Adsorption of Sulfamethazine Drug onto the Modified Derivatives of Carbon Nanotubes at Different pH
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption of SMT onto the Surfaces of CNT Derivatives
2.2. Effect of pH on the Adsorption of Sulfamethazine
2.3. Effect of MWCNTs Functionalization
2.4. Sulfamethazine Adsorption onto SWCNTs and MWCNTs in the Presence of β-Cyclodextrin
3. Materials and Methods
3.1. Chemicals
3.2. Samples and Methods
3.3. HPLC Analyses
3.4. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daughton, C.G.; Ternes, T.A. 1999 Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107, 907. [Google Scholar] [CrossRef]
- Grigorakis, K.; Rigos, G. Aquaculture effects on environmental and public welfare—The case of Mediterranean mariculture. Chemosphere 2011, 85, 899. [Google Scholar] [CrossRef]
- Jacobsen, A.M.; Halling-Sørensen, B.; Ingerslev, F.; Hansen, S.H. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurised liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. 2004, 1038, 157. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.X.; Zhang, Y.; Pan, H.F.; Tie, X.W.; Ren, Y.P. Simultaneous determination of 24 sulfonamide residues in meat by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. 2008, 1200, 144. [Google Scholar] [CrossRef] [PubMed]
- Hruska, K.; Franek, M. Sulfonamides in the environment: A review and a case report. Vet. Med. 2012, 57, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Deng, W.; Gao, Z.; Li, M.; Liu, W.; Wang, X.; Zhu, F. Effect of sulfonamide pollution on the growth of manure management candidate Hermetia illucens. PLoS ONE 2019, 14, e0216086. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Yanga, L.; Chen, X.; Cai, Y.; Zhang, X.; Qian, M.; Chen, X.; Zhao, H.; Sheng, M.; Cao, G.; et al. Removal of veterinary antibiotics from swine wastewater using anaerobic and aerobic biodegradation. Sci. Total. Environ. 2020, 709, 136094. [Google Scholar] [CrossRef]
- Habibizadeh, M.; Rostamizadeh, K.; Dalali, N.; Ramazani, A. Preparation and characterization of PEGylated multiwall carbon nanotubes as covalently conjugated and non-covalent drug carrier: A comparative study. Mater. Sci. Eng. C 2017, 74, 1–9. [Google Scholar] [CrossRef]
- Skwarecki, A.S.; Milewski, S.; Schielmann, M.; Milewska, M.J. Antimicrobial molecular nanocarrier-drug conjugates. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2215. [Google Scholar] [CrossRef]
- Ncibi, M.C.; Sillanpää, M. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J. Hazard. Mater. 2015, 298, 102. [Google Scholar] [CrossRef]
- Xianga, Y.; Xua, Z.; Weia, Y.; Zhoua, Y.; Yangd, X.; Yanga, Y. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. J. Environ. Manag. 2019, 237, 128. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Tao, S.; Xing, B. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon 2010, 48, 3721. [Google Scholar] [CrossRef]
- Apul, O.G.; Wang, Q.; Zhou, Y.; Karanfil, T. Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water. Res. 2013, 47, 1648. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Xing, B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 2008, 42, 9005. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Saleh, T.A. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—An overview. Environ. Sci. Pollut. Res. 2013, 20, 2828. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.G.; Zhao, X.H.; Yang, H.; Chen, X.H.; Yang, Q.; Yu, L.Y.; Jiang, J.H.; Chen, X.Q. Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ. 2014, 482, 241–251. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, G.; Zhanga, J.; Lic, H. Adsorption of sulfamethazine by multi-walled carbon nanotubes: Effects of aqueous solution chemistry. RSC Adv. 2015, 5, 25541. [Google Scholar] [CrossRef]
- Niu, H.; Cai, Y.; Shi, Y.; Wei, F.; Liu, J.; Mou, S.; Jiang, G. Evaluation of carbon nanotubes as a solid-phase extraction adsorbent for the extraction of cephalosporins antibiotics, sulfonamides and phenolic compounds from aqueous solution. Anal. Chim. Acta 2007, 594, 81. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, B.; Chen, H.; Wang, Y.; Li, H. Interactions between carbon nanotubes and sulfonamide antibiotics in aqueous solutions under various physicochemical conditions. J. Environ. Sci. Health A 2013, 48, 1136. [Google Scholar] [CrossRef]
- Pan, B.; Zhang, D.; Li, H.; Wu, M.; Wang, Z.; Xing, B. Increased adsorption of sulfamethoxazole on suspended carbon nanotubes by dissolved humic acid. Environ. Sci. Technol. 2013, 47, 7722. [Google Scholar] [CrossRef]
- Wang, F.; Ma, S.; Si, Y.; Dong, L.; Wang, X.; Yao, J.; Chen, H.; Yi, Z.; Yao, W.; Xing, B. Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water. Carbon 2017, 114, 671. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Pan, B.; Zhang, H.; Ning, P.; Xing, B. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environ. Sci. Technol. 2010, 44, 3806. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.C.; Ferrer, M.L.; Mateo, R.; del Monte, M. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir 2009, 25, 5509. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.T.; Bumgarner, J.E.; Varns, J.L.; Daughtridge, J.V.; Thurman, E.M.; Hostetler, K.A. Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry. Sci. Total Environ. 2000, 248, 181. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202. [Google Scholar] [CrossRef] [Green Version]
- Zoppi, A.; Delviro, A.; Aissa, V.; Longhi, M.R. Binding of sulfamethazine to b-cyclodextrin and methyl-b-cyclodextrin. AAPS Pharm. Sci. Tech. 2013, 14, 727. [Google Scholar] [CrossRef]
- Bani-Yaseen., A.D.; Mo’ala, A. Spectral, thermal, and molecular modeling studies on the encapsulation of selected sulfonamide drugs in b-cyclodextrin nano-cavity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 131, 424. [Google Scholar] [CrossRef]
- Mohamed Ameen, H.; Kunsági-Máté, S.; Szente, L.; Lemli, B. Encapsulation of sulfamethazine by native and randomly methylated β-cyclodextrins: The role of the dipole properties of guests. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 225, 117475. [Google Scholar] [CrossRef]
- Mohamed Ameen, H.; Kunsági-Máté, S.; Szente, L.; Bognár, B.; Lemli, B. Thermodynamic characterization of the interaction between an antimicrobial drug sulfamethazine and two selected cyclodextrins. Molecules 2019, 24, 4565. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Feng, S.; Zhang, X.; Li, Y.; Zhang, X. Adsorption of norfloxacin onto titanium oxide: Effect of drug carrier and dissolved humic acid. Sci. Total Environ. 2012, 438, 66. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Wang, D.; Wei, F. Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 2004, 42, 2375. [Google Scholar] [CrossRef]
- Wu, W.; Yang, K.; Chen, W.; Wang, W.; Zhang, J.; Lin, D.; Xing, B. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes. Water Res. 2016, 88, 492. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xingt, B. Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environ. Sci. Technol. 2008, 42, 7254. [Google Scholar] [CrossRef] [PubMed]
- Cinke, M.; Li, J.; Chen, B.; Cassell, A.; Delzeit, L.; Han, J.; Meyyappan, M. Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett. 2002, 365, 69. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Li, F.; Cheng, H.M. Pore structures of multi-walled carbon nanotubes activated by air, CO2 and KOH. J. Porous Mater. 2006, 13, 141. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Dong, W.; Zhang, L.; Kong, Q.; Wang, W. Efficient adsorption of sulfamethazine onto modifed activated carbon: A plausible adsorption mechanism. Sci. Rep. 2017, 7, 12437. [Google Scholar] [CrossRef] [PubMed]
- Teixidó, M.; Pignatello, J.G.; Beltran, J.L.; Granados, M.; Peccia, J. Speciation of the ionizable antibiotic sulfamethazine on black carbon (Biochar). Environ. Sci. Technol. 2011, 45, 10020. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, X.; Pan, B.; Xing, B. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes. Environ. Sci. Technol. 2009, 44, 978. [Google Scholar] [CrossRef]
- Lertpaitoonpan, W.; Ong, S.K.; Moorman, T.B. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 2009, 76, 558. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Mah, J.; Belhaj, D. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresour. Technol. 2017, 238, 306–312. [Google Scholar] [CrossRef]
- Yang, G.; Li, X.; Chen, G.; Zhang, J.; Xing, B. Effect of humic acid on the sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution: Mechanistic study. RSC Adv. 2016, 6, 15184. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 2016, 310, 235. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, W.; Xiong, L.; Xu, N.; Ni, J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chem. Eng. J. 2013, 215, 366–374. [Google Scholar] [CrossRef]
- Yang, K.; Xing, B. Adsorption of organic Compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem. Rev. 2010, 110, 5989. [Google Scholar] [CrossRef]
- Ma, X.; Uddin, S. Desorption of 1,3,5-trichlorobenzene from multi-walled carbon nanotubes: Impact of solution chemistry and surface chemistry. Nanomaterials 2013, 3, 289. [Google Scholar] [CrossRef]
- Keiluweit, M.; Kleber, M. Molecular-level interactions in soils and sediments: The role of aromatic π-systems. Environ. Sci. Technol. 2009, 43, 3421. [Google Scholar] [CrossRef]
- Poór, M.; Faisal, Z.; Zand, A.; Bencsik, T.; Lemli, B.; Kunsági-Máté, S.; Szente, L. Removal of zearalenone and zearalenols from aqueous solutions using insoluble beta-cyclodextrin bead polymer. Toxins 2018, 10, 216. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385. [Google Scholar]
Sample Availability: Samples of the compounds BCD are available from CycloLab Ltd. (L.S.). |
SMT-CNTs | pH | Q0 | KL | R2 | KF | n−1 | R2 |
---|---|---|---|---|---|---|---|
SMT-SWCNTs | 2 | 426.3 ± 80.1 | 0.1 ± 0.0 | 0.985 | 31.1 ± 2.0 | 0.7 ± 0.0 | 0.995 |
5 | 302.5 ± 33.8 | 0.2 ± 0.1 | 0.977 | 54.5 ± 7.0 | 0.6 ± 0.1 | 0.970 | |
7 | 285.1 ± 39.0 | 0.2 ± 0.1 | 0.965 | 49.5 ± 8.5 | 0.6 ± 0.1 | 0.945 | |
SMT-MWCNTs | 2 | 85.3 ± 8.3 | 0.4 ± 0.2 | 0.908 | 26.3 ± 5.2 | 0.4 ± 0.1 | 0.873 |
5 | 81.5 ± 3.3 | 0.6 ± 0.1 | 0.947 | 36.6 ± 6.6 | 0.3 ± 0.1 | 0.771 | |
7 | 58.5 ± 3.5 | 0.7 ± 0.1 | 0.878 | 23.0 ± 4.1 | 0.3 ± 0.1 | 0.788 | |
SMT-H-MWCNTs | 2 | 45.1 ± 3.6 | 0.5 ± 0.2 | 0.894 | 16.8 ± 1.3 | 0.3 ± 0.0 | 0.966 |
5 | 91.8 ± 9.2 | 0.2 ± 0.0 | 0.965 | 13.3 ± 2.6 | 0.6 ± 0.1 | 0.954 | |
7 | 15.0 ± 1.3 | 0.5 ± 0.2 | 0.858 | 5.8 ± 1.2 | 0.3 ± 0.1 | 0.752 | |
SMT-C-MWCNTs | 2 | 105.0 ± 19.7 | 0.2 ± 0.1 | 0.890 | 18.3 ± 3.7 | 0.5 ± 0.1 | 0.936 |
5 | 111.6 ± 7.6 | 0.1 ± 0.0 | 0.986 | 17.4 ± 2.4 | 0.5 ± 0.1 | 0.970 | |
7 | 26.8 ± 1.0 | 1.1 ± 0.2 | 0.955 | 13.7 ± 1.8 | 0.2 ± 0.1 | 0.784 |
SA-CNTs | pH | Q0 | KL | R2 | Ref. |
---|---|---|---|---|---|
SMT-P-MWCNTs | 5.0 ± 0.1 | 38.1 ± 0.6 | 0.07 ± 0.0 | 0.995 | [17] |
SMT-H-MWCNTs | 5.0 ± 0.1 | 27.3 ± 0.4 | 0.04 ± 0.0 | 0.998 | [17] |
SMT-P-MWCNT | 7 | 61.6 ± 0.9 | 0.138 ± 0.009 | 0.997 | [41] |
SMT-C-MWCNT | 7 | 52.2 ± 0.7 | 0.154 ± 0.009 | 0.0997 | [41] |
SMT-H-MWCNT | 7 | 34.7 ± 0.7 | 0.122 ± 0.010 | 0.993 | [41] |
SMT-MWCNT | 7 | 38.7 | - | 0.903 | [42] |
SMX-* MWCNTs | 3 | 98.0 | 0.2 | 0.995 | [17] |
SMX-* MWCNTs | 5.6 | 82.2 | 0.3 | 0.989 | [17] |
SMX-* MWCNTs | 7 | 48.8 | 0.2 | 0.992 | [17] |
SMX-* MWCNT | 9 | 18.6 | 0.0 | 0.987 | [19] |
SPY-* MWCNT | 3 | 108.6 | 0.2 | 0.961 | [19] |
SPY-* MWCNT | 5.6 | 102.1 | 0.2 | 0.974 | [19] |
SPY-* MWCNT | 7 | 94.5 | 0.13 | 0.968 | [19] |
SPY-* MWCNT | 9 | 83.2 | 0.2 | 0.971 | [19] |
SA-CNTs | pH | KF | n−1 | R2 | Ref. |
SMT-P-MWCNT | 5.0 ± 0.1 | 6.73 ± 0.8 | 0.4 ± 0.0 | 0.947 | [17] |
SMT-H-MWCNT | 5.0 ± 0.1 | 3.0 ± 0.4 | 0.5 ± 0.03 | 0.963 | [17] |
SMT-P-MWCNT | 7 | 15.50 ± 2.29 | 0.311 ± 0.039 | 0.941 | [41] |
SMT-C-MWCNT | 7 | 14.18 ± 2.13 | 0.295 ± 0.040 | 0.933 | [41] |
SMT-H-MWCNT | 7 | 8.53 ± 1.11 | 0.311 ± 0.033 | 0.953 | [41] |
SMX-H-MWCNT | 1 | 6.0 ± 0.3 | 1.7 ± 0.02 | 0.982 | [17] |
SMX-H-MWCNT | 3.7 | 12.2 ± 0.5 | 1.9 ± 0.02 | 0.978 | [17] |
SMX-H-MWCNT | 7.5 | 0.7 ± 0.03 | 1.1 ± 0.02 | 0.980 | [22] |
SMX-C-MWCNT | 1 | 4.3 ± 0.2 | 1.7 ± 0.02 | 0.979 | [22] |
SMX-C-MWCNT | 3.7 | 6.4 ± 0.4 | 1.8 ± 0.02 | 0.963 | [22] |
SMX-C-MWCNT | 7.5 | 0.4 ± 0.02 | 0.9 ± 0.02 | 0.984 | [22] |
SMT-BCD-CNTs | pH | Q0 | KL | R2 | KF | n−1 | R2 |
---|---|---|---|---|---|---|---|
2 | 189.0 ± 45.9 | 0.1 ± 0.1 | 0.896 | 31.0 ± 5.4 | 0.56 ± 0.1 | 0.963 | |
SMT-BCD-SWCNTs | 5 | 235.6 ± 72.0 | 0.2 ± 0.1 | 0.853 | 51.4 ± 8.3 | 0.4 ± 0.1 | 0.953 |
7 | 180.2 ± 25.4 | 0.2 ± 0.1 | 0.941 | 30.9 ± 8.7 | 0.5 ± 0.1 | 0.888 | |
2 | 83.3 ± 9.9 | 0.4 ± 0.2 | 0.855 | 30.0 ± 1.4 | 0.3 ± 0.02 | 0.991 | |
SMT-BCD-MWCNTs | 5 | 77.6 ± 6.1 | 0.4 ± 0.1 | 0.982 | 26.2 ± 4.8 | 0.3 ± 0.1 | 0.872 |
7 | 43.3 ± 4.0 | 0.6 ± 0.3 | 0.903 | 18.3 ± 3.5 | 0.3 ± 0.1 | 0.804 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed Ameen, H.; Kunsági-Máté, S.; Noveczky, P.; Szente, L.; Lemli, B. Adsorption of Sulfamethazine Drug onto the Modified Derivatives of Carbon Nanotubes at Different pH. Molecules 2020, 25, 2489. https://doi.org/10.3390/molecules25112489
Mohamed Ameen H, Kunsági-Máté S, Noveczky P, Szente L, Lemli B. Adsorption of Sulfamethazine Drug onto the Modified Derivatives of Carbon Nanotubes at Different pH. Molecules. 2020; 25(11):2489. https://doi.org/10.3390/molecules25112489
Chicago/Turabian StyleMohamed Ameen, Hiba, Sándor Kunsági-Máté, Péter Noveczky, Lajos Szente, and Beáta Lemli. 2020. "Adsorption of Sulfamethazine Drug onto the Modified Derivatives of Carbon Nanotubes at Different pH" Molecules 25, no. 11: 2489. https://doi.org/10.3390/molecules25112489
APA StyleMohamed Ameen, H., Kunsági-Máté, S., Noveczky, P., Szente, L., & Lemli, B. (2020). Adsorption of Sulfamethazine Drug onto the Modified Derivatives of Carbon Nanotubes at Different pH. Molecules, 25(11), 2489. https://doi.org/10.3390/molecules25112489