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Abstract: The newly designed luminol structures of pyrazolopyridopyridazine diones and
N-aminopyrazolopyrrolopyridine diones were synthesized from versatile 1,3-diaryfuropyrazolopyridine
-6,8-diones, 1,3-diarylpyrazolopyrrolopyridine-6,8-diones, or 1,3-diaryl-7- methylpyrazolopyrrolopyridine
-6,8-diones with hydrazine monohydrate. Photoluminescent and solvatofluorism properties containing
UV–Vis absorption, emission spectra, and quantum yield (Φf) study of pyrazolopyridopyridazine
diones and N-aminopyrazolopyrrolopyridine diones were also studied. Generally, most of
pyrazolopyrrolopyridine-6, 8-diones 6 exhibited the significant fluorescence intensity and the
substituent effect when compared with N-aminopyrazolopyrrolopyridine diones, particularly for 6c
and 6j with a m-chloro group. Additionally, the fluorescence intensity of 6j was significantly promoted
due to the suitable conjugation conformation. Based on the quantum yield (Φf) study, the value of
compound 6j (0.140) with planar structural skeletal was similar to that of standard luminol (1, 0.175).

Keywords: pyrazolopyridopyridazine dione; N-aminopyrazolopyrrolopyridine dione; luminol;
photoluminescence

1. Introduction

Sleep-disorders are one of the largest public health concerns in the whole world [1].
New functionalized pyrazolo [3,4-b]pyrrolo[3,4-d]pyridine derivatives were enthusiastically investigated
to develop the increased potency and reduced side effects of novel sedative/hypnotic drug compounds
for treatment of sleep-disorders [2,3]. On the other hand, pyrazolopyridopyridazine diones are
well-known as the versatile precursors for synthesis of pyrazolopyridopyridazine phosphodiesterase
type 5 (PDE5) inhibitors [4,5]. In recent years, chemiluminescent luminol derivatives have been an
attractive detection technique in analytical applications such as presumptive test agents for latent
blood detection [6–9], high-performance liquid chromatography (HPLC) [10,11], DNA, immunoassay,
and cancer screening detection [12,13]. Since now, many newly designed luminol structures have
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been enthusiastically investigated to increase the chemiluminescence efficiency, intensity, sensitivity,
quantum yield, or the recognition ability of the resulting chemiluminogens (Figure 1) [14–19].
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2. Results and Discussion 

Initially, dimethyl 1,3-diphenyl-1H-pyrazolo[3,4-b]pyridine-4,5-dicarboxylate 8 and diethyl 1,3-
diphenyl-1H-pyrazolo[3,4-b]pyridine-4,5-dicarboxylate 9 were prepared by following our previously 
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1). Compounds 8 and 9 were reacted with hydrazine hydrate at reflux in methanol or ethanol solution 
under the basic condition for 24–36 h [25,26]. However, all the efforts for the predominant formation 
of 6a were unsuccessful. We also attempted to perform the hydrolysis of ester groups of compounds 
8 and 9 under basic conditions to obtain 1,3-diphenyl-1H-pyrazolopyridine-4,5-dicarboxylic acid 10 
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acetic acid to carry out the cyclization for 8 h, but without success (Scheme 1). 

Figure 1. Luminol 1, naphthalene and anthracene 2, quinoxaline analogues of luminol 3, isoluminol 4,
and benzimidazole analogues of luminol 5.

Furthermore, N-aminophthalimides were considered as phthalazine 1,4-dione tautomeric pairs [20,21].
N-Amino maleimides with pyridine heterocycle series also presented as a very important privileged
substructure in organic synthesis for preparing diverse biologically active molecules [22]. Typically,
the most important pharmacological effects that have been reported are potential antimicrobial [22] and
anticancer activities [23]. Herein, we judiciously explore the insertion of pyridazinedione and N-Amino
maleimide units into the pyrazolopyridine core ring for construction of the new designed luminol
structures 6a–j and 7a–i from versatile 1,3-diarylpyrazolopyrrolopyridine-6,8-diones 11. Observably,
we found that the series of pyridazinediones 6a–j would not only provide conjugation systems but
also allow to modify the fluorescence intensity and biological activity (Figure 2).
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luminol analogues.

2. Results and Discussion

Initially, dimethyl 1,3-diphenyl-1H-pyrazolo[3,4-b]pyridine-4,5-dicarboxylate 8 and diethyl
1,3-diphenyl-1H-pyrazolo[3,4-b]pyridine-4,5-dicarboxylate 9 were prepared by following our previously
reported literature [24] from N,N-diisopropylamidinyl pyrazolylimine and chosen as the model
substrate for this investigation on the construction of pyrazolopyridopyridazine diones 6a (Scheme 1).
Compounds 8 and 9 were reacted with hydrazine hydrate at reflux in methanol or ethanol solution
under the basic condition for 24–36 h [25,26]. However, all the efforts for the predominant formation of
6a were unsuccessful. We also attempted to perform the hydrolysis of ester groups of compounds 8 and
9 under basic conditions to obtain 1,3-diphenyl-1H-pyrazolopyridine-4,5-dicarboxylic acid 10 [27,28].
Subsequently, pyrazolopyridine-4,5-dicarboxylic acid 10 was refluxed with hydrazine in acetic acid to
carry out the cyclization for 8 h, but without success (Scheme 1).
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In other attempts, we preliminarily tried to synthesize 1,3-phenylpyrazolopyrrolopyridine-6, 8-dione
11a from N,N-diisopropylamidinyl pyrazolylimine with maleimide via our published InCl3/silica gel
catalyzed hetero Diels-Alder reaction [29]. Subsequently, the resulting compound 11a was reacted
with an excess of hydrazine hydrate in EtOH/H2O co-solution at room temperature for ~7 h [29,30].
The formation of the N-aminopyrazolopyrrolopyridine dione 7a was observed in 83% yield as the
major product and accompanied with a trace amount of luminol-type pyrazolopyridopyridazine dione
6a (<10%, Scheme 1). Fortunately, compounds 6a and 7a can be successfully and selectively prepared
via kinetic and thermodynamic control reactions [31,32].

For further searching optimal conditions, we also prepared 7-methyl-1,3-phenylpyrazolopyrrolopyridine
-6,8-dione 12a [29] and 1,3-diphenylfuropyrazolopyridine-6,8-dione 13a [33,34] as probes for monitoring
cyclization tendency with hydrazine hydrate [29,30]. Most of the compounds 11a–13a were refluxed in
neat hydrazine hydrate solution for ~5 h (Scheme 1 and Table 1). The reactions were monitored
until the consumption of starting materials 11a–13a by TLC and produced the luminol-type
pyrazolopyridopyridazine dione 6a. Compound 11a smoothly underwent the cyclization reaction
to give luminol-type analogue 6a in better yield (84%, Entry 1, Table 1). However, compounds
12a–13a resulted in 32% and 18% low yields, respectively (Entries 2 and 3, Table 1). For further
demonstration of reactivity efficiency, compounds 11b–c, 12b–c, and 13b–c bearing various
substituents including o- and m-Cl in N-1-phenyl ring and phenyl at C-3 position of pyrazole
moiety were synthesized and refluxed under the same condition (Entries 4–9, Table 1). Based on
the experimental data of Table 1, the better yields of pyrazolopyridopyridazine dione products 6b–c
were provided from 1,3-diarylpyrazolopyrrolopyridine-6,8-diones 11b–c (74% and 71%, Entries 4
and 7, Table 1). Unfortunately, 1,3-diaryl-7-methylpyrazolopyrrolopyridine-6,8-diones 12b–c
and 1,3-diarylfuropyrazolopyridine-6,8-diones 13b–c showed poor reactivity for the formation of
pyrazolopyridopyridazine diones 6b–c (Entries 5–6 and 8–9, Table 1).
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Table 1. The results of pyrazolopyridopyridazine diones 6a–j from reactants 11a–j, 12a–c, or 13a–c
with hydrazine hydrate.
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Furthermore, we applied this reliable procedure to reactants 11d–j bearing p-Cl-Ph, p-Br-Ph,
p-Me-Ph, p-OMe-Ph, p-CN-Ph, p-NO2-Ph, and m-Cl-Ph at the N-1 position and phenyl and H at C-3
position of pyrazolic ring. Various substituted reactants 11d–j were demonstrated to proceed smoothly.
Both electron-donating and electron-withdrawing substituents were all well-tolerated in good yields
(69–84%, Entries 10–16, Table 1). All of 1,3-diarylpyrazolopyrrolopyridine-6,8-diones 6a–j were fully
characterized by spectroscopic methods. For example, compound 6a presented one singlet at δ 9.41
ppm for pyrazolopyridine ring N=CH–C=C in 1H-NMR and two peaks at δ 153.1 and 155.7 ppm
for pyridazine dione carbon O=C–NH in 13C-NMR spectrum. Its IR absorptions showed peaks at
3161 cm−1 for stretching of the –NH group and at 1014 cm−1 for stretching of the N–N group.

For the further controlled experiment for photoluminescence study, we also tried to prepare a
series of N-aminopyrazolopyrrolopyridine diones 7a–i as the comparison cases (Scheme 2). Treatment
of pyrazolopyrrolopyridine-6,8-diones 11a–i with 5.0 equivalents of hydrazine hydrate in EtOH/H2O
co-solution was performed in an ice-bath to room temperature for 48 h. The corresponding
N-aminopyrazolopyrrolopyridine diones 7a–i were obtained in 71–87% yields and characterized
by spectroscopic methods. For example, compound 7a presented one singlet peak at δ 8.83 ppm
for pyrazolopyridine ring N=CH–C=C in 1H-NMR and two peaks at δ 164.1 and 164.4 ppm for
phthalimide moiety carbon O=C–NH in 13C-NMR spectrum. Its IR absorptions showed peaks at 3172
and 3276 cm−1 for stretching of the –NH2 group and at 1014 cm−1 for stretching of the N–N group.
Due to the structural skeletons being very similar between 6 and 7, the identify method should be our
next future evaluation.
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Luminol (1), compounds 6a and 7a were dissolved in DMSO to prepare a stock solution
(1 × 10−3 M). Then the stock solutions of compounds 6a and 7a were individually diluted to a
concentration of 10 µM in the presence of various solvents such as toluene, THF, ethyl acetate (EA),
CH2Cl2, MeCN, acetone, and DMSO. The standard stock solution of luminol (10 µM) was diluted
in DMSO solution as the standard sample. The UV–Vis absorption and fluorescence emission
spectra of the pyrazolopyridopyridazine dione 6a and N-aminopyrazolopyrrolopyridine dione
7a compounds in the above-mentioned solution of varying polarities were reported in Table 2.
The pyrazolopyridopyridazine dione 6a has better solubility in polar organic solvents, such as
DMSO > THF > acetone, but N-aminopyrazolopyrrolopyridine dione 7a has the solubility only in
highly polar solvents like DMSO. Luminol (1) was also measured and used as the standard sample.
The UV–Vis absorption spectra of the compounds 6a and 7a in all the studied solvents were almost
nearly the same; their absorption property is independent of the solvent polarity (Figure 3 and Table 2).
All these compounds exhibit two highly intense absorption maxima peaks. Among these two, the first
one was a high energy absorption between 253 nm and 286 nm for 6a and 7a probably due to the π−π*
transition of the aryl core [35] while the low energy band between 329 nm and 366 nm is attributed to
the intramolecular charge transfer transition (ICT). However, the rigidity in the structure of compounds
6a and 7a exhibited the stronger blue-shifted absorption (~15 nm) than luminol (1) in DMSO solution,
as shown in Figure 3 and Table 2. In comparison with 6a and 7a, they demonstrated a similar absorption
intensity, and compound 6a has obvious red-shift ~20 nm with respect to 7a.

Table 2. UV-Vis absorption maximum and fluorescence emission peak wavelength of luminol (1),
pyrazolopyridopyridazine dione 6a and N-aminopyrazolopyrrolopyridine dione 7a in the
different solvents.

Compound Solvent λmax/nm of UV-Vis λmax/nm of PL

6a Toluene - 1,366 469
6a THF 271,358 471
6a Ethyl acetate 268, 356 473
6a CH2Cl2 271, 350 483
6a MeCN 268, 351 488
6a Acetone - 1, 353 477
6a DMSO 264, 338 486
7a Toluene 286, 1 ,348 452
7a THF 264, 344 454
7a Ethyl acetate 262, 343 459
7a CH2Cl2 264, 344 471
7a MeCN 261, 329 425, 461
7a Acetone - 1, 338 452
7a DMSO 264, 335 429, 478

Luminol (1) DMSO 350 392
1 It was overlapped with solvent absorption band.



Molecules 2020, 25, 2409 6 of 16

Molecules 2020, 25, x 6 of 16 

 

 
Figure 3. Photoluminescence spectra of luminol (1), pyrazolopyridopyridazine dione 6a and N-
aminopyrazolopyrrolopyridine dione 7a in the different solvents. (A) Absorption and (B) emission 
spectra of luminol (1) and compound 6a. (C) Absorption and (D) emission spectra of compound 7a. 

Consequently, we investigated the photoluminescence properties of the compounds 6a and 7a 
with luminol (1). For the fluorescence spectra, as shown in Figure 3 and Table 2, both the fluorescence 
intensity and the maximal position slightly varied depending on the solvent. Compound 6a displayed 
a characteristic emission band of the excitation wavelengths between 400 and 600 nm, and the λmaxs 
of PL was ~480 nm with the intense greenish-blue fluorescence in Figures 3 and 4. For compound 7a, 
it’s emission spectrum was between 350 and 550 nm, and the λmaxs of PL was ~450 nm with the intense 
bluish-green fluorescence in Figures 3 and 4. Compounds 6a and 7a exhibited a red-shift ~80 nm or 
~60 nm as compared to luminol (1). Therefore, new luminol analogues 6a and 7a were efficiently 
conjugate and connect two chromophores (pyrazole and pyridine) to lead to an increase of 
aromaticity and provide the greenish-blue or bluish-green fluorescent materials (Table 2 and Figure 
4) [36]. Particularly, the best positive solvatofluorism phenomenon was presented in CH2Cl2 solution. 
It was also beneficial for the visibility of the naked eye due to the bathochromic (red-shift) 
phenomenon from blue color to green (Figure 4). 
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spectra of luminol (1) and compound 6a. (C) Absorption and (D) emission spectra of compound 7a.

Consequently, we investigated the photoluminescence properties of the compounds 6a and 7a
with luminol (1). For the fluorescence spectra, as shown in Figure 3 and Table 2, both the fluorescence
intensity and the maximal position slightly varied depending on the solvent. Compound 6a displayed
a characteristic emission band of the excitation wavelengths between 400 and 600 nm, and the λmaxs
of PL was ~480 nm with the intense greenish-blue fluorescence in Figures 3 and 4. For compound
7a, it’s emission spectrum was between 350 and 550 nm, and the λmaxs of PL was ~450 nm with the
intense bluish-green fluorescence in Figures 3 and 4. Compounds 6a and 7a exhibited a red-shift
~80 nm or ~60 nm as compared to luminol (1). Therefore, new luminol analogues 6a and 7a were
efficiently conjugate and connect two chromophores (pyrazole and pyridine) to lead to an increase
of aromaticity and provide the greenish-blue or bluish-green fluorescent materials (Table 2 and
Figure 4) [36]. Particularly, the best positive solvatofluorism phenomenon was presented in CH2Cl2
solution. It was also beneficial for the visibility of the naked eye due to the bathochromic (red-shift)
phenomenon from blue color to green (Figure 4).
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Moreover, the maximum of fluorescence wavelength and intensity, as shown in Figure 3,
significantly vary with the diluted solvent. Further, we surprisingly observed the more significant
solvent effect on compound 6a when compared with compound 7a. As shown in Figure 3, similar
fluorescence spectra but a significant difference in intensity (∼6 times) were observed in varying
solvents. Of note, it was interesting that toluene, THF, EA, and CH2Cl2 had differences in their polarity
(toluene: 0.099, THF: 0.207, EA: 0.228, CH2Cl2: 0.309, with respect to the reference polarity of DMSO:
0.444) [37,38]. However, for the above solvents, we observed a strong intensity, in comparison to that
for protic or/and polar solvent (DMSO). The intensities of fluorescence bands were reversed in protic
or/and polar solvents. Therefore, the solvent polarity modulation of fluorescence was quite interesting.
It was well studied that amide tautomer of pyrazolopyridopyridazine dione 6a was efficiently produced
in toluene, THF, EA, and CH2Cl2 solvents [39–44]. In alcoholic (protic) and DMSO solvent, there exists
competition between intermolecular bonding of the nearest hydrogen with the hydroxyimine tautomer
of 6-hydroxypyrazolopyridopyridazin-9-one 6a. Therefore, different intensities of behavior were
observed in different polarity solutions. On the other hand, the different fluorescence intensity between
structural isomers 6a and 7a was also observed [45]. The aromaticity of compound 6a possessed
the bathochromic shift of fluorescence maximum λmax by 12 nm and ∼4 times significant intensity
in CH2Cl2 solution when compared with compound 7a (Table 2 and Figure 3) [46]. However, the
intramolecular and intermolecular hydrogen bondings between the amino and carbonyl groups of
N-aminopyrazolopyrrolopyridine dione 7a were formed to lead to the poor intensity in solution.

For further investigation of substituent efficiency of compounds 6 and 7 in photoluminescence
properties, we synthesized a series of pyrazolopyridopyridazine diones 6a–j and N-aminopyrazolo
pyrrolopyridine diones 7a–i bearing various substituents including o-, m- and p-Cl, p-Br, p-Me, p-OMe,
p-CN, and p-NO2 groups in N1-phenyl ring of pyrazole moiety. Generally, most of the substituents
such as o-, m- and p-Cl, p-Br, p-Me, and p-CN in N1-phenyl of pyrazolic ring of compounds 6 possessed
the blue-shift phenomenon range ~10 to 30 nm with significant fluorescence intensity when compared
with compound 6a, particularly for 6c with meta-chloro group (Figure 5). For compounds 6g and 6i
with the strong electron-donating (p-OMe) or electron-withdrawing groups (p-NO2), they exhibited
negative photoluminescence properties (Figure 5). While we modified the skeletal structure of
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pyrazolopyridopyridazine dione 6j, in which Ph-group was replaced to H atom on C-3 position of
pyrazolic ring, the blue-shift phenomenon was remarkably observed in photoluminescence spectra.
Additionally, the fluorescence intensity of 6j was significantly promoted about 2.3 times in comparison
with compound 6a (Figure 5). Based on the result of the substituent study, we conceived that compound
6j was an effective substrate that possessed suitable conjugation conformation without the torsion
effect to facilitate the photoluminescence properties [26]. For compounds 7a–i bearing the above
various substituents, they provided the weak fluorescence intensity [45] and possessed the blue-shift
phenomenon when compared with 7a, except for 7c with m-chloro group and 7h with p-CN group
(Figure 6). Generally, compounds 7a–i were the inappropriate photoluminescent substrates [45].
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Figure 6. Photoluminescence spectra of N-aminopyrazolopyrrolopyridine diones 7a–i dissolved in
DMSO to prepare a stock solution (1.0 mM). Then the stock solutions were diluted with CH2Cl2 to a
concentration of 10 µM. (A) Absorption and (B) emission spectra of compounds 7a–i.

The quantum yields (Φf) of luminol (1) and pyrazolopyridopyridazine diones 6a, 6c, and 6j
were measured in the CH2Cl2 solution using quinine sulfate in 0.05M H2SO4 (Φf = 0.60) as the
standard (excitation wavelength 350 nm) [47,48]. The quantum yields (Φf) values of luminol (1)
and pyrazolopyridopyridazine diones 6a, 6c, and 6j were estimated as 0.175, 0.056, 0.067, and 0.140
in CH2Cl2 solution, respectively, indicating that the Φf value of 6j was similar to that of luminol
(1, Table 3). Moreover, we also investigated the quantum yields of 6j in various solvents by using
the same condition. The estimated values order trendy was as 0.218 (THF) > 0.209 (Toluene) > 0.140
(CH2Cl2) > 0.083 (acetone) > 0.049 (EA), indicating THF provided the largest Φf value among them
(Table 3). On the other hand, most of the quantum yields (Φf) pyrazolopyridopyridazine diones 6a–i in
CH2Cl2 solution were predicted to be an almost identical value (ca. 0.05–0.06). Interestingly, the high
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Φf value of 6j was obtained and possibly caused by a particular improvement in the planar skeletal
conformation (Table 3 and Figure 7).

Table 3. Quantum yields of fluorescence of luminol (1) and pyrazolopyridopyridazine diones 6a, 6c,
and 6j.

Compound Solvent λfl
1/nm Φf

2

6a CH2Cl2 481 0.056
6c CH2Cl2 472 0.067
6j CH2Cl2 450 0.140
6j THF 435 0.218
6j Toluene 438 0.209
6j Acetone 437 0.083
6j Ethyl acetate 437 0.049

Luminol (1) CH2Cl2 399 0.175
1 Fluorescence maximum wavelength (λfl). 2 Φf: Fluorescence quantum efficiency, relative to quinine sulfate
(Φf = 0.60).
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3. Experimental Section

3.1. General Information

All reagents were used as obtained commercially. All reactions were carried out under
argon or nitrogen atmosphere and monitored by thin-layer chromatography (TLC). Flash column
chromatography was carried out on silica gel (230–400 mesh). Analytical thin-layer chromatography
was performed using pre-coated plates (silica gel 60 F-254) purchased from Merck Inc. Flash column
chromatography purification was carried out by gradient elution using n-hexane in ethyl acetate
(EtOAc) unless otherwise stated. 1H-NMR was recorded at 400, 500, or 600 MHz and 13C-NMR recorded
at 100, 125, or 150 MHz, respectively, in DMSO-d6 as the solvent. The standard abbreviations s, d, t, q,
and m refer to the singlet, doublet, triplet, quartet, and multiplet, respectively. Coupling constant (J),
whenever discernible, have been reported in Hz. Infrared spectra (IR) were recorded as neat solutions
or solids; mass spectra were recorded using electron impact or electrospray ionization techniques.
The wavenumbers reported are referenced to the polystyrene 1601 cm−1 absorption. ESI-MS analyses
were performed on an Applied Biosystems API 300 mass spectrometer. High-resolution mass spectra
(HRMS) were recorded on a JEOL JMS-HX110 mass spectrometer with an electron ionization (EI)
source The UV-visible absorption and emission spectra were performed on a Perkin-Elmer Lambda 265
and Perkin-Elmer LS50B, a fused quartz cuvette (10 mm × 10 mm) at room temperature, respectively.
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Quantum yields were obtained by using quinine sulfate (0.60 in 0.05 M H2SO4) as a reference.
Stock solutions (1 × 10−3 M) of luminol (1), compounds of 6a–j and 7a–i were prepared in dimethyl
sulfoxide (DMSO).

3.2. Standard Procedure for Synthesis of Pyrazolopyridopyridazine Diones 6a–j

The reliable procedure involved the treatment of 1,3-diarylpyrazolopyrrolopyridine-6,8-diones
(11a–j), 1,3-diaryl-7-methylpyrazolopyrrolopyridine-6,8-diones (12a–c) 1,3-diarylfuropyrazolopyridine-6,
8-diones (13a–c, 1.0 equiv.) with hydrazine monohydrate (~40 equiv.) in neat solution at reflux for 5 h.
When the reaction was completed, the reaction mixture was added to water (10 mL) for precipitation.
The precipitate was filtered, washed with cold water (10 mL), and n-hexane/EA (1/2, 15 mL) to give the
corresponding crude pyrazolopyridopyridazine diones 6a–j. The crude desired products 6a–j were
recrystallized in acetone/THF (1/4) solution to obtain the pure pyrazolopyridopyridazine diones 6a–j
in 11–84% yields. The low solubility of the compounds 6a–j made the 13C-NMR characterization of
quaternary and carbonyl carbons of these substrates unclear [25,26].

1,3-Diphenyl-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione (6a), Light yellow
solid; yield: 84%; mp 292–295 ◦C. 1H-NMR (DMSO-d6, 600 MHz) δ 7.43–7.47 (m, 4H, ArH), 7.60–7.64
(m, 4H, ArH), 8.20 (d, J = 7.9 Hz, 2H, ArH), 9.43 (s, 1H, ArH), 10.20 (br, 1H, NH); 13C{1H} NMR
(DMSO-d6, 150 MHz) δ 109.55, 122.46 (2 × CH), 126.67, 127.16, 127.78, 129.26 (2 × CH + 2 × CH), 130.21
(2 × CH + CH), 134.99, 138.16, 147.54, 149.49, 151.35, 153.28, 155.21; FT-IR (KBr) v: 3161, 3033, 2907,
1662, 1584, 1499, 1414, 1356, 1306, 906 cm−1; MS (EI) m/z (relative intensity): 356 (24), 355 (M+, 100), 354
(27), 270 (24), 269 (12), 268 (12), 77 (39); HRMS (EI) m/z: [M]+ Calcd for C20H13N5O2: 355.1069; found:
355.1065.

3-(2-Chlorophenyl)-1-phenyl-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione (6b),
Yellow-brown solid; yield: 74%; mp 332–335 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 7.40 (br, 3H, ArH),
7.60–7.61 (m, 2H, ArH), 7.63 (d, J = 7.5 Hz, 1H, ArH), 7.67 (t, J = 7.5 Hz, 1H, ArH), 7.79–7.80 (m, 2H,
ArH), 9.35 (s, 1H, ArH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 109.33, 124.53, 126.66, 127.77, 128.01,
128.18, 128.45, 130.23 (2 × CH), 130.30, 130.47, 131.33, 131.36, 134.73, 134.94, 147.84, 149.81, 152.65,
155.49, 156.94; FT-IR (KBr) v: 3427, 3281, 3060, 2921, 1621, 1561, 1508, 1430, 1351, 905 cm−1; MS (EI) m/z
(relative intensity): 391 (M+ + 2, 29), 390 (22), 389 (M+, 100), 355 (12), 354 (52), 304 (15), 268 (17), 111
(13), 77 (44); HRMS (EI) m/z: [M]+ Calcd for C20H12ClN5O2: 389.0680; found: 389.0678.

3-(3-Chlorophenyl)-1-phenyl-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione (6c),
Yellow solid; yield: 71%; mp 228–229 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 7.42–7.43 (m, 3H, ArH), 7.50
(d, J = 6.7 Hz, 1H, ArH), 7.60 (d, J = 5.2 Hz, 2H, ArH), 7.64 (t, J = 8.0 Hz, 1H, ArH), 8.26 (d, J = 8.0 Hz,
1H, ArH), 8.34 (s, 1H, ArH), 9.44 (s, 1H, ArH), 12.06 (br, 1H, NH); 13C{1H} NMR (DMSO-d6, 125 MHz)
δ 107.59, 119.56, 120.40, 121.43, 126.72 (3 × CH), 127.93, 130.14 (2 × CH + 1 × C), 130.99, 133.49, 134.67,
139.34, 148.03, 149.66, 151.53, 155.16, 157.57; FT-IR (KBr) v: 3453, 3344, 3296, 1651, 1595, 1483 cm−1; MS
(EI) m/z (relative intensity): 391 (M+ + 2, 33), 390 (27), 389 (M+, 100), 388 (14), 304 (14), 111 (11), 77 (17);
HRMS (EI) m/z: [M]+ Calcd for C20H12ClN5O2: 389.0680; found: 389.0686.

3-(4-Chlorophenyl)-1-phenyl-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione (6d),
Light yellow solid; yield: 81%; mp 339–341 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 7.40–7.41 (m, 3H,
ArH), 7.58–7.60 (m, 2H, ArH), 7.68 (d, J = 8.9 Hz, 2H, ArH), 8.29 (d, J = 8.9 Hz, 2H, ArH), 9.41 (s, 1H,
ArH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 107.56, 123.52 (2 × CH), 126.60 (2 × CH), 126.64, 127.77,
127.82, 129.23 (2 × CH), 130.18 (2 × CH), 131.06, 134.89, 137.12, 147.88, 149.80, 151.35, 156.76, 157.30;
FT-IR (KBr) v: 3345, 3206, 1656, 1494, 1446, 1307, 1094, 902 cm−1; MS (EI) m/z (relative intensity): 391
(M+ + 2, 36), 390 (31), 389 (M+, 100), 388 (20), 354 (12), 304 (19), 268 (11), 111 (15), 77 (24); HRMS (EI)
m/z: [M]+ Calcd for C20H12ClN5O2: 389.0680; found: 389.0687.



Molecules 2020, 25, 2409 11 of 16

3-(4-Bromophenyl)-1-phenyl-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione (6e),
Light yellow solid; yield: 77%;mp 337–339 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 7.40–7.41 (m, 3H,
ArH), 7.59 (d, J = 5.5 Hz, 2H, ArH), 7.82 (d, J = 9.0 Hz, 2H, ArH), 8.25 (d, J = 9.0 Hz, 2H, ArH), 9.42
(s, 1H, ArH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 107.67, 119.42, 123.81 (2 × CH), 126.64 (2 × CH),
127.82, 130.16 (2 × CH + C), 132.16 (2 × CH + C), 134.88, 137.56, 147.92, 149.78, 151.36, 157.59, 159.25;
FT-IR (KBr) v: 3435, 3345, 3266, 1655, 1536, 1492, 1443, 1307, 1094, 916, 902 cm−1; MS (EI) m/z (relative
intensity): 436 (24), 435 (M+ + 2, 98), 434 (39), 433 (M+, 100), 432 (14), 354 (11), 350 (11), 348 (12), 268
(14), 77 (26); HRMS (EI) m/z: [M]+ Calcd for C20H12BrN5O2: 433.0174; found: 433.0171.

1-Phenyl-3-(p-tolyl)-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione(6f), Light yellow
solid; yield: 84%; mp 346–348 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 2.40 (s, 3H, CH3), 7.39–7.42 (m, 5H,
ArH), 7.58–7.60 (m, 2H, ArH), 8.07 (d, J = 8.4 Hz, 2H, ArH), 9.39 (s, 1H, ArH); 13C{1H} NMR (DMSO-d6,
125 MHz) δ 20.61, 106.97, 118.99, 122.32 (2 × CH), 126.60 (2 × CH), 127.68, 128.86, 129.60 (2 × CH),
130.21 (2 × CH), 135.09, 135.83, 136.55, 147.26, 149.35, 151.18, 152.87, 155.65; FT-IR (KBr) v: 3436, 3345,
3206, 2919, 1656, 1534, 1514, 1480, 1453, 1310, 1096, 903 cm−1; MS (EI) m/z (relative intensity): 370 (25),
369 (M+, 100), 368 (16), 354 (14), 284 (18), 91 (15), 77 (19); HRMS (EI) m/z: [M]+ Calcd for C21H15N5O2:
369.1226; found: 369.1216.

3-(4-Methoxyphenyl)-1-phenyl-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione (6g),
Deep yellow solid; yield: 81%; mp 311–313 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 3.85 (s, 3H, OCH3),
7.17 (d, J = 11.2 Hz, 2H, ArH), 7.43 (s, 3H, ArH), 7.58–7.60 (m, 2H, ArH), 8.03 (d, J = 11.2 Hz, 2H, ArH),
9.38 (s, 1H, ArH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 55.49, 106.64, 114.38 (2 × CH), 115.59, 124.31
(2 × CH), 124.60, 126.71 (2 × CH), 127.77, 130.23 (2 × CH), 131.18, 135.03, 147.01, 149.17, 151.12, 152.63,
156.80, 158.33; FT-IR (KBr) v: 3435, 3226, 3065, 2886, 1650, 1590, 1535, 1516, 1441, 1362, 1252, 1170,
905 cm−1; MS (EI) m/z (relative intensity): 386 (24), 385 (M+, 100), 370 (13), 77 (18); HRMS (EI) m/z:
[M]+ Calcd for C21H15N5O3: 385.1175; found: 385.1180.

3-(4-Cyanophenyl)-1-phenyl-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione (6h),
Yellow solid; yield: 73%; mp 344–347 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 7.43–7.44 (m, 3H, ArH),
7.60–7.61 (m, 2H, ArH), 8.08 (d, J = 6.6 Hz, 2H, ArH), 8.56 (d, J = 6.6 Hz, 2H, ArH), 9.45 (s, 1H, ArH);
13C{1H} NMR (DMSO-d6, 125 MHz) δ 108.84, 118.51, 121.39, 121.70 (2 × CH), 126.74 (2 × CH), 128.07,
128.63, 130.08 (2 × CH), 130.15, 133.62 (2 × CH), 134.51, 141.67, 148.75, 149.75, 151.87, 155.15, 156.71;
FT-IR (KBr) v: 3397, 3284, 3056, 2228, 1606, 1569, 1516, 1430, 1400, 1317, 905 cm−1; MS (EI) m/z (relative
intensity): 381 (26), 380 (M+, 100), 379 (23), 295 (17), 102 (13), 77(29); HRMS (EI) m/z: [M]+ Calcd for
C21H12N6O2: 380.1022; found: 380.1030.

3-(4-Nitrophenyl)-1-phenyl-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione (6i),
Yellow solid; yield: 69%; mp 340–342 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 7.41–7.44 (m, 3H, ArH),
7.61 (d, J = 6.3 Hz, 2H, ArH), 8.48 (d, J = 8.3 Hz, 2H, ArH), 8.67 (d, J = 8.3 Hz, 2H, ArH), 9.47 (s, 1H,
ArH), 12.11 (br, 1H, NH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 113.65, 121.61 (2 × CH), 124.52, 125.13
(2 × CH), 126.85 (2 × CH), 128.22, 130.12 (2 × CH), 130.27, 134.47, 143.27, 145.04, 149.17, 149.92, 152.09,
154.07, 158.18; FT-IR (KBr) v: 3435, 1637, 1596, 1522, 1341, 1112, 905 cm−1; MS (EI) m/z(relative intensity):
401 (23), 400 (M+, 100), 370 (22), 315 (11), 77(19); HRMS (EI) m/z: [M]+ Calcd for For C20H12N6O4:
400.0920; found: 400.0919.

3-(3-Chlorophenyl)-7,8-dihydro-3H-pyrazolo[4′,3′:5,6]pyrido[3,4-d]pyridazine-6,9-dione(6j), Light yellow
solid; yield: 71%; mp 351–352 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 7.51 (d, J = 8.03 Hz, 1H, ArH), 7.66
(t, J = 8.0 Hz, 1H, ArH), 8.28 (d, J = 8.0 Hz, 1H, ArH), 8.39 (s, 1H, ArH), 8.88 (s, 1H, ArH), 9.40 (s, 1H,
ArH), 10.20 (br, 1H, NH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 109.53, 119.80, 120.84, 126.68 (2 × C),
131.14 (CH + C), 133.57, 136.04, 139.62, 149.36, 150.78, 152.47, 155.87; FT-IR (KBr) v: 3433, 3294, 3168,
2974, 1639, 1594, 1568, 1487, 1448, 1274, 1218, 1125 cm−1; MS (EI) m/z (relative intensity): 315 (M+ + 2, 35),
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314 (28), 313 (M+, 100), 278 (12), 255 (13), 227 (21), 111(12), 75 (11); HRMS (EI) m/z: [M]+ Calcd for
C14H8ClN5O2: 313.0367; found: 313.0367.

3.3. Standard Procedure for Synthesis of N-Aminopyrazolopyrrolopyridine Diones (7a–i)

The reliable procedure involved the treatment of 1,3-diarylpyrazolopyrrolopyridine-6,8-diones
(11a–i, 1.0 equiv.) with hydrazine monohydrate (~5.0 equiv.) in EtOH/H2O (2.0 mL/2.0 mL) in
ice-bath to room temperature within 48 h. When the reaction was completed, the reaction mixture
was added to water (10 mL) for precipitation. The precipitate was filtered, washed with cold water
(10 mL) and n-hexane/EA (1/2, 15 mL) to give the corresponding crude N-aminophthalimides 7a–i.
The crude desired products 7a–i were recrystallized in acetone/THF (1/4) solution to obtain the pure
N-aminophthalimides 7a–i in 71–87 % yields [31,32].

7-Amino-1,3-diphenylpyrazolo[3,4-b]pyrrolo[3,4-d]pyridine-6,8-(3H,7H)-dione (7a), White solid; yield:
83%; mp 217–219 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ 4.55 (br, 2H, NH2), 7.42 (t, J = 7.5 Hz, 1H, ArH),
7.49–7.55 (m, 3H, ArH), 7.60–7.65 (m, 4H, ArH), 8.25 (d, J = 8.1 Hz, 2H, ArH), 8.82 (s, 1 H, ArH); 13C{1H}
NMR (DMSO-d6, 100 MHz) δ 111.65, 121.43 (2 × CH), 123.37, 126.80, 128.27 (2 × CH), 128.58 (2 × CH),
128.96, 129.41 (2 × CH), 132.04, 138.44, 139.23, 146.02, 148.82, 150.61, 164.18, 164.49; FT-IR (KBr) v: 3275,
3208, 3172, 3035, 1633.0, 1572, 1518.7, 1501 cm−1; MS (EI) m/z (relative intensity): 356 (20), 355 (M+, 100),
354 (18), 270 (13), 77.0(18); HRMS (EI) m/z: [M]+ Calcd for C20H13N5O2: 355.1069; found: 355.1060.

7-Amino-3-(2-chlorophenyl)-1-phenylpyrazolo[3,4-b]pyrrolo[3,4-d]pyridine-6,8-(3H,7H)-dione (7b),
Yellow solid; yield: 71%; mp 165–166 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 4.52 (br, 2H, NH2), 7.48 (d,
J = 7.0 Hz, 1H, ArH), 7.52 (d, J = 7.1 Hz, 2H, ArH), 7.60–7.68 (m, 4H, ArH), 7.74 (d, J = 7.7 Hz, 1H,
ArH), 7.79 (d, J =7.7 Hz, 1H, ArH), 8.71 (s, 1H, ArH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 108.50,
122.16, 122.88, 123.33, 127.72 (2 × CH), 129.27 (3 × CH), 129.72 (2 × CH), 131.26, 131.46, 136.60, 136.98,
143.86, 145.72, 153.20, 166.81, 168.47; FT-IR (KBr) v: 3337, 3296, 2952, 2920, 1778, 1740, 1498, 1375, 1315,
1014 cm−1; MS (EI) m/z (relative intensity): 391 (M+ + 2, 32), 390 (22), 389 (M+, 100), 355 (18), 354 (90),
304 (12), 268 (11), 77 (18); HRMS (EI) m/z: [M]+ Calcd for C20H12ClN5O2: 389.0680; found: 389.0672.

7-Amino-3-(3-chlorophenyl)-1-phenylpyrazolo[3,4-b]pyrrolo[3,4-d]pyridine-6,8-(3H,7H)-dione (7c),
Yellow solid; yield: 73%; mp 173–175 ◦C; 1H-NMR (DMSO-d6, 400 MHz) δ 4.55 (br, 2H, NH2), 7.47–7.54
(m, 4H, ArH), 7.64–7.67 (m, 3H, ArH), 8.31 (d, J = 8.9 Hz, 1H, ArH), 8.42 (s, 1H, ArH), 8.86 (s, 1H, ArH);
13C{1H} NMR (DMSO-d6, 100 MHz) δ 112.05, 119.33, 120.34, 123.72, 126.32, 128.28 (2 × CH), 128.57
(2 × CH), 129.11, 131.21, 131.73, 133.65, 139.41, 139.64, 146.61, 148.98, 150.72, 163.96, 164.33; FT-IR
(KBr) v: 3264, 3168, 3034, 1649, 1614, 1595, 1488, 1431, 1300, 803 cm−1; MS (EI) m/z (relative intensity):
391 (M+ + 2, 33), 390 (24), 389 (M+, 100), 374 (13), 304 (11), 77 (14); HRMS (EI) m/z: [M]+ Calcd for
C20H12ClN5O2: 389.0680; found: 389.0688.

7-Amino-3-(4-chlorophenyl)-1-phenylpyrazolo[3,4-b]pyrrolo[3,4-d]pyridine-6,8-(3H,7H)-dione (7d),
Light yellow solid; yield: 81%; mp 226–227 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 4.55 (br, 2H, NH2),
7.48–7.55 (m, 3H, ArH), 7.64 (d, J = 7.6 Hz, 2H, ArH), 7.69 (d, J = 8.4 Hz, 2H, ArH), 8.35 (d, J = 8.4 Hz,
2H, ArH), 8.84 (s, 1 H, ArH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 111.85, 122.54 (2 × CH), 123.55,
128.24 (2 × CH), 128.53 (2 × CH), 129.03, 129.36 (2 × CH), 130.67, 131.81, 137.31, 139.34, 146.35, 148.88,
150.57, 163.99, 164.34; FT-IR (KBr) v: 3275, 3207, 3170, 1633, 1499, 828 cm−1; MS (EI) m/z (relative
intensity): 391 (M+ + 2, 34), 390 (28), 389 (M+, 100), 388 (15), 304 (12), 77 (13); HRMS (EI) m/z: [M]+

Calcd for C20H12ClN5O2: 389.0680; found: 389.0686.

7-Amino-3-(4-bromophenyl)-1-phenylpyrazolo[3,4-b]pyrrolo[3,4-d]pyridine-6,8-(3H,7H)-dione (7e),
Yellow solid; yield: 79%; mp 235–239 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 4.55 (br, 2H, NH2), 7.49–7.55
(m, 3H, ArH), 7.64 (d, J = 6.9 Hz, 2H, ArH), 7.82 (d, J = 8.7 Hz, 2H, ArH), 8.29 (d, J = 8.7 Hz, 2H, ArH),
8.84 (s, 1 H, ArH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 111.91, 118.95, 122.81 (2 × CH), 123.55, 128.25
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(2 × CH), 128.54 (2 × CH), 129.04, 131.80, 132.28 (2 × CH), 137.75, 139.33, 146.40, 148.90, 150.59, 164.00,
164.35; FT-IR (KBr) v: 3275, 3208, 3170, 3071, 3037, 1632, 1495, 826 cm−1; MS (EI) m/z (relative intensity):
436 (22), 435 (M+ + 2, 100), 354 (33), 433 (M+, 99), 432 (12), 420 (19), 419 (11), 418 (19), 354 (11), 350 (10),
348 (11), 268 (17), 77 (26); HRMS (EI) m/z: [M]+ Calcd for C20H12BrN5O2: 433.0174; found: 433.0171.

7-Amino-1-phenyl-3-(p-tolyl)pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine-6,8-(3H,7H)-dione (7f), Yellow solid;
yield: 86%; mp 232–233 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 2.40 (s, 3H, CH3), 4.55 (br, 2H, NH2), 7.42
(d, J = 8.0 Hz, 2H, ArH), 7.49 (d, J = 7.3 Hz, 1H, ArH), 7.52 (t, J = 7.3 Hz, 2H, ArH), 7.64 (d, J = 7.3
Hz, 2H, ArH), 8.12 (d, J = 8.0 Hz, 2H ArH), 8.81 (s, 1H, ArH); 13C{1H} NMR (DMSO-d6, 125 MHz)
δ 20.63, 111.44, 121.35(2 × CH), 123.18, 128.21 (2 × CH), 128.54 (2 × CH), 128.85, 129.73 (2 × CH), 132.09,
136.06, 136.18, 139.13, 145.69, 148.72, 150.44, 164.20, 164.50; FT-IR (KBr) v: 3276, 3209, 3171, 3032, 1634,
1517 cm−1; MS (EI) m/z (relative intensity): 370 (25), 369 (M+, 100), 368 (13), 354 (21), 284 (12), 207 (10),
91.1(11), 77.1(13); HRMS (EI) m/z: [M]+ Calcd for C21H15N5O2: 369.1226; found: 369.1231.

7-Amino-3-(4-methoxyphenyl)-1-phenylpyrazolo[3,4-b]pyrrolo[3,4-d]pyridine-6,8-(3H,7H)-dione (7g),
Yellow solid; yield: 87%; mp 331–332 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 3.83 (s, 3H, OCH3), 4.53 (br,
2H, NH2), 7.17 (d, J = 8.7 Hz, 2H, ArH), 7.48–7.53 (m, 3H, ArH), 7.62 (d, J = 7.1 Hz, 2H, ArH), 8.06 (d,
J = 8.7 Hz, 2H, ArH), 8.78 (s, 1H, ArH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 55.64, 111.24, 114.62
(2 × CH), 123.14, 123.51 (2 × CH), 128.37 (2 × CH), 128.65 (2 × CH), 128.97, 131.60, 132.25, 139.14, 145.54,
148.83, 150.44, 158.16, 164.43, 164.73; FT-IR (KBr) v: 3215, 3066, 3004, 2963, 2935, 2837, 1639, 1577, 1516,
1462, 1443, 1252 cm−1; MS (EI) m/z (relative intensity): 386 (21), 385 (M+, 100), 370 (14), 77.0(10); HRMS
(EI) m/z: [M]+ Calcd for C21H15N5O3: 385.1175; found: 385.1182.

7-Amino-3-(4-cyanophenyl)-1-phenylpyrazolo[3,4-b]pyrrolo[3,4-d]pyridine-6,8-(3H,7H)-dione (7h),
Yellow solid; yield: 73%; mp 333–335 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 4.55 (br, 2H, NH2), 7.50–7.55
(m, 3H, ArH), 7.65 (d, J = 7.1 Hz, 2H, ArH), 8.09 (d, J = 8.5 Hz, 2H, ArH), 8.61 (d, J = 8.5 Hz, 2H, ArH),
8.87 (s, 1 H, ArH); 13C{1H} NMR (DMSO-d6, 125 MHz) δ 108.41, 112.58, 118.68, 120.75 (2 × CH), 124.12,
128.35 (2 × CH), 128.59 (2 × CH), 129.33, 131.55, 133.84 (2 × CH), 139.53, 141.99, 147.47, 149.11, 151.12,
163.83, 164.27; FT-IR (KBr) v: 3330, 3274, 2227, 1665, 1635, 1607, 1518, 1409, 1255, 844 cm−1; MS (EI) m/z
(relative intensity): 381 (22), 380 (M+, 100), 379 (18), 295 (13), 77(14); HRMS (EI) m/z: [M]+ Calcd for
C21H12N6O2: 380.1022; found: 380.1023.

7-Amino-3-(4-nitrophenyl)-1-phenylpyrazolo[3,4-b]pyrrolo[3,4-d]pyridine-6,8-(3H,7H)-dione (7i), Yellow
solid; yield: 74%; mp 281–282 ◦C; 1H-NMR (DMSO-d6, 500 MHz) δ 7.53–7.57 (m, 3H, ArH), 7.93 (d,
J = 6.5 Hz, 2H, ArH), 8.48 (d, J = 9.2 Hz, 2H, ArH), 8.67 (d, J = 9.2 Hz, 2H, ArH), 9.19 (s, 1H, ArH);
13C{1H} NMR (DMSO-d6, 125 MHz) δ 109.57, 121.41 (2 × CH), 123.52, 125.21 (2 × CH), 127.91 (2 × CH),
129.73, 129.90 (2 × CH), 131.21, 136.89, 143.24, 144.26, 145.12, 147.11, 153.90, 166.71, 168.43; FT-IR (KBr)
v: 3190, 3120, 3064, 1595, 1500, 1341, 1112, 857 cm−1; MS (EI) m/z (relative intensity): 400 (M+, 4), 386
(26), 385 (100), 338 (13), 236 (10), 77 (13); HRMS (EI) m/z: [M]+ Calcd for C20H12N6O4: 400.0920; found:
400.0925.

3.4. Determination of the Fluorescence Quantum Yield

The fluorescence quantum yield Φx was determined through the comparative method. The quinine
sulfate (Φst = 0.60, λex= 350 nm) in H2SO4 0.05 M was used as the standard, and it was calculated by
following equation [48]:

Φx/Φst = [Ast/Ax] [nx
2/nst

2] [Dx/Dst], (1)

where st: standard; x: sample; Φ: quantum yield; A: absorbance at the excitation wavelength; D: area
under the fluorescence spectra on an energy scale; n: the refractive index of the solution. In the process
of detection, the absorbance should be controlled and lower than 0.1.
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4. Conclusions

Pyrazolopyridopyridazine diones 6 and N-aminopyrazolopyrrolopyridine diones 7 can be
prepared in three synthesis methods from 1,3-diarylpyrazolopyrrolopyridine-6,8-diones, 1,3-diaryl-
7-methylpyrazolopyrrolopyridine-6,8-diones, or 1,3-diarylfuropyrazolopyridine-6,8-diones with
hydrazine monohydrate. Based on the experimental results, 1,3-diarylpyrazolopyrrolopyridine-6,
8-diones were conceived as the best reactive starting materials. Furthermore, compounds 6 and 7
were also selectively synthesized under kinetic and thermodynamic control reactions. For the further
photoluminescence, solvatofluorism, and quantum yield (Φf) studies, pyrazolopyridopyridazine diones
6 generally exhibited the stronger fluorescence intensity and possessed the significant substituent effect,
particularly for 6c with a m-chloro group. On the other hand, the best Φf value of 6j was obtained
(Φf = 0.140) and similar to luminol (1, Φf = 0.175), possibly caused by the planar skeletal conformation.
Based on the above photoluminescence studies, we also found that the efficient introduction of
the pyrazole and pyridine chromophores led to an increase in the conjugation and aromaticity of
compounds 6 and 7 when compared with the standard luminol.

Supplementary Materials: The following are available online, copies of 1H and 13C-NMR spectra of compounds
6a–6j and 7a–7i.
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