The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Assessment of the Concentrations of Total Extractable PAHs (TE-PAHs), Potentially Available PAHs (PB-PAHs), and Residual PAHs (RE-PAHs) and Their Mutual Relationship
2.2. Assessment of Soil Organic Matter (SOM) and Its Fractional Composition (FA, HA, HN)
2.3. Influence of SOM on Concentrations of Total Extractable PAH (TE-PAHs), Potentially Available PAHs (PB-PAHs), and Residual PAHs (RE-PAHs) in Soil
3. Materials and Methods
3.1. Site Description and Sample Collection
3.2. Determination of Soil Basic Physicochemical Properties
3.3. Determination of PAHs
3.4. Determination of SOM and Its Fractions
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maliszewska-Kordybach, B.; Smreczak, B.; Klimkowicz-Pawlas, A.; Terelak, H. Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 2008, 73, 1284–1291. [Google Scholar] [CrossRef]
- Maliszewska-Kordybach, B.; Smreczak, B.; Klimkowicz-Pawlas, A. Concentrations, sources, and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Sci. Total Environ. 2009, 407, 3746–3753. [Google Scholar] [CrossRef]
- Cachada, A.; Pereira, M.; Da Silva, E.; Duarte, A. Sources of potentially toxic elements and organic pollutants in an urban area subjected to an industrial impact. Environ. Monit. Assess. 2012, 184, 15–32. [Google Scholar] [CrossRef]
- Manzetti, S. Polycyclic Aromatic Hydrocarbons in the Environment: Environmental Fate and Transformation. Polycycl. Aromat. Comp. 2013, 33, 311–330. [Google Scholar] [CrossRef]
- Klimkowicz-Pawlas, A.; Smreczak, B.; Ukalska-Jaruga, A. The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure. Environ. Sci. Pollut. Res. 2017, 24, 10955–10965. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, O.; Arsh Basheer, A.; Khattab, R.; Ali, I. Health and environment al effects of persistent organic pollutants. J. Mol. 2018, 263, 442–453. [Google Scholar]
- Cachada, A.; Coelho, C.; Gavina, A.; Dias, A.C.; Patinha, C.; Reis, A.P.; Ferreira da Silva, E.; Duarte, A.C.; Pereira, P. Availability of polycyclic aromatic hydrocarbons to earthworms in urban soils and its implications for risk assessment. Chemosphere 2018, 191, 196–203. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Lewińska, K.; Mammadov, E.; Karczewska, A.; Smreczak, B.; Medyńska-Juraszek, A. Residues of Persistent Organic Pollutants (POPs) in Agricultural Soils Adjacent to Historical Sources of Their Storage and Distribution—The Case Study of Azerbaijan. Molecules 2020, 25, 1815. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Guo, X.; Yang, Y.; Tao, S.; Xing, B. Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample. Environ. Sci. Technol. 2011, 45, 2124–2130. [Google Scholar] [CrossRef]
- Smreczak, B. Bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soils. Habilitation dissertation. In IUNG-PIB Monographs and Scientific Dissertations 56; IUNG-PIB: Puławy, Poland, 2018; ISBN 978-83-7562-284-293. [Google Scholar]
- Kuśmierz, M.; Oleszczuk, P.; Kraska, P.; Pałys, E.; Andruszczak, S. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 2016, 146, 272–279. [Google Scholar] [CrossRef]
- Kołtowski, M.; Hiber, I.; Bucheli, T.; Oleszczuk, P. Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils. Environ. Sci. Pollut. Res. 2016, 23, 11058–11068. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Yin, X.; Gai, H.; Ma, H.; Qi, Y.; Li, K.; Hua, X.; Sun, M.; Song, H. Effect of hydroxypropyl-β-cyclodextrin on the cometabolism of phenol and phenanthrene by a novel Chryseobacterium sp. Bioresour. Technol. 2019, 273, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Reichenberg, F.; Mayer, P. Two complementary sides of bioavailability: Accessibility and chemical activity of organic contaminants in sediments and soils. Environ. Toxicol. Chem. 2006, 25, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Semple, K.; Morriss, A.W.; Paton, G. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur. J. Soil Sci. 2003, 54, 809–818. [Google Scholar] [CrossRef]
- Riding, M.J.; Doick, K.J.; Martin, F.L.; Jones, K.C.; Semple, K.T. Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application. J. Hazard. Mater. 2013, 261, 687–700. [Google Scholar] [CrossRef]
- Ehlers, G.; Loibner, A. Linking organic pollutant (bio)availability with geosorbent properties and biomimetic methodology: A review of geosorbent characterization and (bio)availability prediction. Environ. Pollut. 2006, 141, 494–512. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, N.; Xue, M.; Tao, S. Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils. Environ. Pollut. 2010, 158, 2170–2174. [Google Scholar] [CrossRef]
- Pignatello, J. Dynamic interactions of natural organic matter and organic compounds. J. Soil Sediments 2012, 12, 1241–1256. [Google Scholar] [CrossRef]
- Luo, L.; Lin, S.; Huang, H.; Zhang, S. Relationships between aging of PAHs and soil properties. Environ. Pollut. 2012, 170, 177–182. [Google Scholar] [CrossRef]
- Dutta, T.; Kwon, E.; Bhattacharya, S.; Jeon, E.; Deep, A.; Uchimiya, M.; Kim, K. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review. GCB Bioenergy 2017, 9, 990–1004. [Google Scholar] [CrossRef]
- Chen, W.; Wang, H.; Gao, Q.; Chen, Y.; Li, S.; Yang, Y.; Werner, D.; Tao, S.; Wang, X. Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention. Environ. Pollut. 2017, 230, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Bejger, R.; Mielnik, L.; Włodarczyk, M.; Nicia, P. Studying of the interaction between peat humic acids and metazachlor using spectroscopy methods. J. Soils Sediments 2018, 18, 2675–2681. [Google Scholar] [CrossRef] [Green Version]
- Ukalska-Jaruga, A.; Smreczak, B.; Klimowicz-Pawlas, A. Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. J. Soils Sediments 2019, 19, 1890–1900. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, F.J. Humus Chemistry, Genesis, Compositions, Reactions; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Hayes, M.; Swift, R. Genesis, Isolation, Composition and Structures of Soil Humic Substances. In Soil Colloids and Their Associations in Aggregates; De Boodt, M.F., Hayes, M.R., Herbillon, A., Eds.; Springer Science and Business Media: New York, NY, USA, 1990; pp. 245–305. [Google Scholar]
- Swift, R. Organic matter characterization. In Methods of Soil Analysis Part 3—Chemical Methods. Soil Science Society of America; Sparks, D.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 1011–1069. [Google Scholar]
- Olk, D.C.; Bloom, P.R.; Perdue, E.M.; McKnight, D.M.; Chen, Y.; Farenhorst, A.; Senesi, N.; Chin, Y.-P.; Schmitt-Kopplin, P.; Hertkorn, N.; et al. Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. J. Environ. Qual. 2019, 48, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Schaumann, G. Soil organic matter beyond molecular structure part I: Macromolecular and supramolecular characteristics. J. Plant Nutr. Soil Sci. 2006, 169, 145–156. [Google Scholar] [CrossRef]
- Schaumann, G. Soil organic matter beyond molecular structure part II: Amorphous nature and physical aging. J. Plant Nutr. Soil Sci. 2006, 169, 157–167. [Google Scholar] [CrossRef]
- Viglianti, C.; Hanna, K.; De Brauer, C.; Germain, P. Use of cyclodextrins as an environmentally friendly extracting agent in organic aged-contaminated soil remediation. J. Incl. Phenom. Macrocycl. 2006, 56, 275–280. [Google Scholar] [CrossRef]
- Barnier, C.; Ouvrard, S.; Robin, C.; Morel, J. Desorption kinetics of PAHs from aged industrial soils for availability assessment. Sci. Total Environ. 2014, 470–471, 639–645. [Google Scholar] [CrossRef]
- Holoubek, I.; Dušek, L.; Sáňka, M.; Hofman, J.; Čupr, P.; Jarkovskŷ, J.; Zbíral, J.; Klánova, J. Soil burdens of persistent organic pollutants—Their levels, fate and risk. Part, I. Variation of concentration ranges according to different soil uses and locations. Environ. Pollut. 2009, 157, 3207–3217. [Google Scholar] [CrossRef]
- Nam, J.; Gustafsson, O.; Kurt-Karakus, P.; Breivik, K.; Steinnes, E.; Jones, K. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environ. Pollut. 2008, 156, 809–817. [Google Scholar] [CrossRef]
- Wang, C.; Wu, S.; Zhou, S.; Wang, H.; Li, B.; Chen, H.; Yu, Y.; Shi, Y. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Sci. Total Environ. 2015, 527, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Rozporządzenie, M.S. JoL 2016 Item 1395. Regulation of Minister of Environmental Protection from 1th September, 2016 on Assessment of Soil Surface Pollution. Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001395 (accessed on 28 January 2020).
- Cui, X.; Mayer, P.; Gan, J. Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations. Environ. Pollut. 2013, 172, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, B.J.; Jones, K.C.; Semple, K.T. Bioavailability of persistent organic pollutants in soils and sediments—A perspective on mechanisms, consequences and assessment. Environ. Pollut. 2000, 108, 103–112. [Google Scholar] [CrossRef]
- Sun, M.; Luo, Y.; Teng, Y.; Christie, P.; Jia, Z.; Li, Z. Tenax TA extraction to understand the rate-limiting factors in methyl-β-cyclodextrin-enhanced bioremediation of PAH-contaminated soil. Biodegradation 2013, 24, 365–375. [Google Scholar] [CrossRef]
- Cachada, A.; Pereira, R.; Ferreira da Silva, E.; Duarte, A.C. The prediction of PAHs bioavailability in soils using chemical methods: State of the art and future challenges. Sci. Total Environ. 2014, 472, 463–480. [Google Scholar] [CrossRef]
- Sánchez-Trujillo, M.A.; Lacorte, S.; Villaverde, J.; Barata, C.; Morillo, E. Decontamination of polycyclic aromatic hydrocarbons and nonylphenol from sewage sludge using hydroxypropyl-β-cyclodextrin and evaluation of the toxicity of leachates. Environ. Sci. Pollut. Res. 2014, 21, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Calvo, J.-J.; Harmsen, J.; Parsons, J.R.; Semple, K.T.; Aitken, M.D.; Ajao, C.; Eadsforth, C.; Galay-Burgos, M.; Naidu, R.; Oliver, R.; et al. From bioavailability science to regulation of organic chemicals. Environ. Sci. Technol. 2015, 49, 10255–10264. [Google Scholar] [CrossRef] [Green Version]
- Blanford, W.; Gao, H.; Dutta, M.; Ledesma, E.B. Solubility enhancement and QSPR correlations for polycyclic aromatic hydrocarbons complexation with α, β, and γ cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2014, 78, 415–427. [Google Scholar] [CrossRef]
- Siebielec, G.; Smreczak, B.; Klimkowicz-Pawlas, A.; Kowalik, M.; Kaczyński, R.; Koza, P.; Ukalska-Jaruga, A.; Łysiak, M.; Wójtowicz, U.; Poręba, L.; et al. Report for the III Stage of the Monitoring of the Chemical Properties of Arable Soils in Poland in Years 2015–2017; Chief Inspectorate of Environmental Protection; IUNG-PIB: Puławy, Poland, 2017. Available online: http://www.gios.gov.pl/images/dokumenty/pms/monitoring_jakosci_gleb/Raport_MChG_etap3.pdf (accessed on 28 January 2020).
- Tan, K. Humic Matter in Soil and Environment. Principles and Controversies, 2nd ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2014; pp. 79–104. [Google Scholar]
- Cornelissen, G.; Gustafsson, O.; Bucheli, T.; Jonker, M.; Koelmans, A.; van Noort, P. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 2005, 39, 6881–6895. [Google Scholar] [CrossRef]
- ISO 16751:2018 Soil Quality—Environmental Availability of Non-Polar Organic Compounds—Determination of the Potentially Bioavailable Fraction and the Non-Bioavailable Fraction Using a Strong Adsorbent or Complexing Agent; ISO: Geneva, Switzerland, 2018; Available online: https://library.wur.nl/WebQuery/wurpubs/544238 (accessed on 25 May 2020).
Sample Availability: Samples are available from the authors. |
Min | Max | Med | Aver | LQ | UQ | CoV (%) | |
---|---|---|---|---|---|---|---|
TE-FLA | 84.6 | 1220.1 | 445.1 | 486.7 | 365.7 | 565.5 | 55.8 |
TE-PYR | 50.3 | 948.3 | 326.1 | 367.9 | 271.2 | 379.7 | 63.1 |
TE-BaA | 15.4 | 725.8 | 115.7 | 152.3 | 98.2 | 152.9 | 99.3 |
TE-CHR | 43.2 | 837.0 | 154.2 | 213.2 | 145.6 | 205.7 | 83.6 |
∑4 TE-PAHs | 193.5 | 3169.5 | 1065.1 | 1220.2 | 887.6 | 1271.2 | 63.1 |
PB-FLA | 2.0 | 59.8 | 9.0 | 14.2 | 6.9 | 13.6 | 104.5 |
PB-PYR | 0.8 | 59.3 | 15.8 | 18.1 | 2.7 | 26.5 | 93.5 |
PB-BaA | 0.0 | 52.0 | 0.0 | 7.8 | 0.0 | 2.5 | 212.7 |
PB-CHR | 0.0 | 84.1 | 3.3 | 16.2 | 0.7 | 23.2 | 153.5 |
∑4 PB-PAHs | 4.3 | 226.4 | 37.8 | 56.2 | 9.9 | 79.4 | 110.8 |
RE-FLA | 77.3 | 1209.4 | 440.2 | 472.5 | 340.1 | 526.9 | 57.3 |
RE-PYR | 32.4 | 945.4 | 321.1 | 349.8 | 223.2 | 376.0 | 67.7 |
RE-BaA | 13.4 | 725.8 | 110.3 | 144.5 | 82.4 | 152.9 | 104.1 |
RE-CHR | 23.2 | 837.0 | 151.7 | 197.0 | 119.1 | 186.2 | 91.1 |
∑4 RE-PAHs | 148.6 | 3164.7 | 1042.5 | 1163.9 | 769.2 | 1178.8 | 66.3 |
Min | Max | Med | Aver | LQ | UQ | CoV (%) | |
---|---|---|---|---|---|---|---|
FA | 0.4 | 7.5 | 1.7 | 2.5 | 1.5 | 3.2 | 68.3 |
HA | 0.6 | 13.0 | 6.9 | 7.7 | 5.2 | 11.5 | 43.2 |
HN | 0.9 | 122.9 | 4.3 | 16.4 | 2.9 | 10.3 | 192.4 |
HA/FA | 0.3 | 18.2 | 3.7 | 4.1 | 3.3 | 4.0 | 86.1 |
(FA + HA)/HN | 0.1 | 8.1 | 1.9 | 2.6 | 1.1 | 3.3 | 89.5 |
FA | HA | HN | HA/FA | (FA+HA)/HN | TOC | |
---|---|---|---|---|---|---|
PB-FLA | 0.50 * | 0.56 * | −0.13 | −0.23 | −0.02 | −0.05 |
PB-PYR | 0.14 | 0.55 * | −0.14 | −0.23 | −0.30 | −0.12 |
PB-BaA | 0.41 | 0.55 * | 0.19 | −0.17 | −0.21 | 0.25 |
PB-CHR | 0.73 * | 0.32 | 0.10 | −0.28 | −0.31 | 0.17 |
∑4 PB-PAHs | 0.56 * | 0.52 * | 0.02 | −0.28 | −0.26 | 0.09 |
TE-FLA | 0.57 * | 0.59 * | 0.41 | 0.06 | 0.00 | 0.47 * |
TE-PYR | 0.20 | 0.33 | 0.68 * | 0.50 * | −0.11 | 0.70 * |
TE-BaA | −0.11 | 0.10 | 0.81 * | 0.82 * | −0.26 | 0.78 * |
TE-CHR | 0.04 | 0.21 | 0.83 * | 0.74 * | −0.24 | 0.82 * |
∑4 TE-PAHs | 0.21 | 0.34 | 0.70 * | 0.50 * | −0.14 | 0.72 * |
RE-FLA | 0.54 * | 0.56 * | 0.69 * | 0.07 | 0.00 | 0.48 * |
RE-PYR | 0.18 | 0.32 | 0.68 * | 0.51 * | −0.09 | 0.69 * |
RE-BaA | −0.16 | 0.05 | 0.79 * | 0.84 * | −0.23 | 0.76 * |
RE-CHR | −0.06 | 0.17 | 0.81 * | 0.77 * | −0.19 | 0.79 * |
∑ RE-PAHs | 0.17 | 0.31 | 0.75 * | 0.52 * | −0.12 | 0.71 * |
Min | Max | Med | Aver | LQ | UQ | CoV (%) | |
---|---|---|---|---|---|---|---|
Clay (%) | 0 | 6 | 1 | 1 | 0 | 2 | 125 |
Silt (%) | 10 | 38 | 26 | 24 | 20 | 29 | 34 |
Sand (%) | 57 | 90 | 73 | 75 | 69 | 80 | 12 |
pH in KCl | 3.8 | 6.3 | 5.0 | 4.9 | 4.3 | 5.4 | 14.9 |
TOC (g kg−1) | 8.0 | 130.0 | 13.8 | 27.3 | 11.5 | 22.4 | 120.6 |
TC (g kg−1) | 10.0 | 128.2 | 15.7 | 29.9 | 13.1 | 24.4 | 112.9 |
TN (g kg−1) | 0.8 | 6.8 | 1.2 | 1.9 | 1.1 | 1.9 | 80.8 |
TC:TN | 11.4 | 35.9 | 12.7 | 14.1 | 12.0 | 13.6 | 37.5 |
CEC (cmol ( + )∙kg−1) | 0.5 | 11.4 | 4.1 | 5.2 | 3.3 | 6.3 | 64.1 |
Compound | Abbreviation | Molecular Weight (g mol−1) | Solubility in Water (mg L−1) | Log Ko/w | Area (Å2) | Volume (Å3) |
---|---|---|---|---|---|---|
Fluoranthene | FLA | 202.3 | 0.260 | 5.22 | 222.8 | 195.1 |
Pyrene | PYR | 202.3 | 0.132 | 5.18 | 217.8 | 193.6 |
Benz(a)anthracene | BaA | 228.3 | 0.011 | 5.91 | 250.3 | 222.1 |
Chrysene | CHR | 228.3 | 0.002 | 5.91 | 246.9 | 221.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ukalska-Jaruga, A.; Smreczak, B. The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils. Molecules 2020, 25, 2470. https://doi.org/10.3390/molecules25112470
Ukalska-Jaruga A, Smreczak B. The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils. Molecules. 2020; 25(11):2470. https://doi.org/10.3390/molecules25112470
Chicago/Turabian StyleUkalska-Jaruga, Aleksandra, and Bożena Smreczak. 2020. "The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils" Molecules 25, no. 11: 2470. https://doi.org/10.3390/molecules25112470
APA StyleUkalska-Jaruga, A., & Smreczak, B. (2020). The Impact of Organic Matter on Polycyclic Aromatic Hydrocarbon (PAH) Availability and Persistence in Soils. Molecules, 25(11), 2470. https://doi.org/10.3390/molecules25112470