Chemical Composition and Determination of the Antibacterial Activity of Essential Oils in Liquid and Vapor Phases Extracted from Two Different Southeast Asian Herbs—Houttuynia cordata (Saururaceae) and Persicaria odorata (Polygonaceae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield and Chemical Composition
2.2. Antimicrobial Activity
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil Isolation
3.3. Bacterial Strains and Culture Media
3.4. Antimicrobial Activity Assay
3.5. GC–MS Analysis
3.6. GC–FID Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of Essential Oil and Its Biological Activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef] [PubMed]
- Merghni, A.; Marzouki, H.; Hentati, H.; Aouni, M.; Mastouri, M. Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Curr. Res. Transl. Med. 2016, 64, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, R.; Hayek, S.A.; Anyanwu, U.; Hardy, B.I.; Giddings, V.L.; Ibrahim, S.A.; Tahergorabi, R.; Kang, H.W. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum x radens and Laurus nobilis L. Foods 2016, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Kon, K.V.; Rai, M.K. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev. Anti-Infect. Ther. 2012, 10, 775–790. [Google Scholar] [CrossRef]
- Feyaerts, A.F.; Mathe, L.; Luyten, W.; Tournu, H.; Van Dyck, K.; Broekx, L.; Van Dijck, P. Assay and recommendations for the detection of vapour-phase-mediated antimicrobial activities. Flavour Frag. J. 2017, 32, 347–353. [Google Scholar] [CrossRef]
- Houdkova, M.; Doskocil, I.; Urbanova, K.; Tulin, E.; Rondevaldova, J.; Tulin, A.B.; Kudera, T.; Tulin, E.E.; Zeleny, V.; Kokoska, L. Evaluation of antipneumonic effect of Philippine essential oils using broth microdilution volatilization method and their lung fibroblasts toxicity. Nat. Prod. Commun. 2018, 13, 1059–1066. [Google Scholar] [CrossRef] [Green Version]
- Acs, K.; Bencsik, T.; Boszormenyi, A.; Kocsis, B.; Horvath, G. Essential oils and their vapors as potential antibacterial agents against respiratory tract pathogens. Nat. Prod. Commun. 2016, 11, 1709–1712. [Google Scholar]
- Amat, S.; Baines, D.; Alexander, T.W. A vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens. Lett. Appl. Microbiol. 2017, 65, 489–495. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Cervantes-Rincon, T.; Bach, H.; Lopez-Malo, A.; Palou, E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 2019, 131, 90–95. [Google Scholar] [CrossRef]
- Santomauro, F.; Donato, R.; Pini, G.; Sacco, C.; Ascrizzi, R.; Bilia, A.R. Liquid and vapor-phase activity of Artemisia annua essential oil against pathogenic Malassezia spp. Planta Med. 2018, 84, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Torpol, K.; Wiriyacharee, P.; Sriwattana, S.; Sangsuwan, J.; Prinyawiwatkul, W. Antimicrobia activity of garlic (Allium sativum L.) and holy basil (Ocimum sanctum L.) essential oils applied by liquid vs. vapour phases. Int. J. Food Sci. Technol. 2018, 53, 2119–2128. [Google Scholar] [CrossRef]
- Azadbakht, E.; Maghsoudlou, Y.; Khomiri, M.; Kashiri, M. Development and structural characterization of chitosan films containing Eucalyptus globulus essential oil: Potential as an antimicrobial carrier for packaging of sliced sausage. Food Packag. Shelf Life 2018, 17, 65–72. [Google Scholar] [CrossRef]
- Chen, C.W.; Xu, Z.W.; Ma, Y.R.; Liu, J.L.; Zhang, Q.J.; Tang, Z.P.; Fu, K.J.; Yang, F.X.; Xie, J. Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control 2018, 88, 105–112. [Google Scholar] [CrossRef]
- Silva, F.; Domingues, F.C. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit. Rev. Food Sci. Nutr. 2017, 57, 35–47. [Google Scholar] [CrossRef]
- Laird, K.; Phillips, C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012, 54, 169–174. [Google Scholar] [CrossRef]
- Ji, H.; Kim, H.; Beuchat, L.R.; Ryu, J.H. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. Int. J. Food Microbiol. 2019, 291, 104–110. [Google Scholar] [CrossRef]
- Doran, A.L.; Morden, W.E.; Dunn, K.; Edwards-Jones, V. Vapour-phase activities of essential oils against antibiotic sensitive and resistant bacteria including MRSA. Lett. Appl. Microbiol. 2009, 48, 387–392. [Google Scholar] [CrossRef]
- Asakawa, Y.; Tomiyama, K.; Sakurai, K.; Kawakami, Y.; Yaguchi, Y. Volatile compounds from the different organs of Houttuynia cordata and Litsea cubeba (L. citriodora). J. Oleo Sci. 2017, 66, 889–895. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.B.; Yang, J.J.; Yu, M.; Cao, Y.; Guo, S.Z.; Qiao, A.N. Study on medicinal plant active substances extraction and antibacterial activity of Houttuynia cordata. In Proceedings of the 1st International Global on Renewable Energy and Development, Singapore, 22–25 December 2017; IOP Publishing Ltd: Bristol, UK, 2017; Volume 100. [Google Scholar]
- Kwon, H.-D.; Cha, I.-H.; Lee, W.-K.; Song, J.-H.; Park, I.-H. Antibacterial activity of volatile flavor components from Houttuynia cordata Thunb. Prev. Nutr. Food Sci. 1996, 1, 208–213. [Google Scholar]
- Lu, H.; Wu, X.; Liang, Y.; Zhang, J. Variation in chemical composition and antibacterial activities of essential oils from two species of Houttuynia THUNB. Chem. Pharm. Bull. 2006, 54, 936–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, J.; Dong, W.; Li, Y.; Xia, X.; Liu, Z.; Hao, H.; Jiang, L.; Liu, Y. Purification of Houttuynia cordata Thunb. essential oil using macroporous resin followed by microemulsion encapsulation to improve its safety and antiviral activity. Molecules 2017, 22, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Singh, V.R.; Goswami, P.; Kumar, A.; Iqbal, H.; Verma, R.K.; Chanda, D.; Chauhan, A. Chemical composition and allelopathic, antibacterial, antifungal, and antiacetylcholinesterase activity of fish-mint (Houttuynia cordataThunb.) from India. Chem. Biodivers. 2017, 14, e1700189. [Google Scholar] [CrossRef] [PubMed]
- Shavandi, M.A.; Haddadian, Z.; Ismail, M.H.S. Eryngium foetidum L. Coriandrum sativum and Persicaria odorata L.: A review. J. Asian Sci. Res. 2012, 2, 410. [Google Scholar]
- Starkenmann, C.; Luca, L.; Niclass, Y.; Praz, E.; Roguet, D. Comparison of volatile constituents of Persicaria odorata (Lour.) Sojak (Polygonum odoratum Lour.) and Persicaria hydropiper L. Spach (Polygonum hydropiper L.). J. Agric. Food Chem. 2006, 54, 3067–3071. [Google Scholar] [CrossRef]
- Dai, D.N.; Thang, T.D.; Ogunmoye, A.; Eresanya, O.I.; Ogunwande, I.A. Chemical constituents of essential oils from the leaves of Tithonia diversifolia, Houttuynia cordata and Asarum glabrum grown in Vietnam. Am. J. Essent. Oil. 2015, 2, 17–21. [Google Scholar]
- Oh, S. An effective quality control of pharmacologically active volatiles of Houttuynia cordata Thunb by fast gas chromatography-surface acoustic wave sensor. Molecules 2015, 20, 10298–10312. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lu, F.; Pan, S.; Li, S. Extraction of volatile oil from Houttuynia cordata and its anti-biotic and anti-virus activities. Pract. Prev. Med. 2008, 15, 312–316. [Google Scholar]
- Jiangang, F.; Ling, D.; Zhang, L.; Hongmei, L. Houttuynia cordata Thunb: A review of phytochemistry and pharmacology and quality control. Chin. Med. 2013, 4, 101–123. [Google Scholar]
- Fujita, K.; Chavasiri, W.; Kubo, I. Anti-salmonella activity of volatile compounds of Vietnam coriander. Phytother. Res. 2015, 29, 1081–1087. [Google Scholar] [CrossRef]
- Chansiw, N.; Paradee, N.; Chotinantakul, K.; Srichairattanakool, S. Anti-hemolytic, antibacterial and anti-cancer activities of methanolic extracts from leaves and stems of Polyg. odoratum. Asian Pac. J. Trop. Biomed. 2018, 8, 580–585. [Google Scholar] [CrossRef]
- Almarie, A.; Mamat, A.; Wahab, Z.; Rukunudin, I. Chemical composition and phytotoxicity of essential oils isolated from Malaysian plants. Allelopath. J. 2016, 37, 55–69. [Google Scholar]
- Murray, A.F.; Satooka, H.; Shimizu, K.; Chavasiri, W.; Kubo, I. Polygonum odoratum essential oil inhibits the activity of mushroom derived tyrosinase. Heliyon 2019, 5, e02817. [Google Scholar] [CrossRef] [PubMed]
- Houdkova, M.; Rondevaldova, J.; Doskocil, I.; Kokoska, L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia 2017, 118, 56–62. [Google Scholar] [CrossRef]
- Linstrom, P.J.; Mallard, W. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 30 April 2020).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Dũng, N.X.; Van Hac, L.; Leclercq, P.A. Volatile constituents of the aerial parts of Vietnamese Polygonum odoratum L. J. Essent. Oil Res. 1995, 7, 339–340. [Google Scholar] [CrossRef]
- Hunter, M.V.; Brophy, J.J.; Ralph, B.J.; Bienvenu, F.E. Composition of Polygonum odoratum Lour. from Southern Australia. J. Essent. Oil Res. 1997, 9, 603–604. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Sieniawska, E.; Swatko-Ossor, M.; Sawicki, R.; Skalicka-Woźniak, K.; Ginalska, G. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Med. Princ. Pract. 2017, 26, 108–112. [Google Scholar] [CrossRef]
- Lis, A.; Banaszczak, P. Chemical composition of the essential oils from flowers and leaves of Phellodendron chinense CK Schneid. J. Essent. Oil-Bear. Plants 2010, 13, 52–58. [Google Scholar] [CrossRef]
- Arnal-Schnebelen, B.; Hadji-Minaglou, F.; Peroteau, J.; Ribeyre, F.; De Billerbeck, V. Essential oils in infectious gynaecological disease: A statistical study of 658 cases. Int. J. Aromather. 2004, 14, 192–197. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.-I.; Rhee, K.-J.; Eom, Y.-B. Antibacterial and antibiofilm effects of α-humulene against Bacteroides fragilis. Can. J. Microbiol. 2020, 66, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pichette, A.; Larouche, P.L.; Lebrun, M.; Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytother. Res. 2006, 20, 371–373. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Caryophyllene (accessed on 28 April 2020).
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | CAS Number | Identification 1 | Retention Index | Peak Area [%] | ||
---|---|---|---|---|---|---|
Observed | Published 2 | H. cordata | P. odorata | |||
Monoterpenes | ||||||
α-pinene | 80-56-8 | MS, RI | 930 | 933 | 0.53 | - |
camphene | 79-92-5 | MS, RI | 946 | 953 | 0.36 | - |
β-pinene | 127-91-3 | MS, RI | 974 | 978 | 0.45 | - |
myrcene | 123-35-3 | MS, RI, Std | 993 | 991 | 51.64 | - |
limonene | 138-86-3 | MS, RI, Std | 1027 | 1030 | 0.49 | - |
cis-β-ocimene | 3338-55-4 | MS, RI | 1036 | 1040 | 5.72 | - |
trans-β-ocimene | 3779-61-1 | MS, RI | 1046 | 1046 | 0.18 | - |
7-epi-sesquithujene | 159407-35-9 | MS, RI | 1387 | 1387 | - | 0.02 |
Sum [%] | 59.37 | 0.02 | ||||
Oxidized monoterpenes | ||||||
perillene | 539-52-6 | MS, RI | 1097 | 1098 | 0.51 | - |
linalool | 78-70-6 | MS, RI, Std | 1100 | 1101 | 0.28 | - |
myroxide | 33281-83-3 | MS, RI | 1131 | 1129 | 0.01 | - |
isoborneol | 10385-78-1 | MS, RI | 1169 | 1165 | 0.08 | - |
α-terpineol | 98-55-5 | MS, RI, Std | 1193 | 1195 | 0.06 | - |
β-cyclocitral | 432-25-7 | MS, RI | 1218 | 1219 | - | 0.04 |
trans-geraniol | 102-24-1 | MS, RI | 1251 | 1255 | 0.2 | - |
bornyl acetate | 92618-89-8 | MS, RI | 1283 | 1285 | 2.85 | - |
neryl acetate | 141-12-8 | MS, RI | 1358 | 1365 | 0.12 | - |
geranyl acetate | 105-87-3 | MS, RI, Std | 1378 | 1383 | 3.11 | - |
Sum [%] | 7.22 | 0.04 | ||||
Sesquiterpenes | ||||||
cis-caryophyllene | 13877-93-5 | MS, RI | 1419 | 1424 | 2.58 | 3.88 |
trans-α-bergamotene | 13474-59-4 | MS, RI | 1431 | 1432 | 0.1 | 0.25 |
isogermacrene D | 317819-80-0 | MS, RI | 1441 | 1447 | - | 0.08 |
trans-caryophyllene | 87-44-5 | MS, RI | 1452 | 1451 | 0.99 | - |
α-humulene | 6753-98-6 | MS, RI, Std | 1455 | 1454 | - | 4.50 |
γ-gurjunene | 22567-17- 5 | MS, RI | 1474 | 1476 | - | 0.30 |
selina-4.11-diene | 17627-30-4 | MS, RI | 1476 | 1482 | 1.13 | 0.23 |
α-curcumene | 644-30-4 | MS, RI | 1482 | 1480 | - | 0.23 |
β-selinene | 17066-67-0 | MS, RI | 1487 | 1491 | - | 0.40 |
valencene | 4630-07-3 | MS, RI | 1490 | 1492 | 0.67 | 0.04 |
β-bisabolene | 4891-79-6 | MS, RI | 1508 | 1508 | - | 0.07 |
β-curcumene | 72345-84-7 | MS, RI | 1510 | 1511 | - | 0.08 |
7-epi-α-selinene | 123123-37-5 | MS, RI | 1517 | 1518 | 0.54 | 0.52 |
trans-calamenene | 73209-42-4 | MS, RI | 1519 | 1527 | 0.24 | - |
cis-sesquisabinene hydrate | 58319-05-4 | MS, RI | 1543 | 1544 | - | 0.96 |
Sum [%] | 6.25 | 11.54 | ||||
Oxidized sesquiterpenes | ||||||
β-elemene | 33880-83-0 | MS, RI | 1387 | 1390 | 0.13 | - |
ishwarane | 26620-70-2 | MS, RI | 1465 | 1468 | 0.24 | - |
α-farnesene | 502-61-4 | MS, RI | 1503 | 1504 | 0.18 | - |
β-nerolidol | 40716-66-3 | MS, RI | 1560 | 1561 | 0.76 | 0.53 |
spathulenol | 72203-24-8 | MS, RI | 1575 | 1576 | 0.37 | - |
caryophyllene oxide | 1139-30-6 | MS, RI | 1580 | 1587 | 0.99 | 1.42 |
humulene epoxide II | 19888-34-7 | MS, RI | 1608 | 1613 | - | 1.09 |
caryophylla-4(12).8(13)-dien-5-ol | 19431-80-2 | MS, RI | 1632 | 1636 | - | 0.69 |
epi-β-bisabolol | 235421-59-7 | MS, RI | 1669 | 1675 | - | 0.34 |
α-bisabolol | 515-69-5 | MS, RI | 1686 | 1688 | - | 0.05 |
trans-α-bergamotol | 88034-74-6 | MS, RI | 1688 | 1688 | - | 0.05 |
drimenol | 19078-37-6 | MS, RI | 1768 | 1769 | - | 1.24 |
drimenin | 2326-89-8 | MS, RI | 1944 | 1944 | - | 0.30 |
Sum [%] | 2.67 | 5.71 | ||||
Oxidized diterpenes | ||||||
phytone | 502-69-2 | MS, RI | 1840 | 1841 | - | 0.38 |
Sum [%] | 0 | 0.38 | ||||
Derivates of phenylpropene | ||||||
methyl eugenol | 93-15-2 | MS, RI | 1401 | 1403 | 0.25 | - |
Sum [%] | 0.25 | 0 | ||||
Others | ||||||
6-methyl-hept-5-en-2-one | 110-93-0 | MS, RI | 985 | 986 | 0.05 | - |
2-pentyl-furan | 3777-69-3 | MS, RI | 993 | 991 | - | 0.06 |
6-methyl-Hept-5-en-2-ol | 1569-60-4 | MS, RI | 998 | 995 | - | 0.03 |
n-undecane | 1120-21-4 | MS, RI | 1101 | 1100 | - | 2.52 |
n-nonanal | 124-19-6 | MS, RI | 1104 | 1107 | 0.12 | 0.26 |
1-nonanol | 143-08-8 | MS, RI | 1172 | 1169 | 0.33 | 0.35 |
n-decanal | 112-31-2 | MS, RI, Std | 1208 | 1208 | 0.15 | 18.4 |
1-decanol | 112-30-1 | MS, RI | 1276 | 1278 | - | 5.37 |
2-undecanone | 112-12-9 | MS, RI | 1293 | 1294 | 6.67 | - |
n-undecanal | 112-44-7 | MS, RI | 1307 | 1309 | - | 1.37 |
1-undecanol | 112-42-5 | MS, RI | 1377 | 1379 | - | 1.16 |
2-dodecanone | 6175-49-1 | MS, RI | 1393 | 1393 | 0.07 | - |
n-dodecanal | 112-54-9 | MS, RI, Std | 1411 | 1410 | 0.02 | 37.08 |
1-dodecanol | 112-53-8 | MS, RI, Std | 1477 | 1476 | - | 4.81 |
tridecan-2-one | 593-08-8 | MS, RI | 1496 | 1495 | 6.06 | - |
n-dodecanoic acid | 143-07-7 | MS, RI | 1569 | 1570 | 0.70 | - |
n-tetradecanal | 124-5-4 | MS, RI | 1612 | 1614 | - | 0.26 |
intermedeol | 6168-59-8 | MS, RI | 1661 | 1668 | - | 0.13 |
2-pentadecanone | 2345-28-0 | MS, RI | 1696 | 1697 | 0.21 | - |
n-hexadecanoic acid | 57-10-3 | MS, RI | 1963 | 1968 | 0.45 | 0.44 |
linoleoyl chloride | 7459-33-8 | MS, RI | 2135 | 2139 | - | 0.16 |
n-dodecenylsuccinic anhydride | 1978-11-1 | MS, RI | 2159 | 2159 | - | 0.29 |
Sum [%] | 14.83 | 72.69 | ||||
Total peak area [%] | 90.59 | 90.38 |
Bacterium | Sample/Growth/MIC (μg∙mL−1) | |||||
---|---|---|---|---|---|---|
Houttuynia cordata | Persicaria odorata | Ampicillin | ||||
Agar | Broth | Agar | Broth | Agar | Broth | |
Gram negative | ||||||
Escherichia coli | 1024 | 512 | 512 | 1024 | >4 | 0.50 |
Pseudomonas aeruginosa | >1024 | >1024 | >1024 | 1024 | >4 | 1.00 |
Klebsiella pneumoniae | >1024 | 1024 | >1024 | 1024 | >4 | >4.00 |
Serratia marcescens | >1024 | 1024 | >1024 | >1024 | >4 | 4.00 |
Gram positive | ||||||
Staphylococcus aureus | >1024 | 1024 | >1024 | >1024 | >4 | 0.50 |
Enterococcus faecalis | 1024 | 128 | >1024 | 512 | >4 | 0.25 |
Streptococcus pyogenes | >1024 | 512 | 1024 | 512 | >4 | 1.00 |
Bacillus subtilis | >1024 | >1024 | >1024 | 512 | >4 | 2.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Řebíčková, K.; Bajer, T.; Šilha, D.; Houdková, M.; Ventura, K.; Bajerová, P. Chemical Composition and Determination of the Antibacterial Activity of Essential Oils in Liquid and Vapor Phases Extracted from Two Different Southeast Asian Herbs—Houttuynia cordata (Saururaceae) and Persicaria odorata (Polygonaceae). Molecules 2020, 25, 2432. https://doi.org/10.3390/molecules25102432
Řebíčková K, Bajer T, Šilha D, Houdková M, Ventura K, Bajerová P. Chemical Composition and Determination of the Antibacterial Activity of Essential Oils in Liquid and Vapor Phases Extracted from Two Different Southeast Asian Herbs—Houttuynia cordata (Saururaceae) and Persicaria odorata (Polygonaceae). Molecules. 2020; 25(10):2432. https://doi.org/10.3390/molecules25102432
Chicago/Turabian StyleŘebíčková, Kristýna, Tomáš Bajer, David Šilha, Markéta Houdková, Karel Ventura, and Petra Bajerová. 2020. "Chemical Composition and Determination of the Antibacterial Activity of Essential Oils in Liquid and Vapor Phases Extracted from Two Different Southeast Asian Herbs—Houttuynia cordata (Saururaceae) and Persicaria odorata (Polygonaceae)" Molecules 25, no. 10: 2432. https://doi.org/10.3390/molecules25102432
APA StyleŘebíčková, K., Bajer, T., Šilha, D., Houdková, M., Ventura, K., & Bajerová, P. (2020). Chemical Composition and Determination of the Antibacterial Activity of Essential Oils in Liquid and Vapor Phases Extracted from Two Different Southeast Asian Herbs—Houttuynia cordata (Saururaceae) and Persicaria odorata (Polygonaceae). Molecules, 25(10), 2432. https://doi.org/10.3390/molecules25102432