 ± 0.01 | 18.91 ± 0.44 | 42.64 ± 0.46 | 94.93 ± 2.33 | 13.02 ± 0.86 | 10.50 ± 0.95 | |||
Alcohols | 25.70 ± 1.67 | 11.11 ± 0.47 | 12.09 ± 0.24 | 26.92 ± 0.89 | 22.72 ± 1.68 | 18.35 ± 1.85 | |||
Terpenes | 6.85 ± 0.68 | 2.97 ± 0.36 | 32.42 ± 1.24 | 72.15 ± 1.77 | 46.11 ± 3.21 | 36.34 ± 2.75 | |||
Hydrocarbons | 8.45 ± 0.22 | 3.66 ± 0.01 | 2.18 ± 0.25 | 4.85 ± 0.61 | 3.87 ± 0.11 | 3.05 ± 0.10 | |||
Esters | 3.76 ± 1.29 | 1.63 ± 0.59 | 1.52 ± 0.04 | 3.37 ± 0.11 | 2.72 ± 0.29 | 2.20 ± 0.29 | |||
Phenolics | 1.64 ± 0.37 | 0.71 ± 0.14 | 1.06 ± 0.09 | 2.35 ± 0.16 | 3.97 ± 0.38 | 3.13 ± 0.28 | |||
Acids | 1.19 ± 0.44 | 0.52 ± 0.21 | 0.10 ± 0.01 | 0.22 ± 0.01 | 4.27 ± 0.04 | 3.37 ± 0.02 | |||
Miscellaneous | 1.04 ± 0.12 | 0.64 ± 0.20 | 0.19 ± 0.07 | 0.43 ± 0.15 | 1.47 ± 0.09 | 1.17 ± 0.08 | |||
Total | 92.33 ± 0.26 | 40.13 ± 0.78 | 92.18 ± 0.41 | 205.21 ± 1.87 | 98.14 ± 0.02 | 78.09 ± 0.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tava, A.; Biazzi, E.; Ronga, D.; Avato, P. Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps. Molecules 2020, 25, 2333. https://doi.org/10.3390/molecules25102333
Tava A, Biazzi E, Ronga D, Avato P. Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps. Molecules. 2020; 25(10):2333. https://doi.org/10.3390/molecules25102333
Chicago/Turabian StyleTava, Aldo, Elisa Biazzi, Domenico Ronga, and Pinarosa Avato. 2020. "Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps" Molecules 25, no. 10: 2333. https://doi.org/10.3390/molecules25102333
APA StyleTava, A., Biazzi, E., Ronga, D., & Avato, P. (2020). Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps. Molecules, 25(10), 2333. https://doi.org/10.3390/molecules25102333