SUPPORTING INFORMATION

Synthesis, molecular recognition study and liquid membrane-based applications of highly lipophilic enantiopure acridino-crown ethers

Ádám Golcs ^{1,*}, Bálint Árpád Ádám ¹, Viola Horváth ², Tünde Tóth ^{1,3}, Péter Huszthy ¹

- ¹ Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., H-1111 Budapest, Hungary
- ² MTA-BME Computation Driven Chemistry Research Group, Szent Gellért tér 4., H-1521 Budapest, Hungary
- ³ Institute for Energy Security and Environmental Safety, Centre for Energy Research, Konkoly-Thege Miklós út 29-33., H-1121 Budapest, Hungary
- * Correspondence: golcs.adam@gmail.com

Contents

- 1. ¹H-NMR and ¹³C-NMR spectra of the key intermediates used for preparation of new compounds (solvent: CDCl₃)
- 2. ¹H-NMR and ¹³C-NMR spectra of the new compounds (solvent: CDCl₃)
- 3. Determination of enantiomeric purity of macrocycles by chiral HPLC

4. UV calibration curves for determining the transported amounts of various amine derivatives

5. Spectrophotometric determination of complex stability constants (log*K* values) of the reported enantiopure macrocycles (R,R)-**2** and (S,S)-**2** with the enantiomers of various chiral protonated amine derivatives

6. Electrochemical calibration curves and potentiometric selectivity measurements of ion-selective membrane electrode containing (R,R)-2 as an ionophore

1. ¹H-NMR and ¹³C-NMR spectra of the key intermediates used for preparation of new compounds (solvent: CDCl₃)

Figure S1. ¹H-NMR spectrum of intermediates (*R*)-3 and (*S*)-3

Figure S3. ¹H-NMR spectrum of intermediate 5

Figure S4. ¹³C-NMR spectrum of intermediate 5

Figure S5. ¹H-NMR spectrum of intermediate 9 (after shaking with D₂O)

Figure S6. ¹³C-NMR spectrum of intermediate 9

Figure S7. ¹H-NMR spectrum of intermediates (*R*,*R*)-**10** and (*S*,*S*)-**10**

Figure S8. ¹³C-NMR spectrum of intermediates (*R*,*R*)-10 and (*S*,*S*)-10

2. ¹H-NMR and ¹³C-NMR spectra of the new compounds (solvent: CDCl₃)

Figure S9. ¹H-NMR spectrum of compounds (*R*)-4 and (*S*)-4

Figure S10. ¹³C-NMR spectrum of compounds (*R*)-4 and (*S*)-4

Figure S11. ¹H-NMR spectrum of macrocycles (*R*,*R*)-1 and (*S*,*S*)-1

Figure S12. ¹³C-NMR spectrum of macrocycles (*R*,*R*)-1 and (*S*,*S*)-1

Figure S13. ¹H-NMR spectrum of macrocycles (*R*,*R*)-2 and (*S*,*S*)-2

Figure S14. ¹³C-NMR spectrum of macrocycles (*R*,*R*)-2 and (*S*,*S*)-2

3. Determination of enantiomeric purity of macrocycles by chiral HPLC

Chiral chromatography was performed on a VWR Hitachi Elite (Hitachi Ltd., Japan) HPLC system, involving a Diode Array Detector L-2450, a LaChrom L-2310 pump, an L-2200 autosampler, and an L-2300 column oven, using a Reprosil Chiral MIA HPLC column (100 x 4,6 mm). Isocratic elution was applied with solvent system of 1:9 mixture of isopropyl alcohol/CH₃CN + 0.1 % trifluoroacetic acid and applying a flow rate of 0.4 mL/min at 20 °C. UV absorbance detection was carried out at 280 nm.

In case of crown ethers (R,R)-1 and (S,S)-1 a mixture containing both of the enantiomers with an enantiomeric ratio of (R,R):(S,S) = 1:2 was measured. Retention times: 9.14 min for (R)-enantiomer and 7.96 min for (S)-enantiomer. Enantiomeric purity was calculated from the ratios of the areas of chromatographic peaks and found to be > 97 %.

Figure S15. Chromatogram for macrocycles (*R*,*R*)-1 and (*S*,*S*)-1

In case of crown ethers (R,R)-2 and (S,S)-2 a mixture containing both of the enantiomers with an enantiomeric ratio of (R,R):(S,S) = 1:2 was measured. Retention times: 9.62 min for (R)-enantiomer and 8.43 min for (S)-enantiomer. Enantiomeric purity was calculated from the ratios of the areas of chromatographic peaks and found to be > 98 %.

Figure S16. Chromatogram for macrocycles (*R*,*R*)-2 and (*S*,*S*)-2

4. UV calibration curves for determining the transported amounts of various amine derivatives

Figure S17. UV-absorption spectrum of amine derivative 12

Figure S18. UV-absorption calibration curve for amine derivative **12** at the excitation wavelength of 202 nm

Figure S19. UV-absorption spectrum of amine derivative 13

Figure S20. UV-absorption calibration curve for amine derivative **13** at the excitation wavelength of 202 nm

Figure S21. UV-absorption spectrum of amine derivative 14

Figure S22. UV-absorption calibration curve for amine derivative **14** at the excitation wavelength of 202 nm

Figure S23. UV-absorption spectrum of amine derivative 15

Figure S24. UV-absorption calibration curve for amine derivative **15** at the excitation wavelength of 248 nm

Figure S25. UV-absorption spectrum of amine derivative 16

Figure S26. UV-absorption calibration curve for amine derivative **16** at the excitation wavelength of 207 nm

Figure S27. UV-absorption spectrum of amine derivative 17

Figure S28. UV-absorption calibration curve for amine derivative **17** at the excitation wavelength of 207 nm

Figure S29. UV-absorption spectrum of amine derivative 18

Figure S30. UV-absorption calibration curve for amine derivative **18** at the excitation wavelength of 226 nm

Figure S31. UV-absorption spectrum of amine derivative 19

Figure S32. UV-absorption calibration curve for amine derivative **19** at the excitation wavelength of 204 nm

Figure S33. UV-absorption spectrum of amine derivative 20

Figure S34. UV-absorption calibration curve for amine derivative **20** at the excitation wavelength of 280 nm

Figure S35. UV-absorption spectrum of amine derivative 21

Figure S36. UV-absorption calibration curve for amine derivative **21** at the excitation wavelength of 280 nm

Figure S37. UV-absorption spectrum of amine derivative 22

Figure S38. UV-absorption calibration curve for amine derivative **22** at the excitation wavelength of 207 nm

5. Spectrophotometric determination of complex stability constants (logK values) of the reported enantiopure macrocycles (R,R)-2 and (S,S)-2 with the enantiomers of various chiral protonated amine derivatives

Figure S39. Fluorescence titration of macrocycle (*S*,*S*)-**2** with (*R*)-NEA (**21**)*HClO₄

Figure S40. Fluorescence titration of macrocycle (*S*,*S*)-**2** with (*S*)-NEA (**21**)*HClO₄

Figure S41. Fitted nonlinear functions for determining the stability constants of (*S*,*S*)-**2** with the enantiomers of NEA (**21**)*HClO₄

Figure S42. Fluorescence titration of macrocycle (*S*,*S*)-**2** with (*R*)-PGME (**23**)*HClO₄

Figure S43. Fluorescence titration of macrocycle (*S*,*S*)-**2** with (*S*)-PGME (**23**)*HClO₄

Figure S44. Fitted nonlinear functions for determining the stability constants of (*S*,*S*)-**2** with the enantiomers of PGME (**23**)*HClO₄

Figure S45. Fluorescence titration of macrocycle (*S*,*S*)-**2** with (*R*)-PAME (**24**)*HClO₄

Figure S46. Fluorescence titration of macrocycle (*S*,*S*)-**2** with (*S*)-PAME (**24**)*HClO₄

Figure S47. Fitted nonlinear functions for determining the stability constants of (*S*,*S*)-**2** with the enantiomers of PAME (**24**)*HClO₄

6. Electrochemical calibration curves and potentiometric selectivity measurements of ion-selective membrane electrode containing (R,R)-2 as an ionophore

Figure S48. Calibration curve for racemic PEA (22)*HCl

Figure S49. Measurements to determine potentiometric selectivity toward enantiomers of PEA (22)*HCl

Figure S50. Calibration curve for racemic PGME (23)*HCl

Figure S51. Measurements to determine potentiometric selectivity toward enantiomers of PGME (23)*HCl

Figure S52. Calibration curve for racemic PAME (24)*HCl

Figure S53. Measurements to determine potentiometric selectivity toward enantiomers of PAME (24)*HCl