Chemical Bonding: The Journey from Miniature Hooks to Density Functional Theory
Abstract
:1. Introduction
2. Early Ideas up to the Age of Reason
2.1. The Greeks Had a Word for It
2.2. Atomism in Other Early Cultures
2.2.1. Indian Atomism
2.2.2. Chinese Atomism
2.2.3. Islamic Atomism
2.3. The Revival of Atomism in Europe—Entering the Age of Reason
2.3.1. Early Conflicts with Christian Orthodoxy
2.3.2. Reconciling Church and Atomism
2.3.3. Anti-Aristotleanism and an Early Case for Atomism
2.3.4. An Aside on the Word Molecule
2.4. Early Ideas in the Scientific Age
2.4.1. Daniel Sennert and a Rational Atomism
- (1)
- The fundamental units of matter are extremely minute bodies called atoms, each of which has a specific substantial form.
- (2)
- The simplest atoms are atoms of the elements. Each is indivisible and immutable.
- (3)
- There are various grades of atoms, and each higher grade of atom is composed of an organization (or structure) of the next lower grade of atoms.
- (4)
- Each body that is not an atom is composed of bonded atoms
2.4.2. Robert Boyle—The End of Alchemy or the Beginning of Chemistry?
2.4.3. Isaac Newton—Another Alchemist?
2.4.4. Bryan and William Higgins—A Historical Aside
3. The Nineteenth Century C.E.
3.1. Valence and Affinity
3.1.1. Chemical Affinity—Driving Force but not Bonding
3.1.2. Valence or Valency
“The four groups of elements are usually distinguished according to a traditional, but not very well chosen, designation, as mono-, di-, tri- and tetraatomic or mono-, di-, tri- and tetrabasic. The former expressions are unsuitable because one cannot easily distinguish the usage from monatomic etc. atoms. The expressions monobasic etc. remind us that the doctrine of multiple saturation capacity derives its origin from Liebig’s classical investigations of polybasic organic acids. But since we are used to understand basic as the opposite of acid (in the chemical sense), this expression cannot be applied to the atoms either. However, it does not seem to be easy to replace it with another expression that is both comfortable and appropriate. The most correct and strictest way is probably to describe the atoms as those with 1, 2, 3 and 4 times the saturation capacity. The half-Greek and half-Latin expressions used by Wislicenus are shorter, namely “monaffin, di-, tri- and tetraffin”; in German one could also say “mono-, di-, tri- and quadrivalent”, for which, according to the judgement of tolerant philologists, “uni-, bi-, tri- and quadrivalent” could also be used. Characteristic and for many cases convenient is also the expression, according to which the four groups of atoms are usually described as having 1, 2, 3 and 4 “kinship units”.[95]
3.2. Dalton and the Full Glory of Atomism
3.3. Isomerism … the Agony of Being the Same but Different
3.4. Organic Chemistry and Structure—The Bond Reigns Supreme
3.5. Strings and Things—Jørgensen and Coordination Chemistry
3.6. Primary and Secondary Valences—Or When is a Bond not a Bond?
4. The Modern Era
4.1. The Advent of the Electron and Ions
4.2. Ionic Bonding
4.3. Covalent Bonding—The Legacy of G.N. Lewis
4.4. It’s All to do with Quantum
4.5. It’s More than just s and p—The Pauling Era and the Triumph of Valence Bonds
4.6. The Triumph of the Molecular Orbital Model in Organic Chemistry
5. Quantification
5.1. When Calculation Moved from Pen and Paper to Machines
5.2. Semi-Empirical Methods
5.3. Density Functional Theory
5.4. And Back to the Simplicity of Bonds—The Natural Bond Order Approach
6. The Challenge Bonding
6.1. Metals Bowl a Googly
6.2. When is a Bond not a Bond?
7. Conclusions and Reflections
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IUPAC. Compendium of Chemical Terminology, 2nd ed.; (the “gold Book”). Compiled by a. D. Mcnaught and a. Wilkinson; Blackwell Scientific Publications: Oxford, UK, 1997; Available online: https://doi.org/10.1351/goldbook (accessed on 20 March 2020).
- Frenking, G.; Shaik, S. The Chemical Bond. Fundamental Aspects of Chemical Bonding; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Frenking, G.; Shaik, S. The Chemical Bond. Chemical Bonding Across the Perodic Table; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Coulson, C.A. The Shape and Structure of Molecules; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Magnasco, V. Models for Bonding in Chemistry; Wiley: Chichester, UK, 2010. [Google Scholar]
- Mingos, D.M.P. The Chemical Bond I; Springer International: Cham, Switzerland, 2016. [Google Scholar]
- Mingos, D.M.P. The Chemical Bond II; Springer International: Cham, Switzerland, 2016. [Google Scholar]
- Mingos, D.M.P. The Chemical Bond III; Springer International: Cham, Switzerland, 2016. [Google Scholar]
- Partington, J.R. A History of Chemistry. Vol. 1. Theoretical Background; Macmillan and Co.: London, UK, 1970. [Google Scholar]
- Partington, J.R. A History of Chemistry. Vol. 2; Macmillan and Co.: London, UK, 1961. [Google Scholar]
- Partington, J.R. A History of Chemistry. Vol. 3; Macmillan and Co.: London, UK, 1962. [Google Scholar]
- Partington, J.R. A History of Chemistry. Vol. 4.; Macmillan and Co.: London, UK, 1964. [Google Scholar]
- Partington, J.R. A Short History of Chemistry, 3rd ed.; Dover: New York, NY, USA, 1989. [Google Scholar]
- Brumbaugh, R.S. The Philosophers of Greece; SUNY Press: Albany, NY, USA, 1981. [Google Scholar]
- Diels, H. Doxographi Graeci; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Diels, H. Die Fragmente der Vorsokratiker 1; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Diels, H. Die Fragmente der Vorsokratiker 2; Inktank Publishing: Einbeck, Germany, 2019. [Google Scholar]
- Diels, H. Die Fragmente der Vorsokratiker 3; Inktank Publishing: Einbeck, Germany, 2019. [Google Scholar]
- Diels, H. Die Fragmente der Vorsokratiker 4; Inktank Publishing: Einbeck, Germany, 2019. [Google Scholar]
- Leucippus; Democritus. The Atomists, Leucippus and Democritus. Fragments: A Text and Translation with a Commentary; University of Toronto Press: Toronto, ON, Canada, 1999. [Google Scholar]
- Paparazzo, E. Vacuum: A Void Full of Questions. Surf. Interface Anal. 2008, 40, 450–453. [Google Scholar] [CrossRef]
- Lucretius. De rerum natura; Deufert, M., Ed.; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2019. [Google Scholar]
- Pullman, B. The Atom in the History of Human Thought; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Van Melsen, A.G. From Atomos to Atom: The History and Concept of the Atom; Dover Phoenix Editions: Mineola, NY, USA, 1952. [Google Scholar]
- De Lacy, P.E. Galen on the Elements According to Hippocrates (Corpus Medicorum Graecorum); De Gruyter: Berlin, Germany, 2015. [Google Scholar]
- McEvilley, T. The Shape of Ancient Thought: Comparative Studies in Greek and Indian Philosophies; Constable & Robinson: New York, NY, USA, 2012. [Google Scholar]
- Keith, A.B. Indian Logic and Atomism; an Exposition of the Nyãya and Vaicesika Systems; Clarendon Press: Oxford, UK, 1921. [Google Scholar]
- Priyadarshi, P. Zero is Not the Only Story; India First Foundation: New Delhi, India, 2007. [Google Scholar]
- Gangopadhyaya, M. Indian Atomism; K.P. Balchi: Calcutta, India, 1980. [Google Scholar]
- Radhakrishnan, S. A Source Book in Indian Philosophy; Princeton University Press: Princeton, NJ, USA, 1957. [Google Scholar]
- Riepe, D.M. The Naturalistic Tradition in Indian Thought, 2nd ed.; Motilal Banarsidass: Delhi, India, 1964. [Google Scholar]
- Kirthisinghe, B.P. Buddhism and Science; Motilal Banarsidass: Delhi, India, 1984. [Google Scholar]
- Stcherbatsky, T. Buddhist Logic. 2vols.; Dover: New York, NY, USA, 1930. [Google Scholar]
- Needham, J. Science and Civilisation in China: Volume 7, the Social Background, Part 2, General Conclusions and Reflections; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Dhanani, A. “Atomism in Islamic Thought”. In Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures; Selin, H., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Langermann, Y.T. Islamic Atomism and the Galenic Tradition. Hist. Sci. 2009, 47, 277–295. [Google Scholar] [CrossRef]
- Glasner, R. Averroes’ Physics: A Turning Point in Medieval Natural Philosophy; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Stolleis, M. Natural Law and Laws of Nature in Early Modern Europe: Jurisprudence, Theology, Moral and Natural Philosophy; Routledge: Abingdon-on-Thames, UK, 2016. [Google Scholar]
- O’Keefe, T. Epicureanism; Acumen Publishing: Durham, UK, 2010. [Google Scholar]
- Warren, J. The Cambridge Companion to Epicureanism; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Wilson, C. Epicureanism; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Grisar, H. Galileistudien: Historisch-Theologische Untersuchungen Über Die Urtheile Der Römischen Congregationen Im Galilei-Process; F. Pustet: Regensburg, Germany, 1882. [Google Scholar]
- Galilei, G. Discorso Intorno Alle Cose Che Stanno in Su L’Acqua O Che in Quella Si Muovono; Cosimo Giunti: Florence, Italy, 1612. [Google Scholar]
- Le Grand, H.E. Galileo’s Matter Theory. In New Perspectives on Galileo Vol. 14; Butts, R.E., Pitt, J.C., Eds.; Springer: Dordrecht, The Netherlands, 1978; pp. 197–208. [Google Scholar]
- Shea, W.R. Galileo’s Atomic Hypothesis. Ambix 1970, 17, 13–27. [Google Scholar] [CrossRef]
- The Assayer (1623). Available online: https://web.stanford.edu/~jsabol/certainty/readings/Galileo-Assayer.pdf (accessed on 20 March 2020).
- Galilei, G. Discoveries and Opinions of Galileo, 24th ed.; Anchor: New York, NY, USA, 1957. [Google Scholar]
- Brundell, B. Pierre Gassendi: From Aristotelianism to a New Natural Philosophy; D. Reidel: Dordrecht, Germany, 1987. [Google Scholar]
- Joy, L.S. Gassendi the Atomist. Advocate of History in an Age of Science; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Gassendi, P. Syntagma Philosophiae Epicuri Cum Refutationibus Dogmatum Quae Contra Fidem Christianam Ab Eo Asserta Sunt; Guillaume Barbier: Lyon, France, 1649. [Google Scholar]
- Lactantius. Divine Institutes, Books 1-7; Catholic University of America Press: Washington, DC, USA, 1964. [Google Scholar]
- Descartes, R. Principia Philosophiæ; Apud Ludovicum Elzevirium: Amsterdam, The Netherlands, 1644. [Google Scholar]
- Descartes, R. Principles of Philosophy; D. Reidel: Dordrecht, Germany, 1982. [Google Scholar]
- Lüthy, C.H.; Murdoch, J.E.; Newman, W.R. Late Medieval and Early Modern Corpuscular Matter Theories; Brill: Leiden, The Netherlands, 2001. [Google Scholar]
- Newman, W.R. Atoms and Alchemy: Chymistry and the Experimental Origins of the Scientific Revolution; University of Chicago Press: Chicago, IL, USA, 2006. [Google Scholar]
- Hattab; Helen. Basso, Sebastian. In The Cambridge Descartes Lexicon; Lawrence Nolan, Ed.; Cambridge University Press: Cambridge, UK, 2015; pp. 52–53. [Google Scholar]
- Boyle, R. The Correspondence of Robert Boyle Vol. 3; Pickering & Chatto: London, UK, 2001. [Google Scholar]
- Bacon, F. The Works of Francis Bacon; Spedding, J., Ellis, R.L., Heath, D.D., Eds.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Kargon, R.H. Atomism in England from Hariot to Newton; Cklarendon Press: Oxford, UK, 1966. [Google Scholar]
- Rees, G. Atomism and ‘Subtlety’ in Francis Bacon’s Philosophy. Ann. Sci. 1980, 37, 549–571. [Google Scholar] [CrossRef]
- Bacon, F. Novum Organum; Devey, J., Ed.; P.F. Collier and Son: New York, NY, USA, 1902. [Google Scholar]
- Sennert, D. Hypomnemata Physica; Clementis Schleichii et consortum: Frankfurt, Germany, 1636. [Google Scholar]
- Michael, E. Daniel Sennert on Matter and Form: At the Juncture of the Old and the New1. Early Sci. Med. 1997, 2, 272–299. [Google Scholar] [CrossRef]
- Kuhn, T.S. Robert Boyle and Structural Chemistry in the Seventeenth Century. Isis 1952, 43, 12–36. [Google Scholar] [CrossRef]
- Newman, W.R. Robert Boyle, Transmutation, and the History of Chemistry Before Lavoisier: A Response to Kuhn. Osiris 2014, 29, 63–77. [Google Scholar] [CrossRef]
- Newman, W.R. The Alchemical Sources of Robert Boyle’s Corpuscular Philosophy. Ann. Sci. 1996, 53, 567–585. [Google Scholar] [CrossRef]
- Boyle, R. The Works of Robert Boyle; Pickering & Chatto: London, UK, 1999. [Google Scholar]
- Newman, W. The Significance of “Chymical Atomism”. Early Sci. Med. 2009, 14, 248–264. [Google Scholar] [CrossRef]
- Boyle, R. The Sceptical Chymist: Or Chymico-Physical Doubts & Paradoxes; J. Cadwell: London, UK, 1661. [Google Scholar]
- Boyle, R. The Origine of Formes and Qualities, (According to the Corpuscular Philosophy) Illustrated By Considerations and Experiments (Written Formerly By Way of Notes Upon an Essay About Nitre) By the Honourable Robert Boyle, Fellow of the Royal Society; H. Hall for Ric. Davis: Oxford, UK, 1666. [Google Scholar]
- Principe, L. The Aspiring Adept. Robert Boyle and His Alchemical Quest; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- More, L.T. Boyle as Alchemist. J. Hist. Ideas 1941, 2, 61. [Google Scholar] [CrossRef]
- Hunter, M. Boyle: Between God and Science; Yale University Press: New Haven, CT, USA, 2009. [Google Scholar]
- Newton, I. Opticks: Or a Treatise of the Reflections, Refractions, Inflections and Colours of Light. The Fourth Edition, Corrected; William Innys: London, UK, 1730. [Google Scholar]
- Higgins, B. A Philosophical Essay Concerning Light. Vol. I; J. Dodsley: London, UK, 1776. [Google Scholar]
- Higgins, W. A Comparative View of the Phlogistic and Antiphlogistic Theories. With Inductions.to Which is Annexed, an Analysis of the Human Calculus, with Observations on Its Origin, &c., 2nd ed.; J. Murray: London, UK, 1791. [Google Scholar]
- Higgins, W. Experiments and Observations on the Atomic Theory, and Electrical Phenomena; Longman, Hurst, Rees, Orme and Brown: London, UK, 1814. [Google Scholar]
- Kim, M.G. Affinity, That Elusive Dream. A Genealogy of the Chemical Revolution; MIT: Cambridge, MA, USA, 2008. [Google Scholar]
- Levere, T.H. Affinity and Matter. Elements of Chemical Philosophy; Clarendon Press: Oxford, UK, 1971; pp. 1800–1865. [Google Scholar]
- Partington, J.R. Albertus Magnus on Alchemy. Ambix 1937, 1, 3–20. [Google Scholar] [CrossRef]
- Magnus, A. The Book of Minerals; Clarendon Press: Oxford, UK, 1967. [Google Scholar]
- Magnus, A. De Mineralibus; Johannes et Gregorius de Gregoriis: Venice, Italy, 1495. [Google Scholar]
- Siegfried, R. From Elements to Atoms. A History of Chemical Composition; American Philosophical Society: Philadelphia, PA, USA, 2002. [Google Scholar]
- Geoffroy, E.F. Table Des Différens Rapports Observés En Chimie Entre Différentes Substances. Mém. Acad. R. Sci. 1718, 202–212. [Google Scholar]
- Roth, E. Etienne Francois Geoffroy’s Table of Relations and the Concept of Affinity. Fresenius’ J. Anal. Chem. 1990, 337, 188–202. [Google Scholar] [CrossRef]
- Geoffroy, E.F. Sur Les Rapports des Différentes Substances En Chimie. In Histoire de l’Académie Royales des Sciences de Paris; Imprimerie Nationale: Paris, France, 1718. [Google Scholar]
- Bergman, T. Dissertation on Elective Attractions. By Torbern Bergmann. Late Professor of Chemistry at Upsal, and Knight of the Royal Order of Vasa. Translated from the Latin by the Translator of Spallanzani’s Dissertations; J. Murray and Charles Elliot: London, Edinburgh, UK, 1785. [Google Scholar]
- Bergman, T. Traité Des Affinités Chymiques, Ou Attractions Électives; Traduit Du Latin, Sur La Derniere Edition De Bergman. Augmenté. D’un Supplément & De Notes. Avec Des Planches; Buisson: Paris, France, 1788. [Google Scholar]
- Falk, K.G. Some Further Considerations in the Development of the Electron Conception of Valence. Proc. Am. Philos. Soc. 1914, 53, 25–30. [Google Scholar]
- Ramberg, P.J. Chemical Structure, Spatial Arrangement. The Early History of Stereochemistry; Routledge: London, UK, 2003; pp. 1874–1914. [Google Scholar]
- Palmer, W.G. A History of the Concept of Valency to 1930; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kekulé, A.; Über Die, S.G. Gepaarten Verbindungen Und Die Theorie der Mehratomigen Radicale. Justus Liebigs Ann. Chem. 1857, 104, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Meyer, V. Zur Valenz Und Verbindungsfähigkeit des Kohlenstoffs. Justus Liebigs Ann. Chem. 1876, 180, 192–206. [Google Scholar] [CrossRef] [Green Version]
- Frankland, E. On a New Series of Organic Bodies Containing Metals. Philos. Trans. R. Soc. Lond. 1852, 142, 417–444. [Google Scholar] [CrossRef]
- Meyer, L. Die Modernen Theorien der Chemie Und Ihre Bedeutung Für Die Chemische Statik; von Maruschke & Berendt: Breslau, Germany, 1864. [Google Scholar]
- Meyer, L. Die Modernen Theorien der Chemie Und Ihre Bedeutung Für Die Chemische Statik. Zweite Umgearbeitete Und Sehr Vermehrte Auflag; von Maruschke & Berendt: Breslau, Germany, 1872. [Google Scholar]
- Wichelhaus, H. Über Die Verbindungen des Phosphors. Ann. Chem. Pharm. 1868, 6, 257–280. [Google Scholar]
- Gay-Lussac, T. Extrait De Plusieurs Notes Sur Les Métaux De La Potasse Et De La Soude, Lues À L’Institut Depuis Le 12 Janvier Jusqu’Au 16 Mai. Gaz. Natl. Ou Le Monit. Univers. 1808, 40, 581–582. [Google Scholar]
- Davy, H.I. The Bakerian Lecture. An Account of Some New Analytical Researches on the Nature of Certain Bodies, Particularly the Alkalies, Phosphorus, Sulphur, Carbonaceous Matter, and the Acids Hitherto Undecomposed; With Some General Observations on Chemical Theory. Philos. Mag. 1809, 34, 6–19. [Google Scholar] [CrossRef]
- Kekulé, A. Über Die Constitution Und Die Metamorphosen der Chemischen Verbindungen Und Über Die Chemische Natur des Kohlenstoffs. Justus Liebigs Ann. Chem. 1858, 106, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Lodge, O.J. On Nodes and Loops in Connexion with Chemical Formulae. Philos. Mag. 1875, 50, 367–376. [Google Scholar] [CrossRef]
- Kekulé, A. Sur L’Atomicité Des Éléments. C. R. Hebd. Seances Acad. Sci. 1864, 58, 510–514. [Google Scholar]
- Madan, H.G. Remarks on Some Points in the Nomenclature of Salts. J. Chem. Soc. 1870, 23, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Constable, E.C. From Glyph to Element Symbol—A Story of Names. Chimia 2019, 73, 837–839. [Google Scholar] [CrossRef] [Green Version]
- Dalton, J. A New System of Chemical Philosophy. Part I; R. Bickerstaff: London, UK, 1808. [Google Scholar]
- Dalton, J. A New System of Chemical Philosophy. Part 2; R. Bickerstaff: London, UK, 1810. [Google Scholar]
- Berzelius, J.J. Essay on the Cause of Chemical Proportions, and on Some Circumstances Relating to Them; Together with a Short and Easy Method of Expressing Them. Ann. Philos. 1814, 3, 51–62. [Google Scholar]
- Berzelius, J.J. Essay on the Cause of Chemical Proportions, and on Some Circumstances Relating to Them; Together with a Short and Easy Method of Expressing Them. Ann. Philos. 1814, 3, 93–106. [Google Scholar]
- Berzelius, J.J. Essay on the Cause of Chemical Proportions, and on Some Circumstances Relating to Them; Together with a Short and Easy Method of Expressing Them. Ann. Philos. 1814, 3, 244–255. [Google Scholar]
- Berzelius, J.J. Essay on the Cause of Chemical Proportions, and on Some Circumstances Relating to Them; Together with a Short and Easy Method of Expressing Them. Ann. Philos. 1814, 3, 353–364. [Google Scholar]
- Berzelius, J.J. Essay on the Cause of Chemical Proportions, and on Some Circumstances Relating to Them; Together with a Short and Easy Method of Expressing Them. Ann. Philos. 1813, 2, 443–454. [Google Scholar]
- Dalton, J. Remarks on the Essay of Dr. Berzelius on the Cause of Chemical Proportions. Ann. Philos. 1814, 3, 174–180. [Google Scholar]
- Crosland, M.P. Historical Studies in the Language of Chemistry; Dover Publ.: New York, NY, USA, 1978. [Google Scholar]
- Gee, W.H.H. John Dalton’s Lectures and Lecture Illustrations Parts I and II. Mem. Proc. Manch. Lit. Philos. Soc. 1915, 59, 1–40. [Google Scholar]
- Coward, H.F.; Harden, A. John Dalton’s Lectures and Lecture Illustrations Part III. Mem. Proc. Manch. Lit. Philos. Soc. 1915, 59, 41–66. [Google Scholar]
- Proust, J.L. D’un Mémoire Intitulé: Recherches Sur Le Bleu De Prusse. Ann. Chim. (CachanFr.) 1797, 23, 85–101. [Google Scholar]
- Cavendish, H. The Scientific Papers of the Honourable Henry Cavendish, FRS; Thorpe, E., Ed.; Cambridge University Press: Cambridge, UK, 1921. [Google Scholar]
- Esteban, S. Liebig–Wöhler Controversy and the Concept of Isomerism. J. Chem. Educ. 2008, 85, 1201. [Google Scholar] [CrossRef]
- Liebig, J.; Gay-Lussac, J.L. Analyse Du Fulminate D’argent. Ann. Chim. Phys. 1824, 25, 285–311. [Google Scholar]
- Wöhler, F. Analytische Versuche Über Die Cyansäure. Ann. Phys. (Berl. Ger.) 1824, 77, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Liebig, J. Über Wöhler’s Cyansäure. Arch. Ges. Nat. 1825, 6, 145–153. [Google Scholar]
- Wöhler, F. Über Die Zusammensetzung der Cyansäure. Ann. Phys. (Berl. Ger.) 1825, 81, 385–388. [Google Scholar] [CrossRef]
- Liebig, J. Ueber Cyan- Und Knallsäure. J. Chem. U. Phys. 1826, 18, 376–381. [Google Scholar]
- Wöhler, F. Über Künstliche Bildung des Harnstoffs. Ann. Phys. (Berl. Ger.) 1828, 88, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Cohen, P.S.; Cohen, S.M. Wöhler’s Synthesis of Urea: How Do the Textbooks Report it. J. Chem. Educ. 1996, 73, 883. [Google Scholar] [CrossRef]
- Tóth, Z. A Demonstration of Wöhler’s Experiment: Preparation of Urea from Ammonium Chloride and Potassium Cyanate. J. Chem. Educ. 1996, 73, 539. [Google Scholar] [CrossRef]
- Batchelor, J.D.; Carpenter, E.E.; Holder, G.N.; Eagle, C.T.; Fielder, J.; Cummings, J. Recreation of Wöhler’s Synthesis of Urea: An Undergraduate Organic Laboratory Exercise. Chem. Educ. 1998, 3, 1–7. [Google Scholar] [CrossRef]
- Kinne-Saffran, E.; Kinne, R.K. Vitalism and Synthesis of Urea. From Friedrich Wöhler to Hans a. Krebs. Am. J. Nephrol. 1999, 19, 290–294. [Google Scholar] [CrossRef]
- Williams, E.A. A Cultural History of Medical Vitalism in Enlightenment Montpellier; Ashgate Publishing, Ltd.: Burlington, VT, USA, 2003. [Google Scholar]
- Driesch, H. The History and Theory of Vitalism; Macmillan: London, UK, 1914. [Google Scholar]
- Normandin, S.; Wolfe, C.T. Vitalism and the Scientific Image in Post-Enlightenment Life Science; Springer: Dordrecht, The Netherlands, 2013; pp. 1800–2010. [Google Scholar]
- Ramberg, P.J. The Death of Vitalism and the Birth of Organic Chemistry: Wohler’s Urea Synthesis and the Disciplinary Identity of Organic Chemistry. Ambix 2000, 47, 170–195. [Google Scholar] [CrossRef]
- Numbers, R.L.; Kampourakis, K. Newton’s Apple and Other Myths about Science; Harvard University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- McKie, D. Wöhler’s ‘Synthetic’ Urea and the Rejection of Vitalism: A Chemical Legend. Nature (Lond. UK) 1944, 153, 608–610. [Google Scholar] [CrossRef]
- Berzelius, J.J. Über Die Zusammensetzung der Weinsäure Und Traubensäure (John’s Säure Aus Den Vogesen), Über Das Atomengewicht Des Bleioxyds, Nebst Allgemeinen Bemerkungen Über Solche Körper, Die Gleiche Zusammensetzung, Aber Ungleiche Eigenschaften Besitzen. Ann. Phys. Phys. Chem. 1830, 19, 305–335. [Google Scholar] [CrossRef] [Green Version]
- Rocke, A.J. The Reception of Chemical Atomism in Germany. Isis 1979, 70, 519–536. [Google Scholar] [CrossRef]
- Cooke, H. A Historical Study of Structures for Communication of Organic Chemistry Information Prior to 1950. Org. Biomol. Chem. 2004, 2, 3179–3191. [Google Scholar] [CrossRef]
- Hudson, J. The History of Chemistry; Macmillan: Basingstoke, UK, 1992. [Google Scholar]
- Rocke, A.J. Kekulé, Butlerov, and the Historiography of the Theory of Chemical Structure. Br. J. Hist. Sci. 1981, 14, 27–57. [Google Scholar] [CrossRef]
- Hepler-Smith, E. “Just as the Structural Formula Does”: Names, Diagrams, and the Structure of Organic Chemistry at the 1892 Geneva Nomenclature Congress. Ambix 2015, 62, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, H.S. History of the Use of Graphic Formulas in Organic Chemistry. Isis 1943, 34, 346–354. [Google Scholar] [CrossRef]
- Lewis, D.E. Introduction to an English Translation, “on the Different Explanations of Certain Cases of Isomerism” By Aleksandr Butlerov. Bull. Hist. Chem. 2015, 40, 9–12. [Google Scholar]
- Butlerov, A. Lehrbuch Der Organischen Chemie: Zur Einführung in Das Specielle Studium Derselben; Quandt & Händel: Leipzig, Germany, 1867. [Google Scholar]
- Konovalov, A.I. The Butlerov Theory of Chemical Structure of Organic Compounds: Report on the International Congress on Organic Chemistry; Kazan, Russia. 2011. Available online: http://www.iopc.ru/base/File/Report_Konovalov.pdf (accessed on 1 June 2020).
- Minkin, V.I. Current Trends in the Development of a. M. Butlerov’s Theory of Chemical Structure. Russ. Chem. Bull. 2012, 61, 1265–1290. [Google Scholar] [CrossRef]
- Lewis, D.E. 150 Years of Organic Structures. In Atoms in Chemistry: From Dalton’s Predecessors to Complex Atoms and Beyond; Giunta, C.J., Ed.; American Chemical Society: Washington, DC, USA, 2010; pp. 35–37. [Google Scholar]
- Rocke, A.J. Image and Reality. Kekulé, Kopp, and the Scientific Imagination; University of Chicago Press: Chicago, IL, USA, 2010. [Google Scholar]
- Rocke, A.J. Chemical Atomism in the Nineteenth Century. From Dalton to Cannizzaro; Ohio State University Press: Columbus, OH, USA, 1984. [Google Scholar]
- Couper, A.S. Sur Une Nouvelle Théorie Chimique. C. R. Hebd. Seances Acad. Sci. 1858, 46, 1157–1160. [Google Scholar]
- Couper, A.S. Sur Une Nouvelle Théorie Chimique. Ann. Chim. Phys. 1858, 53, 469–489. [Google Scholar]
- Couper, A.S. On a New Chemical Theory. Philos. Mag. (1798–1977) 1858, 16, 104–116. [Google Scholar] [CrossRef]
- Dickerson, J. Charles Gerhardt and the Theory of Organic Combination. J. Chem. Educ. 1985, 62, 323. [Google Scholar] [CrossRef]
- Brown, A.C. On the Theory of Isomeric Compounds. J. Chem. Soc. 1865, 18, 230–245. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.C. On the Theory of Isomeric Compounds. Trans. Roy. Soc. Edin. 1864, 23, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Hein, G.E. Kekulé and the Architecture of Molecules. In Kekulé Centennial; Benfey, O.T., Ed.; American Chemical Society: Washington, DC, USA, 1966; pp. 1–12. [Google Scholar]
- Kekulé, A. Sur La Constitution des Substances Aromatiques. Bull. De La Soc. Chim. De Fr. 1865, 3, 98–110. [Google Scholar]
- Kekulé, A. Note Sur Quelques Produits De Substitution De La Benzine. Bull. Acad. R. Belg. 1865, 2, 551–563. [Google Scholar]
- Van ‘t Hoff, J.H. Voorstel Tot Uitbreiding der Tegenwoordige in De Scheikunde Gebruikte Structuurformules in De Ruimte, Benevens Een Daarmee Samenhangende Opmerking Omtrent Het Verband Tusschen Optisch Actief Vermogen En Chemische Constitutie Van Organische Verbindingen; Greven: Utrecht, The Netherlands, 1874. [Google Scholar]
- Van ‘t Hoff, J.H. Sur Les Formules De Structure Dans L’Espace. Arch. Neerl. Sci. Exactes Nat. 1874, 9, 445–454. [Google Scholar]
- Van ‘t Hoff, J.H. Sur Les Formules De Structure Dans L’Espace. Bull. De La Soc. Chim. De Fr. 1875, 23, 295–301. [Google Scholar]
- Le Bel, J.-A. Sur Les Relations Qui Existent Entre Les Formules Atomiques des Corps Organiques Et Le Pouvoir Rotatoire De Leurs Dissolutions. Bull. De La Soc. Chim. De Fr. 1874, 22, 337–347. [Google Scholar]
- Richardson, G.M.; Pasteur, L.; van ’t Hoff, J.H.; Le Bel, J.-A.; Wislicenus, J. The Foundations of Stereochemistry; Memoirs by Pasteur, Van’t Hoff, Lebel and Wislicenus; American Book Co.: New York, NY, USA, 1901. [Google Scholar]
- Ramberg, P.J. Johannes Wislicenus, Atomism, and the Philosophy of Chemistry. Bull. Hist. Chem. 1994, 15/16, 45. [Google Scholar]
- Wislicenus, J. Ueber Die Räumliche Anordnung der Atome in Organischen Molekulen and Ihre Bestimmung in Geometrisch-Isomeren Ungesättigen Verbindungen. Abh. Math. Phys. Kl. K. Saechs. Ges. Wiss. 1887, 14, 1–77. [Google Scholar]
- Brooke, J.H. Laurent, Gerhardt, and the Philosophy of Chemistry. Hist. Stud. Phys. Sci. 1975, 6, 405–429. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, C.-F. Sur La Constitution des Sels Organiques À Acides Complexes, Et Leurs Rapports Avec Les Sels Ammoniacaux. Ann. Chim. Phys. 1839, 72, 184–214. [Google Scholar]
- Gerhardt, C.-F. Sur La Classification Chimique des Substances Organiques. Rev. Sci. Indust. Paris 1843, 12, 592–800. [Google Scholar]
- Gerhardt, C. Précis De Chimie Organique; Fortin, Masson et Cie: Paris, France, 1845. [Google Scholar]
- Wisniak, J. Charles Fréderic Gerhardt. Educ. Quim. 2018, 17, 343. [Google Scholar] [CrossRef]
- Gerhardt, C. Précis De Chimie Organique; Fortin, Masson et Cie: Paris, France, 1844. [Google Scholar]
- Delort, M. Précis De Chimie Organique (1844–1846) and the Traité De Chimie Organique (1853–1856) From Charles Gerhardt. Rev. Hist. Pharm. 2007, 55, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Levere, T.H. Chemists and Chemistry in Nature and Society; Routledge: Aldershot, UK, 1994; pp. 1770–1878. [Google Scholar]
- Berzelius, J. Ansichten in Betreff der Organischen Zusammensetzung. Ann. Phys. Chem. 1846, 78, 161–188. [Google Scholar] [CrossRef] [Green Version]
- Berzelius, J.J. Jahres-Bericht Über Die Fortschritte der Chemie Und Mineralogie; Laupp’sche Buchhandlung: Tübingen, Germany, 1842. [Google Scholar]
- Blomstrand, C.W. Die Chemie der Jetztzeit Vom Standpunkte der Electrochemischen Auffassung. Aus Berzellius Lehre Entwickelt; Carl Winter’s Universitätsbuchhandlung: Heidelberg, Germany, 1869. [Google Scholar]
- Kauffman, G.B. Christian Wilhelm Blomstrand (1826–1897) and Sophus Mads Jørgensen (1837–1914). Their Correspondence from 1870 to 1897. Centaurus 1977, 21, 44–63. [Google Scholar] [CrossRef]
- Kauffman, G.B. Sophus Mads Jorgensen (1837–1914): A Chapter in Coordination Chemistry History. J. Chem. Educ. 1959, 36, 521. [Google Scholar] [CrossRef]
- Werner, A.S.M. Jörgensen 4. Juli 1837–1. April 1914. Chem. Ztg. 1914, 38, 557–564. [Google Scholar]
- Jörgensen, S.M. Ueber Das Verhältniss Zwischen Luteo- Und Roseosalzen. J. Für Prakt. Chem. 1884, 29, 409–422. [Google Scholar] [CrossRef]
- Whisnant, D.M. Bonding Theory/the Werner-Jorgensen Controversy. J. Chem. Educ. 1993, 70, 902. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, G.B. Sophus Mads Jørgensen and the Werner-Jørgensen Controversy. Chymia 1960, 6, 180–204. [Google Scholar] [CrossRef]
- Kragh, H.S.M. Jørgensen and His Controversy with a. Werner: A Reconsideration. Br. J. Hist. Sci. 1997, 30, 203–219. [Google Scholar] [CrossRef]
- Werner, A. Beitrag Zur Konstitution Anorganischer Verbindungen. Z. Anorg. Chem. 1893, 3, 267–330. [Google Scholar] [CrossRef] [Green Version]
- Constable, E.C.; Housecroft, C.E. Coordination Chemistry: The Scientific Legacy of Alfred Werner. Chem. Soc. Rev. 2013, 42, 1429–1439. [Google Scholar] [CrossRef]
- Baigre, B.S. Electricity and Magnetism. A Historical Perspective; Greenwood Press: Westport, CT, USA, 2007. [Google Scholar]
- Whittaker, E.T. A History of the Theories of Aether and Electricity. Revised and Enlarged Edition; Nelson: London, UK, 1951. [Google Scholar]
- Priestley, J. The History and Present State of Electricity with Original Experiments. 5th Edition, Corrected; Johnson, J., Rivington, F.C., Cadell, T., Baldwin, R., Lowndes, H., Eds.; Gale Ecco: London, UK, 1794. [Google Scholar]
- Meyer, H.W. A History of Electricity and Magnetism; M.I.T. Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Mottelay, P.F. Bibliographical History of Electricity and Magnetism; Griffin: London, UK, 1922. [Google Scholar]
- Franklin, B. New Experiments and Observations on Electricity Made at Philadelphia in America by Benjamin Franklin, Esq; and Communicated in Several Letters to Peter Collinson, Esq; of London, F.R.S. Part I; D Henry at St John’s Gate: London, UK, 1760. [Google Scholar]
- Assis, A.K.T. The Experimental and Historical Foundations of Electricity; Apeiron: Montreal, QC, Canada, 2010. [Google Scholar]
- Von Handorf, D.E. The Baghdad Battery - Myth or Reality? Plat. Surf. Finish. 2002, 89, 84–87. [Google Scholar]
- Keyser, P.T. The Purpose of the Parthian Galvanic Cells: A First-Century a. D. Electric Battery Used for Analgesia. J. Near East. Stud. 1993, 52, 81–98. [Google Scholar] [CrossRef]
- König, W. Ein Galvanisches Element Aus der Partherzeit? Forsch. Fortschr. 1938, 14, 8–9. [Google Scholar]
- Zilsel, E. The Origins of William Gilbert’s Scientific Method. J. Hist. Ideas 1941, 2, 1. [Google Scholar] [CrossRef]
- Thompson, S.P. William Gilbert, and Terrestial Magnetism in the Time of Queen Elizabeth; Chiswick Press: London, UK, 1903. [Google Scholar]
- King, W.J. Contributions from the Museum of History and Technology. The Natural Philosophy of William Gilbert and His Predecessors; Bulletin of the United States National Museum: Washington, DC, USA, 1959; Volume 8, pp. 121–139. [Google Scholar]
- Gilbert, W. De Magnete, Magnetisque Corporoibus, Et De Magno Magnete Tellure: Physiologia Noua, Plurimis & Argumentis, & Experimentis Demonstrata; Peter Short: London, UK, 1600. [Google Scholar]
- Bacon, F. The Philosophical Works of Francis Bacon, Baron of Verulam, Viscount St. Albans, and Lord High-Chancellor of England; Methodized, and Made English from the Originals with Occasional Notes, to Explain What is Obscure; and Shew How Far the Several Plans of the Author for the Advancement of All the Parts of Knowledge, Ahve been Executed to the Present Time. 3 Volumes; Shaw, P., Ed.; Forgotten Books: London, UK, 1783. [Google Scholar]
- Jensen, W.B. The Origins of Positive and Negative in Electricity. J. Chem. Educ. 2005, 82, 988. [Google Scholar] [CrossRef]
- Arabatzis, T. Representing Electrons; University of Chicago Press: Chicago, IL, USA, 2006. [Google Scholar]
- Buchwald, J.Z.; Warwick, A. Histories of the Electron; MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Du Fay, C.F.D.C. A Letter from Mons. Du Fay, F.R.S. And of the Royal Academy of Sciences at Paris, to His Grace Charles Duke of Richmond and Lenox, Concerning Electricity. Translated from the French by T. S. M D. Philos. Trans. R. Soc. Lond. 1733, 38, 258–266. [Google Scholar]
- Du Fay, C.F.C. Quatrième Mémoire Sur L’Électricité, De L’Attraction & Répulsion Des Corps Electriques. Mem. Acad. R. Sci. Paris 1733, 457–476. Available online: http://www.ampere.cnrs.fr/ice/ice_page_detail.php?lang=fr&type=text&bdd=koyre_ampere&table=ampere_text&typeofbookDes=Sources&bookId=80&pageChapter=Quatri%C3%A8me%20m%C3%A9moire%20sur%20l%27%C3%A9lectricit%C3%A9.&pageOrder=1&facsimile=off&search=no&num=&nav=1 (accessed on 1 June 2020).
- Franklin, B. Letters and Papers on Electricity; Sparks, J., Ed.; Childs and Peterson: Philadelphia, PA, USA, 1840. [Google Scholar]
- Lemay, J.A.L.L. Ebenezer Kinnersley. Franklin’s Friend; University of Pennsylvania Press: Philadelphia, PA, USA, 1964. [Google Scholar]
- Kinnersley, E. New Experiments in Electricity: In a Letter from Mr. Ebenezer Kinnersley, to Benjamin Franklin, Ll. D. F. R. S. Philos. Trans. R. Soc. Lond. 1763, 53, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Laming, R. On the Primary Forces of Electricity. Part 1 cont. Philos. Mag. (1798–1977) 1838, 13, 44–54. [Google Scholar]
- Laming, R. On the Primary Forces of Electricity. Part II. Philos. Mag. (1798–1977) 1838, 13, 336–339. [Google Scholar]
- Laming, R. On the Primary Forces of Electricity. Part I. Philos. Mag. (1798–1977) 1838, 12, 486–498. [Google Scholar]
- Laming, R. Observations on a Paper by Prof. Faraday Concerning Electric Conduction and the Nature of Matter. Philos. Mag. (1798–1977) 1845, 27, 420–423. [Google Scholar] [CrossRef]
- Sloggett, H. On the Constitution of Matter. Philos. Mag. (1798–1977) 1845, 27, 443–448. [Google Scholar]
- Stoney, G.J. Of the “Electron,” or Atom of Electricity. Philos. Mag. (1798–1977) 1894, 38, 418–420. [Google Scholar] [CrossRef]
- Stoney, G.J. On the Physical Units of Nature. Philos. Mag. (1798–1977) 1881, 11, 381–390. [Google Scholar] [CrossRef] [Green Version]
- Von Helmholtz, H.L.F. On the Modern Development of Faraday’s Conception of Electricity. J. Chem. Soc. Trans. 1881, 39, 277–304. [Google Scholar] [CrossRef] [Green Version]
- Stoney, G.J. On the Physical Units of Nature. Sci. Proc. R. Dublin Soc. 1883, 3, 51–60. [Google Scholar]
- O’Hara, J.G. George Johnstone Stoney, F. R. S. And the Concept of the Electron. Notes Rec. 1975, 29, 265–276. [Google Scholar] [CrossRef]
- Fitzgerald, G.F. Helmholtz Memorial Lecture. J. Chem. Soc. Trans. 1896, 69, 885–912. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.J. Cathode Rays. Philos. Mag. (1798–1977) 1897, 44, 293–316. [Google Scholar] [CrossRef] [Green Version]
- Carriers of Negative Electricity. Nobel Lecture. 11 December 1906. Available online: https://www.nobelprize.org/uploads/2018/06/thomson-lecture.pdf (accessed on 20 March 2020).
- Ramsay, W. Presidential Address. The Electron as an Element. J. Chem. Soc. Trans. 1908, 93, 774. [Google Scholar] [CrossRef] [Green Version]
- Mellor, D.P. The Evolution of the Atomic Theory; Elsevier: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Bradley, J. Before and After Cannizzaro: A Philosophical Commentary on the Development of the Atomic and Molecular Theories; Bradley, J., Ed.; Whittles Publishing: North Ferriby, UK, 1992. [Google Scholar]
- Peacocke, T.A.H.; Shaw, D.F. Atomic Theory and Structure of the Atom. Atomic and Nuclear Chemistry; Elsevier: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Kragh, H. Niels Bohr and the Quantum Atom; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Kragh, H. Before Bohr: Theories of Atomic Structure 1850–1913; University of Aarhus: Aarhus, Denmark, 2010. [Google Scholar]
- Thomson, J.J. Electricity and Matter; Charles Scribner’s Sons: New York, NY, USA, 1904. [Google Scholar]
- Lewis, G.N. Valence and Tautomerism. J. Am. Chem. Soc. 1913, 35, 1448–1455. [Google Scholar] [CrossRef]
- Lewis, G.N. The Atom and the Molecule. J. Am. Chem. Soc. 1916, 38, 762–785. [Google Scholar] [CrossRef] [Green Version]
- Kossel, W. Über Molekülbildung Als Frage des Atombaus. Ann. Phys. (Berl. Ger.) 1916, 354, 229–362. [Google Scholar] [CrossRef] [Green Version]
- Kossel, W. Über Die Physikalische Natur der Valenzkräfte. Naturwissenschaften 1919, 7, 360–366. Available online: http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN001123688 (accessed on 5 June 2020).
- Kossel, W. Über Die Physikalische Natur der Valenzkräfte. Naturwissenschaften 1919, 7, 339–345. [Google Scholar] [CrossRef]
- Abegg, R. Die Valenz Und das Periodische System. Versuch Einer Theorie der Molekularverbindungen. Z. Anorg. Chem. 1904, 39, 330–380. [Google Scholar] [CrossRef] [Green Version]
- Abegg, R.; Hinrichsen, F.W. Zum Valenzbegriff. Z. Anorg. Chem. 1905, 43, 122–124. [Google Scholar] [CrossRef] [Green Version]
- Abegg, R. Einige Bemerkungen Zur Valenztheorie. Z. Anorg. Chem. 1905, 43, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.J. On the Structure of the Molecule and Chemical Combination. Philos. Mag. (1798–1977) 1921, 41, 510–544. [Google Scholar] [CrossRef]
- Thomson, J.J. The Forces Between Atoms and Chemical Affinity. Philos. Mag. (1798–1977) 1914, 27, 757–789. [Google Scholar] [CrossRef]
- Thomson, J.J. The Electron in Chemistry. J. Frankl. Inst. 1923, 196, 1–29. [Google Scholar] [CrossRef]
- Thomson, J.J. The Electron in Chemistry. J. Frankl. Inst. 1923, 195, 737–785. [Google Scholar] [CrossRef]
- Thomson, J.J. The Electron in Chemistry. J. Frankl. Inst. 1923, 195, 593–620. [Google Scholar] [CrossRef]
- Thomson, J.J. The Electron in Chemistry. J. Frankl. Inst. 1923, 196, 145–180. [Google Scholar] [CrossRef]
- Langmuir, I. The Structure of Atoms and the Octet Theory of Valence. Proc. Natl. Acad. Sci. USA 1919, 5, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The Arrangement of Electrons in Atoms and Molecules. J. Am. Chem. Soc. 1919, 41, 868–934. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. Isomorphism, Isosterism and Covalence. J. Am. Chem. Soc. 1919, 41, 1543–1559. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The Octet Theory of Valence and Its Applications with Special Reference to Organic Nitrogen Compounds. J. Am. Chem. Soc. 1920, 42, 274–292. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. Theories of Atomic Structure. Nature (Lond. UK) 1920, 105, 261. [Google Scholar] [CrossRef]
- Langmuir, I. Types of Valence. Science 1921, 54, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Latimer, W.M.; Rodebush, W.H. Polarity and Ionization from the Standpoint of the Lewis Theory of Valence. J. Am. Chem. Soc. 1920, 42, 1419–1433. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.N. Valence and the Structure of Atoms and Molecules; Chemical Catalog Company: New York, NY, USA, 1923. [Google Scholar]
- Thomson, J.J. The Electronic Theory of Valency. A General Discussion. Trans. Faraday Soc. 1923, 19, 450–451. [Google Scholar] [CrossRef]
- Rideal, E.K. Summary of General Discussion on the Electronic Theory of Valency. Trans. Faraday Soc. 1923, 19, 539–543. [Google Scholar] [CrossRef]
- Thomson, J.J.; Fowler, R.H.; Noyes, W.A.; Bragg, W.; Henri, V.; Bury, C.R.; Lowry, T.M. Discussion on Part I. Trans. Faraday Soc. 1923, 19, 476–482. [Google Scholar] [CrossRef]
- Lapworth, A.; Norrish, R.G.W.; Walker, E.E.; Noyes, W.A.; Kenner, J.; Thorpe, J.F.; Heilbron, I.M.; Burkhardt, G.N.; Robinson, R.; Lewis, G.N.; et al. Discussion on Part II Trans. Faraday Soc. 1923, 19, 518–537. [Google Scholar] [CrossRef]
- Lewis, G.N. Introductory Address: Valence and the Electron. Trans. Faraday Soc. 1923, 19, 452. [Google Scholar] [CrossRef]
- Lowry, T.M. The Electronic Theory of Valency. Part I. Intramolecular Ionisation. Trans. Faraday Soc. 1923, 18, 285–295. [Google Scholar] [CrossRef]
- Lowry, T.M. Intramolecular Ionisation in Organic Compounds. Trans. Faraday Soc. 1923, 19, 488. [Google Scholar] [CrossRef]
- Fowler, R.H. Bohr’s Atom in Relation to the Problem of Covalency. Trans. Faraday Soc. 1923, 19, 459–468. [Google Scholar] [CrossRef]
- Lowry, T.M. Introductory Address to Part II: Applications in Organic Chemistry of the Electronic Theory of Valency. Trans. Faraday Soc. 1923, 19, 485–487. [Google Scholar] [CrossRef]
- Robinson, R. Octet Stability in Relation to Orientation and Reactivity in Carbon Compounds. Trans. Faraday Soc. 1923, 19, 506. [Google Scholar] [CrossRef]
- Sidgwick, N.V. The Nature of the Non-Polar Link. Trans. Faraday Soc. 1923, 19, 469–475. [Google Scholar] [CrossRef]
- Lewis, G.N. The Conservation of Photons. Nature (Lond. UK) 1926, 118, 874–875. [Google Scholar] [CrossRef]
- Bacciagaluppi, G.; Valentini, A. Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Bernstein, J. Quantum Leaps; Belknap Press of Harvard University: Cambridge, MA, USA, 2009. [Google Scholar]
- Mehra, J.; Rechenberg, H. Erwin Schrödinger and the Rise of Wave Mechanics. Part 1 Schrödinger in Vienna and Zurich 1887–1925; Springer-Verlag: New York, NY, USA, 1987. [Google Scholar]
- Mehra, J.; Rechenberg, H. The Quantum Theory of Planck, Einstein, Bohr, and Sommerfeld. Its Foundation and the Rise of Its Difficulties, 1900–1925; Springer-Verlag: New York, NY, USA, 1982. [Google Scholar]
- Mehra, J.; Rechenberg, H. The Historical Development of Quantum Theory, 6 Volumes; Springer-Verlag: New York, NY, USA, 1987. [Google Scholar]
- Jammer, M. The Philosophy of Quantum Mechanics. The Interpretations of Quantum Mechanics in Historical Perspective; John Wiley: New York, NY, USA, 1974. [Google Scholar]
- Stone, A.D. Einstein and the Quantum. The Quest of the Valiant Swabian; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Schrödinger, E. Bohrs Neue Strahlungshypothese Und der Energiesatz. Naturwissenschaften 1924, 12, 720–724. [Google Scholar] [CrossRef]
- Heitler, W.; London, F. Wechselwirkung Neutraler Atome Und Homöopolare Bindung Nach der Quantenmechanik. Z. Phys. 1927, 44, 455–472. [Google Scholar] [CrossRef]
- Heitler, W. Elektronenaustausch Und Molekülbildung. Nachr. Ges. Wiss. GoettingenMath. Phys. Kl. 1927, 368–374. Available online: https://eudml.org/doc/59240 (accessed on 1 June 2020).
- Heitler, W. Zur Gruppentheorie der Homöopolaren Chemischen Bindung. Z. Phys. 1928, 47, 835–858. [Google Scholar] [CrossRef]
- Heitler, W. Zur Gruppentheorie der Wechselwirkung von Atomen. Z. Phys. 1928, 51, 805–816. [Google Scholar] [CrossRef]
- Heitler, W.; Herzberg, G. Eine Spektroskopische Bestätigung der Quantenmechanischen Theorie der Homopolaren Bindung. Z. Phys. 1929, 53, 52–56. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic Shielding Constants. Phys. Rev. 1930, 36, 57–64. [Google Scholar] [CrossRef]
- Eckart, C. The Theory and Calculation of Screening Constants. Phys. Rev. 1930, 36, 878–892. [Google Scholar] [CrossRef]
- Pauling, L. Die Abschirmungskonstanten der Relativistischen Oder Magnetischen Röntgenstrahlendubletts. Z. Phys. 1927, 40, 344–350. [Google Scholar] [CrossRef]
- Zener, C. Analytic Atomic Wave Functions. Phys. Rev. 1930, 36, 51–56. [Google Scholar] [CrossRef]
- Slater, J.C. Molecular Orbital and Heitler–London Methods. J. Chem. Phys. 1965, 43, S11–S17. [Google Scholar] [CrossRef]
- Slater, J.C. Quantum Theory of Molecules and Solids: Electronic Structure of Molecules; McGraw-Hill: New York, NY, USA, 1963. [Google Scholar]
- Murrell, J.N. The Origins and Later Developments of Molecular Orbital Theory. Int. J. Quantum Chem. 2012, 112, 2875–2879. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Structures of Polyatomic Molecules and Valence. Phys. Rev. 1932, 40, 55–62. [Google Scholar] [CrossRef]
- Mulliken, R.S. The Assignment of Quantum Numbers for Electrons in Molecules. I. Phys. Rev. 1928, 32, 186–222. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic States and Band Spectrum Structure in Diatomic Molecules. I. Statement of the Postulates. Interpretation of CuH, CH, and CO Band-Types. Phys. Rev. 1926, 28, 481–506. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic States and Band Spectrum Structure in Diatomic Molecules. IV. Hund’s Theory; Second Positive Nitrogen and Swan Bands; Alternating Intensities. Phys. Rev. 1927, 29, 637–649. [Google Scholar] [CrossRef]
- Mulliken, R.S. The Assignment of Quantum Numbers for Electrons in Molecules. III. Diatomic Hydrides. Phys. Rev. 1929, 33, 730–747. [Google Scholar] [CrossRef]
- Mulliken, R.S. Bonding Power of Electrons and Theory of Valence. Chem. Rev. 1931, 9, 347–388. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations. Phys. Rev. 1932, 41, 49–71. [Google Scholar] [CrossRef]
- Mulliken, R.S. The Interpretation of Band Spectra Part III. Electron Quantum Numbers and States of Molecules and Their Atoms. Rev. Mod. Phys. 1932, 4, 1–86. [Google Scholar] [CrossRef]
- Lennard-Jones, J.E. The Molecular Orbital Theory of Chemical Valency.2. Equivalent Orbitals in Molecules of Known Symmetry. Proc. R. Soc. Lond. Ser. A 1949, 198, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Lennerd-Jones, J. The Molecular Orbital Theory of Chemical Valency.1. The Determination of Molecular Orbitals. Proc. R. Soc. Lond. Ser. A 1949, 198, 1–13. [Google Scholar] [CrossRef]
- Lennard-Jones, J.E. The Electronic Structure of Some Diatomic Molecules. Trans. Faraday Soc. 1929, 25, 668. [Google Scholar] [CrossRef]
- Hund, F. Zur Deutung der Molekelspektren. II. Z. Phys. 1927, 42, 93–120. [Google Scholar] [CrossRef]
- Hund, F. Zur Deutung der Molekelspektren. IV. Z. Phys. 1928, 51, 759–795. [Google Scholar] [CrossRef]
- Rutherford, E. The Scattering of α and β Particles by Matter and the Structure of the Atom. Philos. Mag. 1911, 21, 669–688. [Google Scholar] [CrossRef]
- Bohr, N.I. On the Constitution of Atoms and Molecules. Philos. Mag. 1913, 26, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Bohr, N. On the Constitution of Atoms and Molecules. Philos. Mag. 1913, 26, 476–502. [Google Scholar] [CrossRef] [Green Version]
- Bohr, N. On the Constitution of Atoms and Molecules. Philos. Mag. 1913, 26, 857–875. [Google Scholar] [CrossRef] [Green Version]
- Bohr, N. The Spectra of Helium and Hydrogen. Nature 1913, 92, 231–232. [Google Scholar] [CrossRef]
- Bohr, N. Atomic Structure. Nature 1921, 107, 104–107. [Google Scholar] [CrossRef]
- Lakhtakia, A. Models and Modelers of Hydrogen; World Scientific: Singapore, 1996. [Google Scholar]
- Rydberg, J.R. On the Structure of the Line-Spectra of the Chemical Elements. Philos. Mag. 1890, 29, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Rydberg, J.R. Recherches Sur La Constitution des Spectres D’Émission Des Éléments Chimiques”. Kgl. Sven. Vetensk. Akad. Handl. Stock. 1890, 23, 1–159. [Google Scholar]
- Balmer, J.J. Notiz Über Die Spectrallinien des Wasserstoffs. Ann. Phys. (Berl. Ger.) 1885, 261, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Ritz, W. Magnetische Atomfelder Und Serienspektren. Ann. Phys. (Berl. Ger.) 1908, 330, 660–696. [Google Scholar] [CrossRef] [Green Version]
- Purrington, R.D. The Heroic Age. The Creation of Quantum Mechanics, 1925–1940; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Hund, F. Linienspektren Und Periodisches System der Elemente; Springer: Vienna, Austria, 1927. [Google Scholar]
- Sommerfeld, A. Atomic Structure and Spectral Lines; Methuen: London, UK, 1923. [Google Scholar]
- Jensen, W.B. The Origin of the s, p, d, f Orbital Labels. J. Chem. Educ. 2007, 84, 757. [Google Scholar] [CrossRef]
- Gallup, G.A. A Short History of Valence Bond Theory. In Valence Bond Theory; Cooper, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 1–39. [Google Scholar]
- Kołos, W. Sixty Years Since the Heitler-London Paper. The Origin, Development and Significance of the Heitler-London Approach. In Perspectives in Quantum Chemistry; Jortner, J., Pullman, B., Eds.; Springer: Dordrecht, The Netherlands, 1989; pp. 145–159. [Google Scholar]
- Pauling, L. The Shared-Electron Chemical Bond. Proc. Natl. Acad. Sci. USA 1928, 14, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Pauling, L. The Nature of the Chemical Bond. Application of Results Obtained from the Quantum Mechanics and from a Theory of Paramagnetic Susceptibility to the Structure of Molecules. J. Am. Chem. Soc. 1931, 53, 1367–1400. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond. IV The Energy of Single Bonds and the Relative Electronegativity of Atoms. J. Am. Chem. Soc. 1932, 54, 3570–3582. [Google Scholar] [CrossRef]
- Van Vleck, J.H. On the Theory of the Structure of CH4and Related Molecules. Part II. J. Chem. Phys. 1933, 1, 177–182. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry; Cornell University Press: Ithaca, NY, USA, 1939. [Google Scholar]
- Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1940. [Google Scholar]
- Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed.; Cornell University Press: Ithaca, NY, USA, 1960. [Google Scholar]
- Bethe, H. Termaufspaltung in Kristallen. Ann. Phys. (Berl. Ger.) 1929, 395, 133–208. [Google Scholar] [CrossRef]
- Van Vleck, J.H. Theory of Electric and Magnetic Susceptibilities; Oxford University Press: Oxford, UK, 1932. [Google Scholar]
- Karachalios, A. Erich Hückel (1896–1980); Springer: Dordrecht, Germany, 2010. [Google Scholar]
- Hückel, E. Quanstentheoretische Beiträge Zum Benzolproblem. Z. Phys. 1931, 72, 310–337. [Google Scholar] [CrossRef]
- Hückel, E. Quantentheoretische Beiträge Zum Benzolproblem. Z. Phys. 1931, 70, 204–286. [Google Scholar] [CrossRef]
- Hückel, E. Quantentheoretische Beiträge Zum Problem der Aromatischen Und Ungesüttigten Verbindungen. III. Z. Phys. 1932, 76, 628–648. [Google Scholar] [CrossRef]
- Hückel, E. Die Freien Radikale der Organischen Chemie. Z. Phys. 1933, 83, 632–668. [Google Scholar] [CrossRef]
- Coulson, C.A.; O’Leary, B.; Mallion, R.B. Hückel Theory for Organic Chemists; Academic Press: London, UK, 1978. [Google Scholar]
- Heilbronner, E.; Straub, W. HMO Hückel Molecular Orbitals; Springer: Berlin, Germany, 1966. [Google Scholar]
- Yates, K. Hückel Molecular Orbital Theory; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Gleiter, R.; Haberhauer, G. Aromaticity and Other Conjugation Effects; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Badger, G.M. Aromatic Character and Aromaticity; Cambridge University Press: London, UK, 1969. [Google Scholar]
- Minkin, V.I.; Glukhovtsev, M.N.; Simkin, B.Y. Aromaticity and Antiaromaticity; Wiley-Interscience: New York, NY, USA, 1994. [Google Scholar]
- Hoffmann, R. Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures; Wiley-VCH: New York, NY, USA, 1989. [Google Scholar]
- Smith, S.J.; Sutcliffe, B.T. The Development of Computational Chemistry in the United Kingdom. In Reviews in Computational Chemistry, Vol. 10; Lipkowitz, K.B., Boyd, D.B., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996; pp. 271–313. [Google Scholar]
- Pritchard, H.O.; Sumner, F.H. The Application of Electronic Digital Computers to Molecular Orbital Problems—Ii. A New Approximation for Hetero-Atom Systems. Proc. R. Soc. Lond. Ser. A 1956, 235, 136–143. [Google Scholar] [CrossRef]
- Gray, B.F.; Pritchard, H.O. A New Solution of the Wave Equation for H. J. Chem. Soc. 1957, 3578. [Google Scholar] [CrossRef]
- Pritchard, H.O.; Sumner, F.H. A Property of ‘Repeating’ Secular Determinants. Philos. Mag. (1798–1977) 1954, 45, 466–470. [Google Scholar] [CrossRef]
- Pritchard, H.O.; Sumner, F.H. The Application of Electronic Digital Computers to Molecular Orbital Problems I. The Calculation of Bond Lengths in Aromatic Hydrocarbons. Proc. R. Soc. Lond. Ser. A 1954, 226, 128–140. [Google Scholar] [CrossRef]
- Foster, J.M.; Boys, S.F. A Quantum Variational Calculation for Hcho. Rev. Mod. Phys. 1960, 32, 303–304. [Google Scholar] [CrossRef]
- Foster, J.M.; Boys, S.F. Quantum Variational Calculations for a Range of CH2configurations. Rev. Mod. Phys. 1960, 32, 305–307. [Google Scholar] [CrossRef]
- Boys, S.F.; Price, V.E. Electronic Wave Functions—A Calculation of Eight Variational Wave Functions for C1, C1−, S and S. Philos. Trans. R. Soc. A 1954, 246, 451–462. [Google Scholar] [CrossRef]
- Boys, S.F.; Sahni, R.C. Electronic Wave Functions—The Evaluation of the General Vector-Coupling Coefficients by Automatic Computation. Philos. Trans. R. Soc. A 1954, 246, 463–479. [Google Scholar] [CrossRef]
- Boys, S.F.; Cook, G.B.; Reeves, C.M.; Shavitt, I. Automatic Fundamental Calculations of Molecular Structure. Nature (Lond. UK) 1956, 178, 1207–1209. [Google Scholar] [CrossRef]
- Shavitt, I.; Boys, S.F. A General Expression for Intermolecular Potentials. Nature (Lond. UK) 1956, 178, 1340. [Google Scholar] [CrossRef]
- Boys, S.F. The Integral Formulae for the Variational Solution of the Molecular Many-Electron Wave Equation in Terms of Gaussian Functions with Direct Electronic Correlation. Proc. R. Soc. Lond. Ser. A 1960, 258, 402–411. [Google Scholar] [CrossRef]
- Boys, S.F.; Cook, G.B. Mathematical Problems in the Complete Quantum Predictions of Chemical Phenomena. Rev. Mod. Phys. 1960, 32, 285–295. [Google Scholar] [CrossRef]
- Boys, S.F. Construction of Some Molecular Orbitals to be Approximately Invariant for Changes from One Molecule to Another. Rev. Mod. Phys. 1960, 32, 296–299. [Google Scholar] [CrossRef]
- Boys, S.F. Electronic Wave Functions—I. A General Method of Calculation for the Stationary States of Any Molecular System. Proc. R. Soc. Lond. Ser. A 1950, 200, 542–554. [Google Scholar] [CrossRef]
- Roothaan, C.C.J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951, 23, 69–89. [Google Scholar] [CrossRef]
- Zerner, M.C. Perspective on “New Developments in Molecular Orbital Theory”. In Theoretical Chemistry Accounts; Cramer, C.J., Truhlar, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 217–218. [Google Scholar]
- Bolcer, J.D.; Hermann, R.B. The Development of Computational Chemistry in the United States. In Reviews in Computational Chemistry, Vol. 5; Lipkowitz, K.B., Boyd, D.B., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 1–63. [Google Scholar]
- Hall, G.G. The Molecular Orbital Theory of Chemical Valency VIII. A Method of Calculating Ionization Potentials. Proc. R. Soc. Lond. Ser. A 1951, 205, 541–552. [Google Scholar] [CrossRef]
- Schaefer, H.F. A History of Ab Initio Computational Quantum Chemistry: 1950–1960. Tetrahedron Comput. Methodol. 1988, 1, 97–102. [Google Scholar] [CrossRef]
- Parr, R.G.; Crawford, B.L. On Quantum-Mechanical Methods in Valence Theory. Proc. Natl. Acad. Sci. USA 1952, 38, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.; Friedman, R.H.; Hurst, R.P.; Matsen, F.A. Electronic Energy of LiH and BeH. J. Chem. Phys. 1957, 27, 1385–1387. [Google Scholar] [CrossRef]
- Mulliken, R.S.; Roothaan, C.C.J. Broken Bottlenecks and the Future of Molecular Quantum Mechanics. Proc. Nat. Acad. Sci. USA 1959, 45, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, R. An Extended Hückel Theory. I. Hydrocarbons. J. Chem. Phys. 1963, 39, 1397–1412. [Google Scholar] [CrossRef]
- Whangbo, M.-H. Perspective on “an Extended Hückel Theory. I. Hydrocarbons”. In Theoretical Chemistry Accounts; Springer: Berlin/Heidelberg, Germany, 2000; pp. 252–256. [Google Scholar]
- Hartree, D.R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Math. Proc. Camb. Philos. Soc. 1928, 24, 111–132. [Google Scholar] [CrossRef]
- Slater, J.C. Note on Hartree’s Method. Phys. Rev. 1930, 35, 210–211. [Google Scholar] [CrossRef]
- Fock, V. “Selfconsistent Field” Mit Austausch Für Natrium. Z. Phys. 1930, 62, 795–805. [Google Scholar] [CrossRef]
- Fock, V. Näherungsmethode Zur Lösung des Quantenmechanischen Mehrkörperproblems. Z. Phys. 1930, 61, 126–148. [Google Scholar] [CrossRef]
- Dewar, M.J.S.; Thiel, W. Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters. J. Am. Chem. Soc. 1977, 99, 4899–4907. [Google Scholar] [CrossRef]
- Pople, J.A.; Santry, D.P.; Segal, G.A. Approximate Self-consistent Molecular Orbital Theory. I. Invariant Procedures. J. Chem. Phys. 1965, 43, S129–S135. [Google Scholar] [CrossRef]
- Pople, J.A.; Segal, G.A. Approximate Self-consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap. J. Chem. Phys. 1965, 43, S136–S151. [Google Scholar] [CrossRef]
- Pople, J.A.; Segal, G.A. Approximate Self-consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems. J. Chem. Phys. 1966, 44, 3289–3296. [Google Scholar] [CrossRef]
- Pople, J.A.; Beveridge, D.L.; Dobosh, P.A. Approximate Self-consistent Molecular-Orbital Theory. V. Intermediate Neglect of Differential Overlap. J. Chem. Phys. 1967, 47, 2026–2033. [Google Scholar] [CrossRef]
- Bingham, R.C.; Dewar, M.J.S.; Lo, D.H. Ground States of Molecules. XXV. MINDO/3. Improved Version of the MINDO Semiempirical SCF-MO Method. J. Am. Chem. Soc. 1975, 97, 1285–1293. [Google Scholar] [CrossRef]
- Ridley, J.; Zerner, M. An Intermediate Neglect of Differential Overlap Technique for Spectroscopy: Pyrrole and the Azines. Chim. Acta 1973, 32, 111–134. [Google Scholar] [CrossRef]
- Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and Use of Quantum Mechanical Molecular Models. 76. AM1: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 1985, 107, 3902–3909. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods I. Method. J. Comp. Chem. 1989, 10, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods II. Applications. J. Comp. Chem. 1989, 10, 221–264. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, as, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. J. Comp. Chem. 1991, 12, 320–341. [Google Scholar] [CrossRef]
- Stewart, J.J. Optimization of Parameters for Semiempirical Methods IV: Extension of MNDO, AM1, and PM3 to More Main Group Elements. J. Mol. Model. 2004, 10, 155–164. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Kryachko, E.S.; Ludeña, E.V. Density Functional Theory: Foundations Reviewed. Phys. Rep. 2014, 544, 123–239. [Google Scholar] [CrossRef]
- Mardirossian, N.; Head-Gordon, M. Thirty Years of Density Functional Theory in Computational Chemistry: An Overview and Extensive Assessment of 200 Density Functionals. Mol. Phys. 2017, 115, 2315–2372. [Google Scholar] [CrossRef]
- Becke, A.D. Perspective: Fifty Years of Density-Functional Theory in Chemical Physics. J. Chem. Phys. 2014, 140, 18A301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, M.; Karplus, M. Electron Correlation and Density-Functional Methods. J. Phys. Chem. 1987, 91, 31–37. [Google Scholar] [CrossRef]
- Holas, A. Resolving Controversy About the Correlation Potential of Density-Functional Theory Far Outside a Finite System. Phys. Rev. A 2008, 78. [Google Scholar] [CrossRef]
- Hammes-Schiffer, S. A Conundrum for Density Functional Theory. Science 2017, 355, 28–29. [Google Scholar] [CrossRef]
- Chachiyo, T.; Chachiyo, H. Understanding Electron Correlation Energy Through Density Functional Theory. Comput. Chem. 2020, 1172, 112669. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Truhlar, D.G. Status and Challenges of Density Functional Theory. Trends Chem. 2020, 2, 302–318. [Google Scholar] [CrossRef]
- Schmid, E.; Ziegelmann, H. The Quantum Mechanical Three-Body Problem; Pergamon: Oxford, UK, 1974. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Adamo, C.; Jacquemin, D. The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. [Google Scholar] [CrossRef]
- Cohen, A.J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289–320. [Google Scholar] [CrossRef]
- Liu, W.; Xiao, Y. Relativistic Time-Dependent Density Functional Theories. Chem. Soc. Rev. 2018, 47, 4481–4509. [Google Scholar] [CrossRef]
- Marques, M.A.L.; Maitra, N.T.; Nogueira, F.M.S.; Gross, E.K.U.; Rubio, A. Fundamentals of Time-Dependent Density Functional Theory; Springer-Verlag: Berlin, Germany, 2012. [Google Scholar]
- Löwdin, P.-O. Quantum Theory of Many-Particle Systems. I. Physical Interpretations By Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys. Rev. 1955, 97, 1474–1489. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. Natural Bond Orbital Methods. Wires Comput. Mol. Sci 2012, 2, 1–42. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.R. Valency and Bonding; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Dunnington, B.D.; Schmidt, J.R. Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces Via Plane-Wave Density Functional Theory. J. Chem. Theory. Comput. 2012, 8, 1902–1911. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.J. Natural Bond Orbitals and the Nature of the Hydrogen Bond. J. Phys. Chem. A 2017, 121, 1531–1534. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, F.; Glendening, E.D. Comment on “natural Bond Orbitals and the Nature of the Hydrogen Bond”. J. Phys. Chem. A 2018, 122, 724–732. [Google Scholar] [CrossRef] [Green Version]
- Stone, A.J.; Szalewicz, K. Reply to “comment on ‘Natural Bond Orbitals and the Nature of the Hydrogen Bond’”. J. Phys. Chem. A 2018, 122, 733–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubarev, D.Y.; Boldyrev, A.I. Developing Paradigms of Chemical Bonding: Adaptive Natural Density Partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207. [Google Scholar] [CrossRef] [PubMed]
- Zubarev, D.Y.; Boldyrev, A.I. Deciphering Chemical Bonding in Golden Cages. J. Phys. Chem. A 2009, 113, 866–868. [Google Scholar] [CrossRef]
- Zubarev, D.Y.; Boldyrev, A.I. Revealing Intuitively Assessable Chemical Bonding Patterns in Organic Aromatic Molecules Via Adaptive Natural Density Partitioning. J. Org. Chem. 2008, 73, 9251–9258. [Google Scholar] [CrossRef]
- Cotton, F.A.; Murillo, C.A.; Walton, R.A. Multiple Bonds Between Metal Atoms; Springer Science & Business Media: New York, NY, USA, 2005. [Google Scholar]
- Cotton, F.A.; Harris, C.B. The Crystal and Molecular Structure of Dipotassium Octachlorodirhenate(III) Dihydrate, K2[Re2Cl8].2H2O. Inorg. Chem. 1965, 4, 330–333. [Google Scholar] [CrossRef]
- Nguyen, T.; Sutton, A.D.; Brynda, M.; Fettinger, J.C.; Long, G.J.; Power, P.P. Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers. Science 2005, 310, 844–847. [Google Scholar] [CrossRef]
- Brynda, M.; Gagliardi, L.; Widmark, P.-O.; Power, P.P.; Roos, B.O. A Quantum Chemical Study of the Quintuple Bond Between Two Chromium Centers in [PhCRCRPh]: Trans-Bent Versus Linear Geometry. Angew. Chem. Int. Ed. 2006, 45, 3804–3807. [Google Scholar] [CrossRef] [Green Version]
- Merino, G.; Donald, K.J.; D’Acchioli, J.S.; Hoffmann, R. The Many Ways to Have a Quintuple Bond. J. Am. Chem. Soc. 2007, 129, 15295–15302. [Google Scholar] [CrossRef]
- Gagliardi, L.; Roos, B.O. Quantum Chemical Calculations Show That the Uranium Molecule U2 Has a Quintuple Bond. Nature (Lond. UK) 2005, 433, 848–851. [Google Scholar] [CrossRef]
- Kreisel, K.A.; Yap, G.P.A.; Dmitrenko, O.; Landis, C.R.; Theopold, K.H. The Shortest Metal−Metal Bond Yet: Molecular and Electronic Structure of a Dinuclear Chromium Diazadiene Complex. J. Am. Chem. Soc. 2007, 129, 14162–14163. [Google Scholar] [CrossRef]
- Roos, B.; Borin, A.; Gagliardi, L. Reaching the Maximum Multiplicity of the Covalent Chemical Bond. Angew. Chem. Int. Ed. 2007, 46, 1469–1472. [Google Scholar] [CrossRef] [Green Version]
- Kraus, D.; Lorenz, M.; Bondybey, V.E. On the Dimers of the VIb Group: A New NIR Electronic State of Mo2. Phys. Chem. Comm. 2001, 4, 44. [Google Scholar] [CrossRef]
- Borin, A.C.; Gobbo, J.P.; Roos, B.O. Electronic Structure and Chemical Bonding in W2 Molecule. Chem. Phys. Lett. 2010, 490, 24–28. [Google Scholar] [CrossRef]
- Borin, A.C.; Gobbo, J.P.; Roos, B.O. A Theoretical Study of the Binding and Electronic Spectrum of the Mo2 Molecule. Chem. Phys. 2008, 343, 210–216. [Google Scholar] [CrossRef]
- Goodgame, M.M.; Goddard, W.A. The “sextuple” Bond of Chromium Dimer. J. Phys. Chem. 1981, 85, 215–217. [Google Scholar] [CrossRef]
- Bursten, B.E.; Cotton, F.A.; Hall, M.B. Dimolybdenum: Nature of the Sextuple Bond. J. Am. Chem. Soc. 1980, 102, 6348–6349. [Google Scholar] [CrossRef]
- Wambaugh, J. The Delta Star; Bantam: New York, NY, USA, 1984. [Google Scholar]
- Needham, P. Hydrogen Bonding: Homing in on a Tricky Chemical Concept. Stud. Hist. Philos. Sci. A 2013, 44, 51–65. [Google Scholar] [CrossRef]
- Werner, A. Über Haupt- Und Nebenvalenzen Und Die Constitution der Ammoniumverbindungen. Justus Liebig’s Ann. Chem. 1902, 322, 261–296. [Google Scholar] [CrossRef]
- Glasstone, S. The Structure of Some Molecular Complexes in the Liquid Phase. Trans. Faraday Soc. 1937, 33, 200. [Google Scholar] [CrossRef]
- Desiraju, G.; Steiner, T. The Weak Hydrogen Bond; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Steiner, T.; Desiraju, G.R. Distinction Between the Weak Hydrogen Bond and the Van der Waals Interaction. Chem. Commun. (Camb. UK) 1998, 891–892. [Google Scholar] [CrossRef]
- Gu, Y.; Kar, T.; Scheiner, S. Fundamental Properties of the CH···O Interaction: Is it a True Hydrogen Bond. J. Am. Chem. Soc. 1999, 121, 9411–9422. [Google Scholar] [CrossRef]
- Desiraju, G.R. A Bond by Any Other Name. Angew. Chem. Int. Ed. Engl. 2011, 50, 52–59. [Google Scholar] [CrossRef]
- Pyykkö, P.; Li, J.; Runeberg, N. Predicted Ligand Dependence of the Au(I)…Au(I) Attraction in (XAuPh3)2. Chem. Phys. Lett. 1994, 218, 133–138. [Google Scholar] [CrossRef]
- Bardají, M.; Laguna, A. Gold Chemistry: The Aurophilic Attraction. J. Chem. Educ. 1999, 76, 201. [Google Scholar] [CrossRef]
- Otten, B.M.; Melançon, K.M.; Omary, M.A. All That Glitters is Not Gold: A Computational Study of Covalent vs. Metallophilic Bonding in Bimetallic Complexes of d10 Metal Centers—A Tribute to Al Cotton on the Tenth Anniversary of His Passing. Comments Inorg. Chem. 2018, 38, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Scherbaum, F.; Grohmann, A.; Huber, B.; Krüger, C.; Schmidbaur, H. “Aurophilicity” as a Consequence of Relativistic Effects: The Hexakis(triphenylphosphaneaurio)methane Dication. Angew. Chem. Int. Ed. Engl. 1988, 27, 1544–1546. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Schier, A. A Briefing on Aurophilicity. Chem. Soc. Rev. 2008, 37, 1931–1951. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Schier, A. Aurophilic Interactions as a Subject of Current Research: An Up-Date. Chem. Soc. Rev. 2012, 41, 370–412. [Google Scholar] [CrossRef] [PubMed]
- Schmidbaur, H. The Aurophilicity Phenomenon: A Decade of Experimental Findings, Theoretical Concepts and Emerging Applications. Gold Bull. (Berl. Ger.) 2000, 33, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Bader, R.F.W. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Bader, R.F.W. The Quantum Mechanical Basis of Conceptual Chemistry. Mon. Chem. 2005, 136, 819–854. [Google Scholar] [CrossRef]
- Popelier, P.L.A. The Qtaim Perspective of Chemical Bonding. In The Chemical Bond; Wiley-VCH: Weinheim, Germany, 2014; pp. 271–308. [Google Scholar]
- Cortés-Guzmán, F.; Bader, R. Complementarity of QTAIM and MOTheory in the Study of Bonding in Donor-Acceptor Complexes. Coord. Chem. Rev. 2005, 249, 633–662. [Google Scholar] [CrossRef]
- Becke, A.D.; Edgecombe, K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Ball, P. Beyond the Bond. Nature (Lond. UK) 2011, 469, 26–28. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constable, E.C.; Housecroft, C.E. Chemical Bonding: The Journey from Miniature Hooks to Density Functional Theory. Molecules 2020, 25, 2623. https://doi.org/10.3390/molecules25112623
Constable EC, Housecroft CE. Chemical Bonding: The Journey from Miniature Hooks to Density Functional Theory. Molecules. 2020; 25(11):2623. https://doi.org/10.3390/molecules25112623
Chicago/Turabian StyleConstable, Edwin C., and Catherine E. Housecroft. 2020. "Chemical Bonding: The Journey from Miniature Hooks to Density Functional Theory" Molecules 25, no. 11: 2623. https://doi.org/10.3390/molecules25112623
APA StyleConstable, E. C., & Housecroft, C. E. (2020). Chemical Bonding: The Journey from Miniature Hooks to Density Functional Theory. Molecules, 25(11), 2623. https://doi.org/10.3390/molecules25112623