Authentication of the Bilberry Extracts by an HPLC Fingerprint Method Combining Reference Standard Extracts
Abstract
:1. Introduction
2. Results and Discussions
2.1. Optimization of the Elution Program
2.2. Similarity Analysis of HPLC Fingerprints of Bilberry Extract Samples
2.3. Establishment of the Bilberry Extract HPLC Fingerprint
2.4. HPLC Chromatograms of the Other Extract Samples
2.5. Validation of the HPLC Quantification Method
2.6. Quantification of the Cy-3-glc in Bilberry Extract Samples
2.7. Comparison of the Cy-3-glc Content in the Other Extracts
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Preparation
3.2.1. Preparation of Cy-3-glc Standard Solutions
3.2.2. Preparation of Reference Extract Solutions
3.2.3. Preparation of Sample Solutions
3.3. Screen of the Chromatographic Elution Program
3.4. Establishment of the HPLC Fingerprint of Bilberry Extracts
3.5. Validation of the HPLC Quantification Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Antonella, S.; Domenico, M.; Trombetta, D. Health effects of Vaccinium myrtillus L.: Evaluation of efficacy and technological strategies for preservation of active ingredients. Mini Rev. Med. Chem. 2014, 14, 567–584. [Google Scholar]
- Viljanen, K.; Kylli, P.; Hubbermann, E.-M.; Schwarz, K.; Heinonen, M. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion. J. Agric. Food Chem. 2005, 53, 2022–2027. [Google Scholar] [CrossRef]
- Norberto, S.; Silva, S.; Meireles, M.; Faria, A.; Pintado, M.; Calhau, C.; Pintado, M.M. Blueberry anthocyanins in health promotion: A metabolic overview. J. Funct. Foods 2013, 5, 1518–1528. [Google Scholar] [CrossRef]
- Schantz, M.; Mohn, C.; Baum, M.; Richling, E. Antioxidative efficiency of an anthocyanin rich bilberry extract in the human colon tumor cell lines Caco-2 and HT-29. J. Berry Res. 2010, 1, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Colak, N.; Torun, H.; Gruz, J.; Strnad, M.; Hermosín-Gutiérrez, I.; Hayirlioglu-Ayaz, S.; Ayaz, F.A. Bog bilberry phenolics, antioxidant capacity and nutrient profile. Food Chem. 2016, 201, 339–349. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Tsuda, T. Anthocyanins as functional food factors-chemistry, nutrition and health promotion. Food Sci. Technol. Res. 2012, 18, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, L.; Lu, F.; Yang, X.; Deng, Q.; Ji, B.; Huang, F. Retinoprotective effects of bilberry anthocyanins via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in a visible light-induced retinal degeneration model in pigmented rabbits. Molecules 2015, 20, 22395–22410. [Google Scholar] [CrossRef] [Green Version]
- Upton, R. Bilberry fruit Vaccinium myrtillus L. In Standards of Analysis, Quality Control, and Therapeutics; American Herbal Pharmacopoeia and Therapeutic Compendium: Santa Cruz, CA, USA, 2001. [Google Scholar]
- Kowalczyk, E.; Krzesiński, P.; Kura, M.; Szmigiel, B.; Błaszczyk, J. Anthocyanins in medicine. Pol. J. Pharmacol. 2003, 55, 699–702. [Google Scholar]
- Chu, W.; Cheung, S.C.M.; Lau, R.A.W.; Benzie, I.F.F. Bilberry (Vaccinium myrtillus L.). In Herbal Medicine: Biomolecular and Clinical Aspects; CRC Press: Boca Raton, FL, USA, 2011; Volume 4, pp. 55–67. [Google Scholar]
- Cravotto, G.; Boffa, L.; Genzini, L.; Garella, D. Phytotherapeutics: An evaluation of the potential of 1000 plants. J. Clin. Pharm. Ther. 2010, 35, 11–48. [Google Scholar] [CrossRef]
- Ferreira, I.C.; Pires, T.C.S.P.; Caleja, C.; Santos-Buelga, C.; Barros, L. Vaccinium myrtillus L. fruits as a novel source of phenolic compounds with health benefits and industrial applications-a review. Curr. Pharm. Design 2020, 26, 1. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, A.; Ooyen, C.; Lynch, M.E. Herb supplement sales increase 5.5% in 2012: Herbal supplement sales rise for 9th consecutive year; Turmeric sales jump 40% in natural channel. HerbalGram 2013, 99, 60–65. [Google Scholar]
- Iwashina, T.; Yokoyama, K.; Yangzom, R.; Mizuno, T.; Devkota, H.P.; Murai, Y.; Dorji, K.; Wangmo, C.; Gyeltshen, C. Anthocyanins and flavonols from the blue flowers of six Meconopsis species in Bhutan. Biochem. Syst. Ecol. 2019, 86, 103925. [Google Scholar] [CrossRef]
- Benvenuti, S.; Brighenti, V.; Pellati, F. High-performance liquid chromatography for the analytical characterization of anthocyanins in Vaccinium myrtillus L. (bilberry) fruit and food products. Anal. Bioanal. Chem. 2018, 410, 3559–3571. [Google Scholar] [CrossRef]
- Wu, L.; Ni, Z.-H.; Xu, Y.-C.; Zhang, X.-Q.; Du, S.-L.; Cao, K.-X.; Chen, Z.-P.; Li, W.-D.; Guo, L.-B. Investigation on the characteristic components of Dahuang Zhechong Pill based on high-performance liquid chromatography (HPLC) fingerprint. Nat. Prod. Commun. 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Li, J.; He, X.; Li, M.; Zhao, W.; Liu, L.; Kong, X. Chemical fingerprint and quantitative analysis for quality control of polyphenols extracted from pomegranate peel by HPLC. Food Chem. 2015, 176, 7–11. [Google Scholar] [CrossRef]
- Ke, J.; Qu, Y.; Li, S.; Shen, G.; Chen, A.; Luo, Q.; Liu, X.; Wu, H.; Li, M.; Pu, B.; et al. Application of HPLC fingerprint based on acid amide components in Chinese prickly ash (Zanthoxylum). Ind. Crop. Prod. 2018, 119, 267–276. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Raimondo, E.; Cerutti, A.K.; Prgomet, Z.; Beccaro, G.L. Influence of applied drying methods on phytochemical composition in fresh and dried goji fruits by HPLC fingerprint. Eur. Food Res. Technol. 2016, 242, 1961–1974. [Google Scholar] [CrossRef]
- Guidance for Industry–Botanical Drug Products; U.S. Food and Drug Administration: Los Angeles, CA, USA, 2004.
- Georgakopoulos, C.D.; Plotas, P.; Anastasopoulos, C.; Makri, O.E.; Leotsinidis, M. A UPLC-MS method for the determination of ofloxacin concentrations in aqueous humor. Anal. Chem. Insights 2014, 9, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Kong, H.; Zhu, M.; Yan, W. A facile method to evaluate the quality of Platycodon grandiflorum A. De Candolle using reference standard extract. J. Funct. Foods 2016, 26, 48–56. [Google Scholar] [CrossRef]
- He, X.; Li, J.; Zhao, W.; Liu, R.; Zhang, L.; Kong, X. Chemical fingerprint analysis for quality control and identification of Ziyang green tea by HPLC. Food Chem. 2015, 171, 405–411. [Google Scholar] [CrossRef] [PubMed]
- International Commercial Standard for Bilberry Extract SW/T 2-2013; China Chamber of Commerce for Import and Export of Pharmaceutical and Health Products: Beijing, China, 2013.
- Müller, D.; Schantz, M.; Richling, E. High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding Juices. J. Food Sci. 2012, 77, C340–C345. [Google Scholar]
- Eyéghé-Bickong, H.A.; Alexandersson, E.O.; Gouws, L.M.; Young, P.R.; Vivier, M.A. Optimisation of an HPLC method for the simultaneous quantification of the major sugars and organic acids in grapevine berries. J. Chromatogr. B 2012, 885, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Zeraik, M.L.; Yariwake, J.H. Quantification of isoorientin and total flavonoids in Passiflora edulis fruit pulp by HPLC-UV/DAD. Microchem. J. 2010, 96, 86–91. [Google Scholar] [CrossRef]
- Shan, Y.; Jin, X.; Cheng, Y.; Yan, W. Simultaneous determination of chlorogenic acids in green coffee bean extracts with effective relative response factors. Int. J. Food Prop. 2017, 20, 2028–2040. [Google Scholar] [CrossRef]
- Wichitnithad, W.; Jongaroonngamsang, N.; Pummangura, S.; Rojsitthisak, P. A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem. Anal. 2009, 20, 314–319. [Google Scholar] [CrossRef]
- Guidelines for the Validation of Drug Quality Standards; Chinese Pharmacopeia Commision: Beijing, China, 2015.
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|
Delphinidin-3-O-galactoside (Del-3-gal) | 6.44 | 17.93 | 6.94 | 6.84 | 7.53 | 8.35 |
Delphinidin-3-O-glucoside (Del-3-glc) | 4.45 | 3.11 | 1.55 | 2.85 | 2.84 | 2.93 |
Cyanidin-3-O-galactoside (Cy-3-gal) | 2.11 | 2.38 | 2.66 | 2.64 | 2.65 | 2.63 |
Delphinidin-3-O-arabinoside (Del-3-ara) | 2.72 | 1.63 | 1.61 | 1.72 | 1.76 | 1.84 |
Cyanidin-3-O-glucoside (Cy-3-glc) | 2.43 | 1.57 | 1.59 | 1.74 | 1.77 | 1.83 |
Petunidin-3-O-galactoside (Pet-3-gal) | 2.55 | 1.61 | 1.79 | 1.97 | 2.11 | 2.20 |
Cyanidin-3-O-arabinoside (Cy-3-ara) | 1.11 | - | 2.20 | 1.98 | 1.94 | 1.88 |
Petunidin-3-O-glucoside (Pet-3-glc) | 2.03 | - | 0.68 | 1.07 | 1.33 | 1.54 |
Malvidin-3-O-glucoside (Mal-3-glc) | 2.13 | 1.78 | 1.40 | 2.55 | 2.75 | 2.86 |
Malvidin-3-O-arabinoside (Mal-3-ara) | 1.41 | 2.94 | 1.58 | 2.34 | 4.33 | 7.23 |
Component a | tR (min) b | RRT | Peak area (mAU) b | RPA | ||
---|---|---|---|---|---|---|
Average | RSD (%) | Average | RSD (%) | |||
1 | 14.68 | 0.75 | 0.58 | 2065.633 | 1.15 | 0.53 |
2 | 15.94 | 0.82 | 0.17 | 2514.939 | 1.34 | 5.69 |
3 | 17.14 | 0.89 | 0.30 | 1686.999 | 0.89 | 6.40 |
4 | 17.95 | 0.94 | 0.28 | 1616.961 | 1.03 | 4.66 |
5 (S) | 18.80 | 1.00 | 0 | 1864.444 | 1.00 | 4.36 |
6 | 19.80 | 1.07 | 0.10 | 813.383 | 0.43 | 7.25 |
7 | 20.84 | 1.13 | 0.22 | 1224.583 | 0.71 | 6.03 |
8 | 21.43 | 1.19 | 0.09 | 1528.597 | 0.87 | 3.96 |
9 | 27.09 | 1.63 | 0.93 | 1599.29 | 0.88 | 0.11 |
10 | 29.88 | 1.84 | 1.19 | 261.977 | 0.20 | 40.03 |
Item | Stability (n = 1) | Inter-Day Precision (n = 1) | Intra-Day Precision (n = 1) | Repeatability (n = 6) |
---|---|---|---|---|
RSD (%) | 0.34 | 0.30 | 0.90 | 0.98 |
No. | Original (μg) | Added (μg) | Found (μg) | Recovery yield (%) | RSD (%) |
---|---|---|---|---|---|
1 | 505.13 | 479.04 | 988.04 | 100.81 | 1.29 |
2 | 505.86 | 479.04 | 998.14 | 102.76 | |
3 | 506.42 | 479.04 | 981.56 | 99.19 | |
4 | 505.94 | 479.04 | 983.62 | 99.72 | |
5 | 505.41 | 479.04 | 985.15 | 100.15 | |
6 | 505.78 | 479.04 | 982.97 | 99.61 |
Sample No. | Cm (μg/mL) | Cx (μg/mL) | η (μg/mg) |
---|---|---|---|
A1 | 1504 | 97.792 | 65.021 |
A2 | 1513 | 115.54 | 76.365 |
A3 | 1512 | 98.380 | 65.066 |
A4 | 1509 | 93.638 | 62.053 |
A5 | 1504 | 98.175 | 65.276 |
No. | Extract kind | Batch No. | Manufacture |
---|---|---|---|
Bilberry dry extract CRS | Bilberry reference standard extract | − | J&K Scientific Ltd. |
A1 | Bilberry extract | 161004 | Longze Biotech. Co., Ltd. |
A2 | Bilberry extract | 20160709 | Luzhijian Biotech. Co., Ltd. |
A3 | Bilberry extract | − | Anhui, Shangshan Biotech. Co., Ltd. |
A4 | Bilberry extract | B1161101 | Xian, Haotian Biotech. Co., Ltd. |
A5 | Bilberry extract | 161222 | Zhejiang, Huisong Biotech. Co., Ltd. |
A6 | Bilberry extract | 160725 | Shanxi, Baicaocui Biotech. Co., Ltd. |
B1 | Blueberry extract | 161208 | Shanxi, Haolin Biotech. Co., Ltd. |
B2 | Blueberry extract | 20161126 | Longze Biotech. Co., Ltd. |
B3 | Blueberry extract | Bl161202 | Xian, Haotian Biotech. Co., Ltd. |
B4 | Blueberry extract | Rm161025 | Baoji, Runmu Biotech. Co., Ltd. |
B5 | Blueberry extract | Rm161025 | Baoji, Runmu Biotech. Co., Ltd. |
B6 | Blueberry extract | − | Shanxi, Baicaocui Biotech. Co., Ltd. |
B7 | Blueberry extract | − | Shanxi, Longfu Biotech. Co., Ltd. |
C1 | Mulberry extract | Rm161007 | Baoji, Runmu Biotech. Co., Ltd. |
C2 | Mulberry extract | Rm161007 | Baoji, Runmu Biotech. Co., Ltd. |
C3 | Mulberry extract | 150523 | Huzhou, Liuyin Biotech. Co., Ltd. |
C4 | Mulberry extract | 160819 | Shanxi, Baicaocui Biotech. Co., Ltd. |
D1 | Cranberry extract | Rm161025 | Baoji, Runmu Biotech. Co., Ltd. |
D2 | Cranberry extract | − | Shanxi, Longfu Biotech. Co., Ltd. |
E1 | Black rice extract | 160623 | Shanxi, Haolin Biotech. Co., Ltd. |
E2 | Black rice extract | HM20160407/s | Hubei, Zixin Biotech. Co., Ltd. |
E3 | Black rice extract | − | Anhui, Shangshan Biotech. Co., Ltd. |
E4 | Black rice extract | BR161001 | Xian, Haotian Biotech. Co., Ltd. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Hu, T.; Yan, W. Authentication of the Bilberry Extracts by an HPLC Fingerprint Method Combining Reference Standard Extracts. Molecules 2020, 25, 2514. https://doi.org/10.3390/molecules25112514
Liu B, Hu T, Yan W. Authentication of the Bilberry Extracts by an HPLC Fingerprint Method Combining Reference Standard Extracts. Molecules. 2020; 25(11):2514. https://doi.org/10.3390/molecules25112514
Chicago/Turabian StyleLiu, Bingbing, Tiantian Hu, and Weidong Yan. 2020. "Authentication of the Bilberry Extracts by an HPLC Fingerprint Method Combining Reference Standard Extracts" Molecules 25, no. 11: 2514. https://doi.org/10.3390/molecules25112514
APA StyleLiu, B., Hu, T., & Yan, W. (2020). Authentication of the Bilberry Extracts by an HPLC Fingerprint Method Combining Reference Standard Extracts. Molecules, 25(11), 2514. https://doi.org/10.3390/molecules25112514