High-CO2 Modified Atmosphere Packaging with Superchilling (−1.3 °C) Inhibit Biochemical and Flavor Changes in Turbot (Scophthalmus maximus) during Storage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Holding Capacity (WHC)
2.2. Total Volatile Base Nitrogen (TVB-N) Production
2.3. Evaluation of Thiobarbituric Acid Reactive Substances (TBARS) Values
2.4. K Values
2.5. Water Distribution by Low Field Nuclear Magnetic Resonance (LF-NMR) Analysis
2.6. Analysis of Magnetic Resonance Imaging (MRI)
2.7. Analysis of Free Amino Acids (FAAs)
2.8. Volatile Organic Chemicals (VOCs) Profile
2.9. Microbiological Analysis
2.10. Organoleptic Evaluation
3. Materials and Methods
3.1. Preparation and Treatment of Turbot Samples
3.2. Determination of WHC
3.3. Determination of TVB-N
3.4. Determination of TBARS
3.5. Determination of K Value
3.6. LF-NMR Analysis
3.7. Headspace SPME-GC/MS Analysis
3.8. FAAs Analysis
3.9. Total Viable Count (TVC) Analysis
3.10. Organoleptic Evaluation
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, X.; Chen, Y.; Cai, L.; Xu, Y.; Yi, S.; Zhu, W.; Mi, H.; Li, J.; Lin, H. Freshness assessment of turbot (Scophthalmus maximus) by Quality Index Method (QIM), biochemical, and proteomic methods. Food Sci. Technol. 2017, 78, 172–180. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Zeng, X.-A.; Liu, D. Recent advances in methods and techniques for freshness quality determination and evaluation of fish and fish fillets: a review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1012–1225. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, Y.; Zhang, C.; Li, X.; Yi, S.; Li, J. Physicochemical responses and quality changes of turbot (Psetta maxima) during refrigerated storage. Int. J. Food Prop. 2016, 19, 196–209. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, S.; Wu, H.; Jatt, A.N.; Pan, Y.; Zeng, M. Quorum sensing involved in the spoilage process of the skin and flesh of vacuum-packaged farmed turbot (Scophthalmus maximus) stored at 4 °C. J. Food Sci. 2016, 81, M2776–M2784. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Cao, A.; Li, T.; Wu, X.; Xu, Y.; Li, J. Effect of the fumigating with essential oils on the microbiological characteristics and quality changes of refrigerated turbot (Scophthalmus maximus) fillets. Food Bioprocess Technol. 2015, 8, 844–853. [Google Scholar] [CrossRef]
- Banerjee, R.; Maheswarappa, N.B. Superchilling of muscle foods: Potential alternative for chilling and freezing. Crit. Rev. Food Sci. Nutr. 2017, 59, 1256–1263. [Google Scholar] [CrossRef]
- Magnussen, O.M.; Haugland, A.; Hemmingsen, A.K.T.; Johansen, S.; Nordtvedt, T.S. Advances in superchilling of food - Process characteristics and product quality. Trends Food Sci Technol. 2008, 19, 418–424. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Grøvlen, M.S.; Rustad, T. Superchilled, chilled and frozen storage of Atlantic mackerel (Scomber scombrus) fillets-changes in texture, drip loss, protein solubility and oxidation. Int. J. Food Sci. Technol. 2019, 54, 2228–2235. [Google Scholar] [CrossRef] [Green Version]
- Luan, L.; Fu, S.; Yuan, C.; Ishimura, G.; Chen, S.; Chen, J.; Hu, Y. Combined effect of superchilling and tea polyphenols on the preservation quality of hairtail (Trichiurus haumela). Int. J. Food Prop. 2017, 20, S992–S1001. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, T.; Zhang, C.; Li, X.; Yi, S.; Li, J.; Sun, X. Protein degradation of olive flounder (Paralichthys olivaceus) muscle after postmortem superchilled and refrigerated storage. Int. J. Food Prop. 2018, 21, 1911–1922. [Google Scholar] [CrossRef] [Green Version]
- Tsironi, T.N.; Taoukis, P.S. Effect of storage temperature and osmotic pre-treatment with alternative solutes on the shelf-life of gilthead seabream (Sparus aurata) fillets. Aquacult. Fisheries 2017, 2, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Ma, L.; Yang, H.; Xiao, Y.; Xiong, Y.L. Super-chilling (−0.7 oC) with high-CO2 packaging inhibits biochemical changes of microbiological origin in catfish (Clarias gariepinus) muscle during storage. Food Chem. 2016, 206, 182–190. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Haroutounian, S.A.; Nychas, G.-J.E.; Boziaris, I.S. Microbiological spoilage and volatiles production of gutted European sea bass stored under air and commercial modified atmosphere package at 2 oC. Food Microbiol. 2015, 50, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Etemadian, Y.; Shabanpour, B.; Mahoonak, A.S.; Shabani, A. Combination effect of phosphate and vacuum packaging on quality parameters of Rutilus frisii kutum fillets in ice. Food Res. Int. 2012, 45, 9–16. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, W.; Fan, H.; Xie, J.; Qian, Y.F. Study on the mobility of water and its correlation with the spoilage process of salmon (Salmo solar) stored at 0 and 4 °C by low-field nuclear magnetic resonance (LF NMR 1 H). J. Food Sci. Technol. 2018, 55, 173–182. [Google Scholar] [CrossRef]
- Kritikos, A.; Aska, I.; Ekonomou, S.; Mallouchos, A.; Parlapani, F.F.; Haroutounian, S.A.; Boziaris, I.S. Volatilome of chill-stored european seabass (Dicentrarchus labrax) fillets and atlantic salmon (Salmo salar) slices under modified atmosphere packaging. Molecules 2020, 25, 1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Guo, X.; Ji, M.; Wu, J.; Zhu, W.; Wang, J.; Cheng, C.; Chen, L.; Zhang, Q. Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chem. 2019, 272, 643–652. [Google Scholar] [CrossRef]
- Tsironi, T.N.; Taoukis, P.S. Modeling microbiological spoilage and quality of gilthead seabream fillets: combined effect of osmotic pretreatment, modified atmosphere packaging, and nisin on shelf life. J. Food Sci. 2010, 75, M243–M251. [Google Scholar] [CrossRef]
- Kachele, R.; Zhang, M.; Gao, Z.; Adhikari, B. Effect of vacuum packaging on the shelf-life of silver carp (Hypophthalmichthys molitrix) fillets stored at 4 oC. Food Sci. Technol. 2017, 80, 163–168. [Google Scholar]
- Alsaggaf, M.S.; Moussa, S.H.; Tayel, A.A. Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. Int. J. Biol. Macromol. 2017, 99, 499–505. [Google Scholar] [CrossRef]
- da Silva, S.B.; Ferreira, D.; Pintado, M.; Sarmento, B. Chitosan-based nanoparticles for rosmarinic acid ocular delivery - In vitro tests. Int. J. Biol. Macromol. 2016, 84, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, J.; Deng, S.; Huang, Y. Combining ozone and slurry ice to maximize shelf-life and quality of bighead croaker (Collichthys niveatus). J. Food Sci. Technol. 2016, 53, 3651–3660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.-H.; Sun, D.-W.; Qu, J.-H.; Pu, H.-B.; Zhang, X.-C.; Song, Z.; Chen, X.; Zhang, H. Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. J. Food Eng. 2016, 182, 9–17. [Google Scholar] [CrossRef]
- Qin, N.; Zhang, L.; Zhang, J.; Song, S.; Wang, Z.; Regenstein, J.M.; Luo, Y. Influence of lightly salting and sugaring on the quality and water distribution of grass carp (Ctenopharyngodon idellus) during super-chilled storage. J. Food Eng. 2017, 215, 104–112. [Google Scholar] [CrossRef]
- Li, N.; Shen, Y.; Liu, W.; Mei, J.; Xie, J. Low-field NMR and MRI to analyze the effect of edible coating incorporated with MAP on qualities of half-smooth tongue sole (Cynoglossus Semilaevis Gunther) fillets during refrigerated storage. Appl. Sci. 2018, 8, 1391. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.H.; Xiao, L.; Lan, W.Q.; Liu, S.C.; Wang, Q.; Yang, X.H.; Zhang, W.J.; Xie, J. Effects of temperature fluctuation on quality changes of large yellow croaker (Pseudosciaena crocea) with ice storage during logistics process. J. Food Process. Preserv. 2017, 42, e13505. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of biogenic amines on food quality and safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Hou, X. Histamine production by Enterobacter aerogenes in chub mackerel (Scomber japonicus) at various storage temperatures. Food Sci. Technol. 2017, 37, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Đorđević, Đ.; Buchtová, H.; Borkovcová, I. Estimation of amino acids profile and escolar fish consumption risks due to biogenic amines content fluctuations in vacuum skin packaging/VSP during cold storage. Food Sci. Technol. 2016, 66, 657–663. [Google Scholar] [CrossRef]
- Huang, W.; Xie, J. Characterization of the volatiles and quality of hybrid grouper and their relationship to changes of microbiological community during storage at 4 °C. Molecules 2020, 25, 818. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, B.L.; Alvares, T.d.S.; Sampaio, G.S.L.; Cabral, C.C.; Araujo, J.V.A.; Franco, R.M.; Mano, S.B.; Conte Junior, C.A. Influence of vacuum and modified atmosphere packaging in combination with UV-C radiation on the shelf life of rainbow trout (Oncorhynchus mykiss) fillets. Food Control 2016, 60, 596–605. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Zhao, Y.; Yu, J.; Ling, J.; Shang, H.; Liu, Z. The combined efficacy of superchilling and high CO2 modified atmosphere packaging on shelf life and quality of swimming crab (Portunus trituberculatus). J. Aquat. Food Product Technol. 2017, 26, 655–664. [Google Scholar] [CrossRef]
- Eliasson, S.; Arason, S.; Margeirsson, B.; Bergsson, A.B.; Palsson, O.P. The effects of superchilling on shelf-life and quality indicators of whole Atlantic cod and fillets. Food Sci. Technol. 2019, 100, 426–434. [Google Scholar] [CrossRef]
- Raeisi, S.; Sharifi-Rad, M.; Quek, S.Y.; Shabanpour, B.; Sharifi-Rad, J. Evaluation of antioxidant and antimicrobiological effects of shallot (Allium ascalonicum L.) fruit and ajwain (Trachyspermum ammi (L.) Sprague) seed extracts in semi-fried coated rainbow trout (Oncorhynchus mykiss) fillets for shelf-life extension. Food Sci. Technol. 2016, 65, 112–121. [Google Scholar]
- Djamal, M.; Mustapha, O.; Cuesta, A. Fish farming conditions affect to European sea bass (Dicentrarchus labrax L.) quality and shelf life during storage in ice. Aquaculture 2018, 490, 120–124. [Google Scholar]
- Cheng, J.H.; Sun, D.W.; Pu, H.B.; Wang, Q.J.; Chen, Y.N. Suitability of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet. Food Chem. 2015, 171, 258–265. [Google Scholar] [CrossRef]
- Li, N.; Mei, J.; Shen, Y.; Xie, J. Quality improvement of half-smooth tongue sole (Cynoglossus Semilaevis) fillets by chitosan coatings containing rosmarinic acid during storage. CyTA J. Food 2018, 16, 1018–1029. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, S.; Naseri, M.; Abedi, E.; Imani, A. Shelf-life enhancement of whole rainbow trout (Oncorhynchus mykiss) treated with Reshgak ice coverage. Food Sci, Nutr. 2018, 6, 953–961. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Li, P.; Fang, S.; Mei, J.; Xie, J. Preservative effects of gelatin active coating containing eugenol and higher CO2 concentration modified atmosphere packaging on chinese sea bass (Lateolabrax maculatus) during superchilling (-0.9 oC) storage. Molecules 2020, 25, 871. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, J.; Medina, I.; Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Study of the volatile compounds useful for the characterisation of fresh and frozen-thawed cultured gilthead sea bream fish by solid-phase microextraction gas chromatography–mass spectrometry. Food Chem. 2009, 115, 1473–1478. [Google Scholar] [CrossRef]
- Zhou, X.; Chong, Y.; Ding, Y.; Gu, S.; Liu, L. Determination of the effects of different washing processes on aroma characteristics in silver carp mince by MMSE–GC–MS, e-nose and sensory evaluation. Food Chem. 2016, 207, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Peinado, I.; Koutsidis, G.; Ames, J. Production of seafood flavour formulations from enzymatic hydrolysates of fish by-products. Food Sci. Technol. 2016, 66, 444–452. [Google Scholar] [CrossRef]
- Tan, Z.; Bo, T.; Guo, F.; Cui, J.; Jia, S. Effects of ε-Poly-l-lysine on the cell wall of Saccharomyces cerevisiae and its involved antimicrobiological mechanism. Int. J. Biol. Macromol. 2018, 118, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Wang, W.; Jiang, Q.; Xu, Y.; Xia, W. Effect of autochthonous starter cultures on the volatile flavour compounds of Chinese traditional fermented fish (Suan yu). Int. J. Food Sci. Technol. 2016, 51, 1630–1637. [Google Scholar] [CrossRef]
- Cecchi, T.; Sacchini, L.; Felici, A. First investigation on the shelf life of mediterranean mussels (Mytilus galloprovincialis) on the basis of their volatiles profiles. Food Anal. Method. 2018, 11, 1451–1456. [Google Scholar] [CrossRef]
- Miranda, J.M.; Carrera, M.; Barros-Velázquez, J.; Aubourg, S.P. Impact of previous active dipping in Fucus spiralis extract on the quality enhancement of chilled lean fish. Food Control 2018, 90, 407–414. [Google Scholar] [CrossRef]
- Fratini, G.; Lois, S.; Pazos, M.; Parisi, G.; Medina, I. Volatile profile of Atlantic shellfish species by HS-SPME GC/MS. Food Res. Int. 2012, 48, 856–865. [Google Scholar] [CrossRef]
- Selli, S.; Cayhan, G.G. Analysis of volatile compounds of wild gilthead sea bream (Sparus aurata) by simultaneous distillation–extraction (SDE) and GC–MS. Microchem. J. 2009, 93, 232–235. [Google Scholar] [CrossRef]
- García-Lomillo, J.; Gonzalez-SanJose, M.L.; Del Pino-García, R.; Ortega-Heras, M.; Muñiz-Rodríguez, P. Antioxidant effect of seasonings derived from wine pomace on lipid oxidation in refrigerated and frozen beef patties. Food Sci. Technol. 2017, 77, 85–91. [Google Scholar] [CrossRef]
- Zang, J.; Xu, Y.; Xia, W.; Jiang, Q. The impact of desmin on texture and water-holding capacity of ice-stored grass carp (Ctenopharyngodon idella) fillet. Int. J. Food Sci. Technol. 2017, 52, 464–471. [Google Scholar] [CrossRef]
- Li, P.; Peng, Y.; Mei, J.; Xie, J. Effects of microencapsulated eugenol emulsions on microbiological, chemical and organoleptic qualities of farmed Japanese sea bass (Lateolabrax japonicus) during cold storage. Food Sci. Technol. 2020, 118, 108831. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds ATP, ADP, AMP, IMP, HxR and Hx are available from the authors. |
Storage Time | Samples | FAAs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Asp | Thr | Ser | Glu | Gly | Ala | Val | Met | |||
Day 0 | 4.98 ± 0.12 | 8.92 ± 0.67 | 17.08 ± 1.51 | 9.23 ± 1.16 | 30.22 ± 0.14 | 30.2 ± 1.86 | 27.78 ± 4.24 | 2.68 ± 0.58 | ||
Day 15 | AP | 13.33 ± 1.14 ab | 10.82 ± 0.26 a | 16.86 ± 1.04 a | 16.76 ± 0.22 cd | 35.27 ± 0.96 a | 34.92 ± 0.66 a | 28.01 ± 0.27 a | 4.68 ± 0.23 cd | |
VP | 10.09 ± 0.39 cd | 10.26 ± 1.59 a | 11.02 ± 0.45 c | 20.59 ± 0.41 a | 24.42 ± 0.55 d | 26.85 ± 0.36 c | 17.81 ± 0.24 b | 7.11 ± 0.74 a | ||
MAP1 | 13.25 ± 1.04 ab | 8.71 ± 0.18 ab | 11.13 ± 0.75 c | 16.78 ± 0.29 cd | 24.91 ± 0.02 d | 26.16 ± 0.35 cd | 12.06 ± 0.49 d | 4.95 ± 0.1 c | ||
MAP2 | 11.23 ± 0.85 c | 10.73 ± 0.23 a | 13.78 ± 1.29 b | 20.88 ± 0.7 a | 26.24 ± 0.04 b | 23.13 ± 0.3 f | 10.58 ± 0.61 e | 3.91 ± 0.19 e | ||
MAP3 | 16.24 ± 2.06 a | 9.03 ± 2.18 ab | 8.10 ± 0.36 e | 19.36 ± 0.29 b | 22.82 ± 0.42 e | 25.21 ± 0.63 cde | 8.91 ± 0.22 f | 6.08 ± 0.09 b | ||
MAP4 | 14.18 ± 2.03 ab | 10.65 ± 2.19 a | 9.4 ± 0.16 d | 17.11 ± 0.32 e | 25.01 ± 0.01 c | 27.74 ± 0.29 b | 14.36 ± 0.11 c | 6.54 ± 0.15 a | ||
Day 27 | MAP1 | 3.17 ± 0.36 b | 9.58 ± 0.05 b | 13.08 ± 0.12 b | 12.46 ± 0.12 bc | 16.46 ± 0.03 b | 15.38 ± 0.28 d | 23.51 ± 2.11 a | 2.99 ± 0.53 a | |
MAP2 | 5.1 ± 0.13 a | 12.26 ± 0.12 a | 14.14 ± 0.07 a | 18.86 ± 0.13 a | 20.42 ± 0.18 a | 18.84 ± 0.39 c | 15.45 ± 1.03 b | 2.34 ± 0.16 ab | ||
MAP3 | 2.73 ± 0.18 bc | 9.55 ± 0.08 b | 9.56 ± 0.26 c | 12.70 ± 1.15b c | 10.20 ± 0.16 d | 21.41 ± 1.25 ab | 8.75 ± 0.11 d | 2.67 ± 0.16 a | ||
MAP4 | 1.79 ± 0.08 d | 6.18 ± 0.15 c | 5.34 ± 0.23 d | 14.02 ± 0.35 b | 13.23 ± 0.42 c | 22.96 ± 0.32 a | 11.18 ± 1.35 c | 1.12 ± 0.13 c | ||
Ile | Leu | Tyr | Phe | Lys | His | Arg | Pro | Total | ||
Day 0 | 2.51 ± 0.41 | 4.52 ± 0.02 | 1.54 ± 0.68 | 4.09 ± 0.43 | 8±3.51 | 1.91 ± 0.55 | 2.99 ± 0.25 | 6.23 ± 0.15 | 162.88 ± 8.58 | |
Day 15 | AP | 4.54 ± 0.5 e | 5.79 ± 0.13 e | 3.5 ± 0.6 d | 6.88 ± 1.12 b | 2.87 ± 0.16 e | 9.65 ± 0.32 a | 6.07 ± 0.43b c | 9.8 ± 0.35 a | 209.75 ± 5.39 a |
VP | 7.35 ± 0.19 a | 10.66 ± 0.05 a | 6.83 ± 0.93 ab | 10.06 ± 0.19 a | 3.96 ± 0.37 c | 8.23 ± 0.16 b | 9.49 ± 0.86 a | 8.14 ± 0.15 e | 192.87 ± 3.99 b | |
MAP1 | 5.27 ± 0.17 cd | 6.5 ± 0.58 d | 4.64 ± 0.24 c | 4.73 ± 0.08 c | 3.66 ± 0.24 cd | 7.45 ± 0.11 c | 6.21 ± 0.11b c | 8.7 ± 0.16 c | 165.11 ± 2.35 e | |
MAP2 | 5.63 ± 0.33 c | 3.54 ± 0.13 f | 2.03 ± 0.28 e | 3.98 ± 0.36 d | 5.9 ± 0.07 b | 4.98 ± 0.04 e | 6.34 ± 0.14 b | 9.23 ± 0.02 b | 162.11 ± 3.13 ef | |
MAP3 | 6.74 ± 0.7 ab | 7.71 ± 0.31 bc | 7.54 ± 0.25 a | 7.14 ± 0.26 b | 5.46 ± 0.51 b | 6.14 ± 0.13 d | 9.55 ± 0.26 a | 8.42 ± 0.03 d | 174.45 ± 5.2 d | |
MAP4 | 7.2 ± 0.05 a | 8.05 ± 0.13 b | 6.54 ± 0.02 ab | 6.83 ± 0.37 b | 8.14 ± 0.13 a | 6.24 ± 0.23 d | 9.19 ± 0.03 a | 8.64 ± 0.11 c | 185.82 ± 3.47 bc | |
Day 27 | MAP1 | 3.6 ± 0.26 a | 5.4 ± 0.16 a | 2.27 ± 0.13 bc | 3.27 ± 0.41 a | 1.6 ± 0.11 a | 2.7 ± 0.2 a | 4.18 ± 0.3 c | 4.1 ± 0.26 cd | 123.75 ± 5.43 b |
MAP2 | 2.67 ± 0.15 c | 4.01 ± 0.12 c | 3.87 ± 0.12 a | 2.67 ± 0.38 ab | 1.31 ± 0.09 b | 2.02 ± 0.09 b | 6.66 ± 0.27 ab | 4.49 ± 0.32 c | 135.11 ± 3.42 a | |
MAP3 | 3.15 ± 0.23 ab | 5.11 ± 0.52 ab | 4.10 ± 0.38 a | 1.93 ± 0.18 c | 0.40 ± 0.09 d | 1.92 ± 0.29 b | 6.91 ± 0.36 a | 7.11 ± 0.56 ab | 108.2 ± 5.26 c | |
MAP4 | 2.40 ± 0.13 cd | 2.09 ± 0.28 d | 2.70 ± 0.38 b | 1.50 ± 0.32 cd | 0.82 ± 0.15 c | 1.20 ± 0.08 c | 2.11 ± 0.16 d | 8.40 ± 1.18 a | 97.04 ± 3.38 d |
Compounds | 0 d | 15 d | 27 d | Odor Description | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AP | VP | MAP1 | MAP2 | MAP3 | MAP4 | MAP1 | MAP2 | MAP3 | MAP4 | ||||
Alcohols | |||||||||||||
1-Penten-3-ol | 4.06 ± 0.32A | 7.59 ± 0.18 a,B | 5.35 ± 0.3 b,B | 5.84 ± 0.08 b,B | 5.65 ± 0.17 b,B | 6.03 ± 0.21 c,B | 6.24 ± 0.13 d,B | 10.63 ± 0.37 a, C | 12.17 ± 0.14 b,C | 15.26 ± 0.42 c,C | 16.42 ± 0.28 d, C | Burnt, meaty, grassy-green | [30,31] |
1-Octen-3-ol | 4.7 ± 0.35A | 7.06 ± 0.16 a,B | 3.83 ± 0.46 b,B | 6.39 ± 0.62 c,B | 5.62 ± 0.27 d,B | 5.69 ± 0.36 d,B | 6.60 ± 0.57 e,B | 13.63 ± 1.11 a, C | 11.23 ± 0.3 b,C | 17.45 ± 1.32 c,C | 19.38 ± 1.63 d, C | Mushroom | [30,32] |
2-Octyn-1-ol | 8.67 ± 0.83A | ND | 1.88 ± 0.16 a,B | 1.05 ± 0.13 b,B | 1.01 ± 0.06 b,B | 1.21 ± 0.04 c,B | 2.70 ± 0.32 d,B | ND | ND | 1.82 ± 0.18 a,C | 1.25 ± 0.15 b, C | Mushroom | [33] |
(Z)-2-Penten-1-ol | ND | 0.85 ± 0.13 a,A | 0.73 ± 0.08 b,A | ND | 0.93 ± 0.18 c,A | 1.15 ± 0.36 d,A | 1.28 ± 0.28 e,A | 0.83 ± 0.15 a, B | 1.32 ± 0.33 b,B | 1.87 ± 0.19 c,B | 1.68 ± 0.31 d, B | Green, plastic | [31,34] |
1-Hexanol | 2.63 ± 0.47A | 0.46 ± 0.13 a,B | 1.92 ± 0.27 b,B | 2.38 ± 0.16 c,B | 2.74 ± 0.38 d,B | 1.85 ± 0.43 e,B | 1.74 ± 0.2 ef,B | 1.23 ± 0.18 a, C | 1.52 ± 0.36 b,C | 0.56 ± 0.16 c,C | 0.47 ± 0.12 c,C | Grassy, woody, fatty | [31,35] |
1-Heptanol | ND | 1.49 ± 0.25 a,A | 2.03 ± 0.3 b,A | 1.86 ± 0.43 c,A | 2.72 ± 0.56 d,A | 1.56 ± 0.24 e,A | 1.39 ± 0.37 f,A | ND | ND | ND | ND | Fresh, light green, nutty | [30,31] |
2-ethyl-2-Hexen-1-ol | ND | ND | 0.86 ± 0.23 a,A | 0.61 ± 0.15 ab,A | ND | 0.84 ± 0.17 b,A | 1.36 ± 0.26 c,A | 0.73 ± 0.19 a, B | ND | ND | 0.61 ± 0.08 a,B | Citrus, floral, sweet | [35] |
(E)-2-Octen-1-ol | ND | ND | 0.85 ± 0.26 a,A | 0.73 ± 0.17 b,A | 0.68 ± 0.02 b,A | 0.90 ± 0.32 c,A | 0.63 ± 0.18 d,A | 0.48 ± 0.12 a, B | 0.53 ± 0.14 ab,B | 0.36 ± 0.08 b,B | ND | Green | [36] |
Aldehydes | |||||||||||||
Hexanal | 32.91 ± 3.23A | 35.68 ± 2.8 a,B | 28.2 ± 1.54 b,B | 33.73 ± 3.62 c,B | 30.54 ± 1.1 d,B | 37.38 ± 2.38 e,B | 36.87 ± 6.3 f,B | 43.6 ± 3.85 a, C | 39.69 ± 2.78 b,C | 52.49 ± 4.83 c,C | 55.38 ± 3.78 d,C | Fishy, grass | [30,32] |
(Z)-4-Heptenal | 0.68 ± 0.13 A | 3.64 ± 0.83 a,B | 2.18 ± 0.36 b,B | 2.69 ± 0.28 c,B | 2.35 ± 0.63 d,B | 3.12 ± 0.35 e,B | 3.08 ± 0.6 e,B | 4.32 ± 0.78 a, C | 5.59 ± 1.86 b,C | 7.13 ± 2.03 c,C | 6.83 ± 1.41 cd,C | Boiled potato, biscuit-like | [30,31] |
2-methyl-butanal | 4.63 ± 1.3 A | 2.38 ± 0.58 a,B | 3.12 ± 0.75 b,B | 3.91 ± 1.25 c,B | 3.62 ± 0.3 d,B | 2.73 ± 0.47 e,B | 2.54 ± 0.82 f,B | 1.32 ± 0.38 a, C | 0.87 ± 0.15 b,C | ND | ND | Green, almond, strong burnt, | [30,31] |
Heptanal | 6.59 ± 1.68 A | 7.32 ± 1.36 a,B | 5.87 ± 0.8 b,B | 6.32 ± 0.75 c,B | 6.79 ± 1.2 d,B | 7.41 ± 1.56 e,B | 7.63 ± 0.85 ef, B | 8.78 ± 1.35 a, C | 7.36 ± 0.99 b,C | 9.33 ± 1.86 c,C | 10.21 ± 2.38 d,C | Dry fish green, fatty, rancid | [30,32] |
Benzaldehyde | 5.72 ± 1.08 A | 2.14 ± 0.49 a,B | 5.36 ± 1.27 b,B | 4.69 ± 1.56 c,B | 5.87 ± 0.95 d,B | 6.19 ± 1.61 e,B | 5.08 ± 1.36 f,B | 2.55 ± 0.68 a, C | 2.73 ± 0.67 ab,C | 2.38 ± 0.17 b,C | 1.84 ± 0.37 c,C | Bitter almond, burnt sugar, woody | [30,32] |
(E,E)-2,4-Heptadienal | 5.54 ± 1.35 A | 6.39 ± 2.3 a,B | ND | 5.03 ± 0.47 b,B | 4.72 ± 1.32 bc,B | 5.78 ± 0.56 c,B | 6.18 ± 1.78 d,B | 5.69 ± 0.96 a, C | 4.56 ± 1.32 b,C | 7.03 ± 1.75 c,C | 7.37 ± 1.68 d,C | Fatty, fishy, oxidized oil-like | [30,32] |
Octanal | 5.43 ± 1.3 A | 10.73 ± 2.46 a,B | 7.18 ± 1.83 b,B | 7.47 ± 1.86 c,B | 6.85 ± 0.85 d,B | 8.03 ± 2.3 e,B | 7.96 ± 1.76 f,B | 13.60 ± 3.2 a, C | 12.05 ± 1.86 b,C | 16.72 ± 2.78 c,C | 18.36 ± 3.36 d,C | Grassy, rancid, soapy, citrus | [30,32] |
(E)-2-Octenal | 1.22 ± 0.53 A | 4.68 ± 1.12 a,B | 2.38 ± 0.68 b,B | 2.68 ± 0.79 bc,B | 3.03 ± 1.02 c,B | 4.19 ± 1.36 d,B | 3.87 ± 0.88 e,B | 6.95 ± 1.35 a, C | 6.43 ± 2.13 b,C | 8.18 ± 2.56 c,C | 8.72 ± 2.78 d,C | Aromatic, oxidized oil-like | [30,32] |
Nonanal | 9.82 ± 2.36 A | 2.03 ± 0.63 a,B | 2.29 ± 1.02 b,B | 1.63 ± 0.23 c,B | 2.03 ± 0.22 d,B | 2.81 ± 1.08 e,B | 1.61 ± 0.02 f,B | 1.56 ± 0.06 a,C | 1.05 ± 0.32 b,C | 0.72 ± 0.04 c,C | 0.92 ± 0.31 d,C | Gravy, green, floral, waxy, soapy, fatty, citrus fruit | [30,32] |
(E,Z)-2,6-Nonadienal | 0.52 ± 0.13 A | 1.78 ± 0.58 a,B | 0.63 ± 0.23 b,B | 0.42 ± 0.08 c,B | 0.86 ± 0.19 d,B | 1.36 ± 0.36 e,B | 1.52 ± 0.72 f,B | ND | ND | 1.53 ± 0.2 a,C | 1.68 ± 0.62 ab,C | Cucumber-like, fatty, green | [31,37] |
Decanal | 1.47 ± 0.35 A | 0.38 ± 0.17 a,B | 0.43 ± 0.18 b,B | 0.54 ± 0.13 c,B | 0.43 ± 0.2 cd,B | 0.53 ± 0.18 d,B | 0.38 ± 0.12 de,B | ND | ND | ND | ND | Citrussy | [37] |
2,3-Octanedione | 2.58 ± 1.36 A | 8.62 ± 2.11 a,B | 3.86 ± 1.23 b,B | 4.78 ± 1.26 c,B | 5.03 ± 1.38 d,B | 6.83 ± 1.82 e,B | 6.61 ± 1.37 ef,B | 8.63 ± 2.32 a,C | 10.39 ± 1.78 a,C | 14.27 ± 2.85 a,C | 13.69 ± 3.3 a,C | Oxidized fat | [38] |
(E,E)-3,5-Octadien-2-one | 4.42 ± 1.37 A | 1.75 ± 0.29 a,B | 1.25 ± 0.26 b,B | ND | 0.97 ± 0.23 c,B | 1.36 ± 0.47 d,B | 0.83 ± 0.35 bc,B | ND | 0.63 ± 0.17 a,C | 1.08 ± 0.28 b,C | ND | Fruity, grassy, mushroom | [31,39] |
2-Undecanone | 1.39 ± 0.48 A | 1.89 ± 0.79 a,B | 1.37 ± 0.28 b,B | 1.63 ± 0.74 c,B | 1.47 ± 0.05 cd,B | 1.58 ± 0.38 cd,B | 1.46 ± 0.52 cd,B | 0.78 ± 0.3 a,C | 0.53 ± 0.18 b,C | 0.73 ± 0.23 ab,C | 0.85 ± 0.35 c,C | Fruity-rosy, orange-like | [31,39] |
2,3-Pentanedione | ND | 1.65 ± 0.26 a,A | 0.45 ± 0.17 b,A | 0.84 ± 0.23 c,A | 1.05 ± 0.18 d,A | 1.48 ± 0.36 a,A | 1.26 ± 0.25 dA | ND | ND | 1.84 ± 0.73 a,B | 0.76 ± 0.11 b,B | Butter scotch, almond, fruity | [31] |
3-Pentanone | ND | 2.54 ± 0.6 a,A | ND | 1.68 ± 0.15 b,A | 2.32 ± 0.38 a,A | 3.15 ± 1.37 c,A | 2.78 ± 0.86 d,A | 2.63 ± 1.02 a,B | 2.08 ± 0.77 b,B | 5.74 ± 2.3 c,B | ND | Irritant, acetone | [32] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, J.; Liu, F.; Fang, S.; Lan, W.; Xie, J. High-CO2 Modified Atmosphere Packaging with Superchilling (−1.3 °C) Inhibit Biochemical and Flavor Changes in Turbot (Scophthalmus maximus) during Storage. Molecules 2020, 25, 2826. https://doi.org/10.3390/molecules25122826
Mei J, Liu F, Fang S, Lan W, Xie J. High-CO2 Modified Atmosphere Packaging with Superchilling (−1.3 °C) Inhibit Biochemical and Flavor Changes in Turbot (Scophthalmus maximus) during Storage. Molecules. 2020; 25(12):2826. https://doi.org/10.3390/molecules25122826
Chicago/Turabian StyleMei, Jun, Feng Liu, Shiyuan Fang, Weiqing Lan, and Jing Xie. 2020. "High-CO2 Modified Atmosphere Packaging with Superchilling (−1.3 °C) Inhibit Biochemical and Flavor Changes in Turbot (Scophthalmus maximus) during Storage" Molecules 25, no. 12: 2826. https://doi.org/10.3390/molecules25122826
APA StyleMei, J., Liu, F., Fang, S., Lan, W., & Xie, J. (2020). High-CO2 Modified Atmosphere Packaging with Superchilling (−1.3 °C) Inhibit Biochemical and Flavor Changes in Turbot (Scophthalmus maximus) during Storage. Molecules, 25(12), 2826. https://doi.org/10.3390/molecules25122826