Near-Infrared Spectroscopy in Bio-Applications
Abstract
:1. Introduction
2. Principles of NIR Spectroscopy from the Point of View of Applications in Bioscience
2.1. Merits and Pitfalls of NIR Spectroscopy in Comparison with Competing Techniques
3. Overview of Applications
3.1. Analysis of Body Fluids
3.1.1. Blood
Glucose in Blood
Blood Oxygen Level
Blood Stain
Hemodialysis
3.1.2. Serum
3.1.3. Saliva
3.2. Cell-Related Studies
3.3. Analysis of Tissue
3.4. Analysis of Medicinal Plants and Phytopharmaceutical Applications
3.5. Entire Organisms
3.6. Investigations into Structure, Properties, and Interactions of Biomolecules
3.7. NIR Studies Supported by Quantum Chemical Spectra Calculations
3.7.1. Short-, Medium-, and Long-chain Fatty Acids
3.7.2. Nucleobases
3.7.3. Active Pharmaceutical Ingredients (APIs) in Medicinal Plants
3.7.4. Carbohydrates in Aqueous Environment
3.8. Introduction to Functional NIR Spectroscopy (fNIRS)
3.9. Selected Other Applications
4. Summary and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Huck, C.W.; Beć, K.B. Advances in near infrared spectroscopy and related computational methods. Molecules 2019, 24, 4370. [Google Scholar]
- Ozaki, Y.; Huck, C.W.; Beć, K.B. Near-IR spectroscopy and its applications. In Molecular and Laser Spectroscopy. Advances and Applications; Gupta, V.P., Ed.; Elsevier: San Diego, CA, USA, 2018; pp. 11–38. [Google Scholar]
- Czarnecki, M.A.; Morisawa, Y.; Futami, Y.; Ozaki, Y. Advances in molecular structure and interaction studies using near-infrared spectroscopy. Chem. Rev. 2015, 115, 9707–9744. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. Molecular and bioanalytical applications of infrared spectroscopy—A review. Anal. Chim. Acta 2020, in press. [Google Scholar]
- Barańska, M.; Roman, M.; Majzner, K. General overview on vibrational spectroscopy applied in biology and medicine. In Optical Spectroscopy and Computational Methods in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics; Barańska, M., Ed.; Springer: Dordrecht, The Netherlands, 2014; Volume 14. [Google Scholar]
- Rygula, A.; Majzner, K.; Marzec, K.M.; Kaczor, A.; Pilarczyk, M.; Barańska, M. Raman spectroscopy of proteins: A review. J. Raman Spectrosc. 2013, 44, 1061–1076. [Google Scholar] [CrossRef]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Barańska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta A 2017, 185, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Barańska, M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Beć, K.B.; Huck, C.W. Breakthrough potential in near-infrared spectroscopy: Spectra simulation. A review of recent developments. Front. Chem. 2019, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Ciurczak, E.W. Biomedical applications of near-infrared spectroscopy. In Handbook of Near-Infrared Analysis, 3rd ed.; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Türker-Kaya, S.; Huck, C.W. A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis. Molecules 2017, 22, 168. [Google Scholar] [CrossRef] [Green Version]
- Massart, D.L.; Vandeginste, B.G.M.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Mark, H.; Workman, J., Jr. Chemometrics in Spectroscopy, 2nd ed.; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef]
- Sheppard, N. The historical development of experimental techniques in vibrational spectroscopy. In Handbook of Vibrational Spectroscopy; Chalmers, J.M., Griffiths, P.R., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2002; Volume 1. [Google Scholar]
- Tsuchikawa, S.; Kobori, H. A review of recent application of near infrared spectroscopy to wood science and technology. J. Wood Sci. 2015, 61, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Siesler, H.W. Near-infrared spectra, interpretation. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017. [Google Scholar]
- Huck, C.W.; Ozaki, Y.; Huck-Pezzei, V.A. Critical review upon the role and potential of fluorescence and near-infrared imaging and absorption spectroscopy in cancer related cells, serum, saliva, urine and tissue analysis. Curr. Med. Chem. 2016, 23, 3052–3077. [Google Scholar] [CrossRef] [PubMed]
- Beć, K.B.; Grabska, J.; Siesler, H.W.; Huck, C.W. Handheld near-infrared spectrometers: Where are we heading? NIR News 2020, 31. [Google Scholar] [CrossRef] [Green Version]
- Jobsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977, 198, 1264–1267. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; Matsunaga, T.; Miura, T. Nondestructive and noninvasive monitoring of deoxyhemoglobin in the vein by use of a near-infrared reflectance spectrometer with a fiber-optic probe. Appl. Spectrosc. 1992, 46, 180–182. [Google Scholar] [CrossRef]
- Uwadaira, Y.; Adachi, N.; Ikehata, A.; Kawano, S. Development of a non-invasive blood glucose sensor using short-wavelength near-infrared spectroscopy and its application to glycemic index determination. J. Jpn. Soc. Food Sci. 2011, 58, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Uwadaira, Y.; Ikehata, A.; Momose, A.; Miura, M. Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement. Biomed. Opt. Express 2016, 7, 2729–2737. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Liao, N.; Cheng, H.; Li, Y.; Bai, X.; Deng, C. Determination of NIR informative wavebands for transmission non-invasive blood glucose measurement using a Fourier transform spectrometer. AIP Adv. 2018, 8, 035216. [Google Scholar] [CrossRef]
- Suryakala, S.V.; Prince, S. Investigation of goodness of model data fit using PLSR and PCR regression models to determine informative wavelength band in NIR region for non-invasive blood glucose prediction. Opt. Quant. Electron. 2019, 51, 271. [Google Scholar] [CrossRef]
- Jintao, X.; Liming, Y.; Yufei, L.; Chunyan, L.; Han, C. Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy. Spectrochim. Acta A 2017, 79, 250–254. [Google Scholar] [CrossRef]
- Dai, J.; Ji, Z.; Du, Y.; Chen, S. In vivo noninvasive blood glucose detection using near-infrared spectrum based on the PSO-2ANN model. Technol. Health Care 2018, 26, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Sakatani, K.; Murata, Y.; Fujiwara, N.; Hoshino, T.; Nakamura, S.; Kano, T.; Katayama, Y. Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording during functional brain activation in patients with stroke and brain tumors. J. Biomed. Opt. 2007, 12, 062110. [Google Scholar] [PubMed] [Green Version]
- Mehnati, P.; Khorram, S.; Zakerhamidi, M.S.; Fahima, F. Near-infrared visual differentiation in normal and abnormal breast using hemoglobin concentrations. J. Lasers Med. Sci. 2017, 9, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nioka, S.; Shnall, M.; Conant, E.; Wang, S.C.; Reynolds, V.B.; Ching, B.C.; Swan, J.H.T.; Chung, P.C.; Cheng, L.; Shieh, D.; et al. Breast cancer detection of large size to DCIS by hypoxia and angiogenesis using NIRS. Adv. Exp. Med. Biol. 2013, 789, 211–219. [Google Scholar]
- Chatel, B.; Bendahan, D.; Jue, T. Hemoglobin and myoglobin contribution to the NIRS signal in skeletal muscle. In Modern Tools of Biophysics. Handbook of Modern Biophysics; Jue, T., Ed.; Springer: New York, NY, USA, 2017; Volume 5. [Google Scholar]
- Zhang, S.; Li, G.; Wang, J.; Han, Y.; Lin, L. Nondestructive measurement of hemoglobin in blood bags based on multi-pathlength VIS-NIR spectroscopy. Sci. Rep. 2018, 8, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazareva, E.N.; Tuchin, V.V. Measurement of refractive index of hemoglobin in the visible/NIR spectral range. J. Biomed. Opt. 2018, 23, 035004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.F.Q.; Silva, C.S.; Vieira, M.J.L.; Pimentel, M.F.; Braz, A.; Honorato, R.S. Evaluation and identification of blood stains with handheld NIR spectrometer. Microchem. J. 2017, 133, 561–566. [Google Scholar] [CrossRef]
- Henn, R.; Kirchler, C.G.; Schirmeister, Z.L.; Roth, A.; Mäntele, W.; Huck, C.W. Hemodialysis monitoring using mid- and near-infrared spectroscopy with partial least squares regression. J. Biophotonics 2018, 11, e201700365. [Google Scholar] [CrossRef]
- Kasemsumran, S.; Du, Y.P.; Murayama, K.; Huehne, M.; Ozaki, Y. Simultaneous determination of human serum albumin, γ-globulin, and glucose in a phosphate buffer solution by near-infrared spectroscopy with moving window partial least-squares regression. Analyst 2003, 128, 1471–1477. [Google Scholar] [CrossRef]
- Kasemsumran, S.; Du, Y.P.; Murayama, K.; Huehne, M.; Ozaki, Y. Near-infrared spectroscopic determination of human serum albumin, γ-globulin, and glucose in a control serum solution with searching combination moving window partial least squares. Anal. Chim. Acta 2004, 512, 223–230. [Google Scholar] [CrossRef]
- Jiang, J.-H.; Berry, R.J.; Siesler, H.W.; Ozaki, Y. Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Anal. Chem. 2002, 74, 3555–3565. [Google Scholar] [CrossRef]
- Yao, L.; Tang, Y.; Yin, Z.; Pan, T.; Chen, J. Repetition rate priority combination method based on equidistant wavelengths screening with application to NIR analysis of serum albumin. Chemom. Intell. Lab. Syst. 2017, 162, 191–196. [Google Scholar] [CrossRef]
- Murayama, K.; Tomida, M.; Ootake, Y.; Mizuno, T.; Ishimaru, J.-I. Principal Component Analysis for Diagnosis of Oral Cancer Using Capillary Near-infrared Spectroscopy of Onedrop of Human Saliva. ITE Lett. Batter. New Technol. Med. 2005, 6, 603–606. [Google Scholar]
- Sato, H.; Obata, A.; Yamamoto, Y.; Kiguchi, M.; Kubota, K.; Koizumi, H.; Moda, I.; Ozaki, K.; Yasuhara, T.; Maki, A. Application of near-infrared spectroscopy to measurement of hemodynamic signals accompanying stimulated saliva secretion. J. Biomed. Opt. 2011, 16, 047002. [Google Scholar] [CrossRef] [PubMed]
- Kober, S.E.; Wood, G. Hemodynamic signal changes during saliva and water swallowing: A near-infrared spectroscopy study. J. Biomed. Opt. 2018, 23, 015009. [Google Scholar] [CrossRef]
- Zapata, F.; Gregório, I.; García-Ruiz, C. Body fluids and spectroscopic techniques in forensics: A perfect match? J. Forensic Med. 2015, 1, 101. [Google Scholar] [CrossRef]
- Rhiel, M.H.; Cohen, M.B.; Murhammer, D.W.; Arnold, M.A. Nondestructive near-infrared spectroscopic measurement of multiple analytes in undiluted samples of serum-based cell culture media. Biotechnol. Bioeng. 2002, 77, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Rhiel, M.H.; Cohen, M.B.; Arnold, M.A.; Murhammer, D.W. On-line monitoring of human prostate cancer cells in a perfusion rotating wall vessel by near-infrared spectroscopy. Biotechnol. Bioeng. 2004, 86, 852–861. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, Y.; Meng, J.; Wu, X.; Xu, H. Probing the behaviors of gold nanorods in metastatic breast cncer cells based on UV-vis-NIR absorption spectroscopy. PLoS ONE 2012, 7, e31957. [Google Scholar]
- Tsenkova, R.; Atanassova, S.; Ozaki, Y.; Toyoda, K.; Itoh, K. Near-infrared spectroscopy for biomonitoring: Influence of somatic cell count on cow’s milk composition analysis. Int. Dairy J. 2001, 11, 779–783. [Google Scholar] [CrossRef]
- Pallua, J.D.; Pezzei, C.; Zelger, B.; Schaefer, G.; Bittner, L.K.; Huck-Pezzei, V.A.; Schoenbichler, S.A.; Hahn, H.; Kloss-Brandstaetter, A.; Kloss, F.; et al. Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma. Analyst 2012, 137, 3965–3974. [Google Scholar] [CrossRef]
- Pezzei, C.; Pallua, J.D.; Schaefer, G.; Seifarth, C.; Huck-Pezzei, V.; Bittner, L.K.; Klocker, H.; Bartsch, G.; Bonn, G.K.; Huck, C.W. Characterization of normal and malignant prostate tissue by Fourier transform infrared microspectroscopy. Mol. Biosyst. 2010, 6, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
- Huck, C.W.; Huck-Pezzei, V.A. Multidimensional approach of infrared imaging spectra and morphology of oral squamous cell carcinoma (OSCC). In Advances in Hyperspectral Imaging Research; Grant, J., Ed.; Novapublisher: Hauppauge, NY, USA, 2014; pp. 115–134. [Google Scholar]
- Pezzei, C.; Brunner, A.; Bonn, G.K.; Huck, C.W. Fourier transform infrared imaging analysis in discrimination studies of bladder cancer. Analyst 2013, 138, 5719–5725. [Google Scholar] [CrossRef] [PubMed]
- Tromberg, B.J.; Cerussi, A.; Shah, N.; Compton, M.; Durkin, A.; Hsiang, D.; Butler, J.; Mehta, R. Imaging in breast cancer: Diffuse optics in breast cancer: Detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy. Breast Cancer Res. 2005, 7, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamiya, N.; Ueda, S.; Shigekawa, T.; Takeuchi, H.; Sano, H.; Hirokawa, E.; Shimada, H.; Suzuki, H.; Oda, M.; Osaki, A.; et al. Clinicopathological and prognostic impact of imaging of breast cancer angiogenesis and hypoxia using diffuse optical spectroscopy. Cancer Sci. 2014, 105, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Grassi, B.; Quaresima, V. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: A review from an exercise physiology perspective. J. Biomed. Opt. 2016, 21, 091313. [Google Scholar] [CrossRef] [Green Version]
- Barstow, T.J. Understanding near infrared spectroscopy and its application to skeletal muscle research. J. Appl. Physiol. 2019, 126, 1360–1376. [Google Scholar] [CrossRef]
- Vogiatzis, I.; Louvaris, Z.; Wagner, P.D. Respiratory and locomotor muscle blood flow during exercise in health and chronic obstructive pulmonary disease. Exp. Physiol. 2020. [Google Scholar] [CrossRef]
- Louvaris, Z.; Habazettl, H.; Wagner, H.; Zakynthinos, S.; Wagner, P.; Vogiatzis, I. Near-infrared spectroscopy using indocyanine green dye for minimally invasive measurement of respiratory and leg muscle blood flow in patients with COPD. J. Appl. Physiol. 2018, 125, 947–959. [Google Scholar] [CrossRef]
- Louvaris, Z.; Habazettl, H.; Asimakos, A.; Wagner, H.; Zakynthinos, S.; Wagner, P.; Vogiatzis, I. Heterogeneity of blood flow and metabolismduring exercise in patients with chronic obstructive pulmonary disease. Respir. Physiol. Neurobiol. 2017, 237, 42–50. [Google Scholar] [CrossRef]
- Vogiatzis, I.; Habazettl, H.; Louvaris, Z.; Andrianopoulos, V.; Wagner, H.; Zakynthinos, S.; Wagner, P.D. A Method for assessing heterogeneity of blood flow and metabolism in exercising normal human muscle by near-infrared spectroscopy. J. Appl. Physiol. 2015, 118, 783–793. [Google Scholar] [CrossRef]
- Boushel, R.; Langberg, H.; Olsen, J.; Nowak, M.; Simonsen, L.; Bulow, J.; Kjaer, M. Regional blood flow during exercise in humans measuredby near-infrared spectroscopy and indocyanine green. J. Appl. Physiol. 2000, 89, 1868–1878. [Google Scholar] [CrossRef] [PubMed]
- Akbari Sari, A.; Mobinizadeh, M.; Azadbakht, M. A systematic review of the effects of diffuse optical imaging in breast diseases. Iran. J. Cancer Prev. 2013, 6, 44–51. [Google Scholar] [PubMed]
- Chen, H.; Lin, Z.; Mo, L.; Wu, T.; Tan, C. Near-infrared spectroscopy as a diagnostic tool for distinguishing between normal and malignant colorectal tissue. Biomed. Res. Int. 2015, 2015, 472197. [Google Scholar] [CrossRef]
- Kondepati, V.R.; Oszinda, T.; Heise, H.M.; Luig, K.; Mueller, R.; Schroeder, O.; Keese, M.; Backhaus, J. CH-overtone regions as diagnostic markers for near-infrared spectroscopic diagnosis of primary cancers in human pancreas and colorectal tissue. J. Anal. Bioanal. Chem. 2007, 387, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, R.K.; Everland, H.; Nielsen, L.F.; Engelsen, S.B.; Nørgaard, L. Exploratory multivariate spectroscopic study on human skin. Skin Res. Technol. 2003, 9, 137–146. [Google Scholar] [CrossRef]
- Hornung, R.; Pham, T.H.; Keefe, K.A.; Berns, M.W.; Tadir, Y.; Tromberg, B.J. Quantitative near-infrared spectroscopy of cervical dysplasia in vivo. Hum. Reprod. 1999, 14, 2908–2916. [Google Scholar] [CrossRef] [Green Version]
- Tietze, A.; Mouridsen, K.; Lassen-Ramshad, Y.; Østergaard, L. Perfusion MRI derived indices of microvascular shunting and flow control correlate with tumor grade and outcome in patients with cerebral glioma. PLoS ONE 2015, 10, e0123044. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, L.M.; Summers, R.; Jackson, M.; Mantsch, H.H.; Mansfield, J.R.; Howlett, M.; Crowson, A.N.; Toole, J.W. Towards non-invasive screening of skin lesions by near-infrared spectroscopy. J. Investig. Dermatol. 2001, 116, 175–181. [Google Scholar] [CrossRef]
- Ali, J.H.; Wang, W.B.; Zevallos, M.; Alfano, R.R. Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues. Technol. Cancer Res. Treat. 2004, 3, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Bard, M.P.L.; Amelink, A.; Hegt, V.N.; Graveland, W.J.; Sterenborg, H.J.C.M.; Hoogsteden, H.C.; Aerts, J.G.J.V. Measurement of hypoxia-related parameters in bronchial mucosa by use of optical spectroscopy. Am. J. Respir. Crit. Care Med. 2005, 171, 1178–1184. [Google Scholar] [CrossRef]
- Sunar, U.; Quon, H.; Durduran, T.; Zhang, J.; Du, J.; Zhou, C.; Yu, G.; Choe, R.; Kilger, A.; Lustig, R.; et al. Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors: A pilot study. J. Biomed. Opt. 2006, 11, 064021. [Google Scholar] [CrossRef] [PubMed]
- Kondepati, V.R.; Zimmermann, J.; Keese, M.; Sturm, J.; Manegold, B.C.; Backhaus, J. Near-infrared fiber optic spectroscopy as a novel diagnostic tool for the detection of pancreatic cancer. J. Biomed. Opt. 2005, 10, 054016. [Google Scholar] [CrossRef] [PubMed]
- Hirosawa, N.; Sakamoto, Y.; Katayama, H.; Tonooka, S.; Yano, K. In vivo investigation of progressive alterations in rat mammary gland tumors by near-infrared spectroscopy. Anal. Biochem. 2002, 305, 156–165. [Google Scholar] [CrossRef]
- Yaroslavsky, A.N.; Neel, V.; Anderson, R.R. Fluorescence polarization imaging for delineating nonmelanoma skin cancers. Opt. Lett. 2004, 29, 2010–2012. [Google Scholar] [CrossRef] [PubMed]
- Huck, C.W. Miniaturized NIR and MIR sensors for medicinal plant quality control. Spectroscopy 2017, 32, 8–15. [Google Scholar]
- Kirchler, C.G.; Pezzei, C.K.; Beć, K.B.; Mayr, S.; Ishigaki, M.; Ozaki, Y.; Huck, C.W. Critical evaluation of spectral information of benchtop vs. portable near-infrared spectrometers: Quantum chemistry and two-dimensional correlation spectroscopy for a better understanding of PLS regression models of the rosmarinic acid content in Rosmarini folium. Analyst 2017, 142, 455–464. [Google Scholar]
- Crocombe, R.A. Portable spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [Google Scholar] [CrossRef]
- Pezzei, C.K.; Schönbichler, S.A.; Kirchler, C.G.; Schmelzer, J.; Hussain, S.; Huck-Pezzei, V.A.; Popp, M.; Krolitzek, J.; Bonn, G.K.; Huck, C.W. Application of benchtop and portable near-infrared spectrometers for predicting the optimum harvest time of Verbena officinalis. Talanta 2017, 169, 70–76. [Google Scholar] [CrossRef]
- Delueg, S.; Kirchler, C.G.; Meischl, M.; Ozaki, Y.; Popp, M.A.; Bonn, G.K.; Huck, C.W. At-line monitoring of the extraction process of Rosmarini folium via wet chemical assays, UHPLC analysis, and newly developed near-infrared spectroscopic analysis methods. Molecules 2019, 24, 2480. [Google Scholar] [CrossRef] [Green Version]
- Huck-Pezzei, V.A.; Bittner, L.K.; Pallua, J.D.; Sonderegger, H.; Abel, G.; Popp, M.; Bonn, G.K.; Huck, C.W. A chromatographic and spectroscopic analytical platform for the characterization of St John’s wort extract adulterations. Anal. Methods 2013, 5, 616–628. [Google Scholar] [CrossRef]
- Sandasi, M.; Vermaak, I.; Chen, W.; Viljoen, A.M. Hyperspectral imaging and chemometric modeling of Echinacea—A novel approach in the quality control of herbalm. Molecules 2014, 19, 13104–13121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Sánchez, F.; Galvez-Sola, L.; Martínez-Nicolás, J.J.; Muelas-Domingo, R.; Nieves, M. Using near-infrared spectroscopy in agricultural systems. In Developments in Near-Infrared Spectroscopy; Konstantinos, K., Skvaril, J., Eds.; IntechOpen: London, UK, 2017. [Google Scholar]
- Wu, N.; Zhang, C.; Bai, X.; Du, X.; He, Y. Discrimination of Chrysanthemum varieties using hyperspectral imaging combined with a deep convolutional neural network. Molecules 2018, 23, 2831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishigaki, M.; Kawasaki, S.; Ishikawa, D.; Ozaki, Y. Near-infrared spectroscopy and imaging studies of fertilized fish eggs: In vivo monitoring of Eegg growth at the molecular level. Sci. Rep. 2016, 6, 20066. [Google Scholar] [CrossRef]
- Watanabe, A.; Morita, S.; Ozaki, Y. Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied byinfrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis. Appl. Spectrosc. 2006, 60, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Morita, S.; Ozaki, Y. A study on water adsorption onto microcrystalline cellulose by near-infrared spectroscopy with two-dimensional correlation spectroscopy and principal component analysis. Appl. Spectrosc. 2006, 60, 1054–1061. [Google Scholar] [CrossRef]
- Izutsu, K.I.; Fujimaki, Y.; Kuwabara, A.; Hiyama, Y.; Yomota, C.; Aoyagi, N. Near-infrared analysis of protein secondary structure in aqueous solutions and freeze-dried solids. J. Pharm. Sci. 2006, 95, 781–789. [Google Scholar] [CrossRef]
- Murayama, K.; Czarnik-Matusewicz, B.; Wu, Y.; Tsenkova, R.; Ozaki, Y. Comparison between conventional spectral analysis methods, chemometrics, and two-dimensional correlation spectroscopy in the analysis of near-infrared spectra of protein. Appl. Spectrosc. 2000, 54, 978–985. [Google Scholar] [CrossRef]
- Yuan, B.; Murayama, K.; Wu, Y.; Tsenkova, R.; Dou, X.; Era, S.; Ozaki, Y. Temperature-dependent near-infrared spectra of bovine serum albumin in aqueous solutions: Spectral analysis by principal component analysis and evolving factor analysis. Appl. Spectrosc. 2003, 57, 1223–1229. [Google Scholar] [CrossRef]
- Ishigaki, M.; Nishii, T.; Puangchit, P.; Yasui, Y.; Huck, C.W.; Ozaki, Y. Noninvasive, high-speed, near-infrared imaging of the biomolecular distribution and molecular mechanism of embryonic development in fertilized fish eggs. J. Biophotonics 2018, 11, e201700115. [Google Scholar] [CrossRef]
- Ishigaki, M.; Ozaki, Y. Near-infrared spectroscopy and imaging in protein research. In Vibrational Spectroscopy in Protein Research; Ozaki, Y., Barańska, M., Wood, B.R., Lednev, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Grabska, J.; Ishigaki, M.; Beć, K.B.; Wójcik, M.J.; Ozaki, Y. Structure and near-infrared spectra of saturated and unsaturated carboxylic acids. An insight from anharmonic DFT calculations. J. Phys. Chem. A 2017, 121, 3437–3451. [Google Scholar] [CrossRef]
- Grabska, J.; Beć, K.B.; Ishigaki, M.; Wójcik, M.J.; Ozaki, Y. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid. Spectrochim. Acta A 2017, 185, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Grabska, J.; Beć, K.B.; Ishigaki, M.; Huck, C.W.; Ozaki, Y. NIR spectra simulations by anharmonic DFT-saturated and unsaturated long-chain fatty acids. J. Phys. Chem. B 2018, 122, 6931–6944. [Google Scholar] [CrossRef] [PubMed]
- Beć, K.B.; Grabska, J.; Ozaki, Y.; Czarnecki, M.A.; Huck, C.W. Simulated NIR spectra as sensitive markers of the structure and interactions in nucleobases. Sci. Rep. 2019, 9, 17398. [Google Scholar] [CrossRef] [PubMed]
- Beć, K.B.; Grabska, J.; Czarnecki, M.A.; Huck, C.W.; Wójcik, M.J.; Nakajima, T.; Ozaki, Y. IR spectra of crystalline nucleobases: Combination of periodic harmonic calculations with anharmonic corrections based on finite models. J. Phys. Chem. B 2019, 123, 10001–10013. [Google Scholar] [CrossRef] [PubMed]
- Beć, K.B.; Grabska, J.; Kirchler, C.G.; Huck, C.W. NIR spectra simulation of thymol for better understanding of the spectra forming factors, phase and concentration effects and PLS regression features. J. Mol. Liq. 2018, 268, 895–902. [Google Scholar] [CrossRef]
- Mayr, S.; Schmelzer, J.; Kirchler, C.G.; Pezzei, C.K.; Beć, K.B.; Grabska, J.; Huck, C.W. Theae nigrae folium: Comparing the analytical performance of benchtop and handheld near-infrared spectrometers. Talanta 2020. in revision. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.E.; Fry, F.S.; McLaughlin, M.A.; Calvey, E.M. Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy. Carbohydr. Res. 2001, 336, 63–74. [Google Scholar] [CrossRef]
- Oliveira, G.A.; de Castilhos, F.; Renard, G.M.-G.C.; Bureau, S. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- de Oliveira, V.M.A.T.; Baqueta, M.R.; Março, P.H.; Valderrama, P. Authentication of organic sugars by NIR spectroscopy and partial least squares with discriminant analysis. Anal. Methods 2020, 12, 701–705. [Google Scholar] [CrossRef]
- Bázár, G.; Kovacs, Z.; Tanaka, M.; Furukawa, A.; Nagai, A.; Osawa, M.; Itakura, Y.; Sugiyama, H.; Tsenkova, R. Water revealed as molecular mirror when measuring low concentrations of sugar with near infrared light. Anal. Chim. Acta 2015, 896, 52–62. [Google Scholar] [CrossRef]
- Beganović, A.; Moll, V.; Huck, C.W. Comparison of multivariate regression models based on water- and carbohydrate-related spectral regions in the near-infrared for aqueous solutions of glucose. Molecules 2019, 24, 3696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beganović, A.; Beć, K.B.; Henn, R.; Huck, C.W. Handling of uncertainty due to interference fringe in FT-NIR transmittance spectroscopy—Performance comparison of interference elimination techniques using glucose-water system. Spectrochim. Acta A 2018, 197, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Beganović, A.; Beć, K.B.; Grabska, J.; Stanzl, M.T.; Brunner, M.E.; Huck, C.W. Vibrational coupling to hydration shell—Mechanism to performance enhancement of qualitative analysis in NIR spectroscopy of carbohydrates in aqueous environment. Spectrochim. Acta A 2020, in press. [Google Scholar]
- Ben-Amotz, D. Hydration-shell vibrational spectroscopy. J. Am. Chem. Soc. 2019, 141, 10569–10580. [Google Scholar] [CrossRef]
- Hoshi, Y.; Tamura, M. Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man. Neurosci. Lett. 1993, 150, 5–8. [Google Scholar] [CrossRef]
- Yamashita, Y.; Maki, A.; Watanabe, E.; Koizumi, H.; Kawaguchi, F. Development of optical topography for noninvasive measurement of human brain activity. MEDIX 1998, 29, 10025101927. [Google Scholar]
- Kuebler, W.M.; Sckell, A.; Habler, O.; Kleen, M.; Kuhnle, G.E.H.; Welte, M.; Messmer, K.; Goetz, A.E. Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green. J. Cereb. Blood Flow Metab. 1998, 18, 445–456. [Google Scholar] [CrossRef]
- Wagner, B.P.; Gertsch, S.; Ammann, R.A.; Pfenninger, J. Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow. Intensive Care Med. 2003, 29, 196–200. [Google Scholar] [CrossRef]
- Terborg, C.; Bramer, S.; Harscher, S.; Simon, M.; Witte, O.M. Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green. J. Neurol. Neurosurg. Psychiatry 2004, 75, 38–42. [Google Scholar]
- Vogiatzis, I.; Louvaris, Z.; Habazettl, H.; Athanasopoulos, D.; Andrianopoulos, V.; Cherouveim, E.; Wagner, H.; Roussos, C.; Wagner, P.D.; Zakynthinos, S. Frontal cerebral cortex blood flow, oxygen delivery and oxygenation during normoxic and hypoxic exercise in athletes. J. Physiol. 2011, 589, 4027–4039. [Google Scholar] [CrossRef]
- Vogiatzis, I.; Louvaris, Z.; Habazettl, H.; Athanasopoulos, D.; Wagner, H.; Roussos, C.; Wagner, P.D.; Zakynthinos, S. Cerebral cortex oxygen delivery and exercise limitation in patients with COPD. Eur. Respir. J. 2013, 41, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Müller, N.G. Applications of functional near-infrared spectroscopy (fNIRS) neuroimaging in exercise-cognition science: A systematic, methodology-focused review. J. Clin. Med. 2018, 7, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, L.H.; Schneider, S.; Ehlis, A.-C.; Fallgatter, A.J. Functional near infrared spectroscopy in psychiatry: A critical review. J. Near Infrared Spectrosc. 2012, 20, 93–105. [Google Scholar] [CrossRef]
- Mihara, M.; Miyai, I. Review of functional near-infrared spectroscopy in neurorehabilitation. Neurophotonics 2016, 3, 031414. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Kennan, R.P.; Watanabe, E.; Koizumi, H. Assessment of heating effects in skin during continuous wave near infrared spectroscopy. J. Biomed. Opt. 2000, 5, 383–390. [Google Scholar] [CrossRef]
- Kiguchi, M.; Ichikawa, N.; Atsumori, H.; Kawaguchi, F.; Sato, H.; Maki, A.; Koizumi, H. Comparison of light intensity on the brain surface due to laser exposure during optical topography and solar irradiation. J. Biomed. Opt. 2007, 12, 062108. [Google Scholar] [CrossRef] [Green Version]
- Blasi, A.; Lloyd-Fox, S.; Katus, L.; Elwell, C.E. fNIRS for tracking brain development in the context of global health projects. Photonics 2019, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Fox, S.; Blasi, A.; McCann, S.; Rozhko, M.; Katus, L.; Mason, L.; Austin, T.; Moore, S.E.; Elwell, C.E. Habituation and novelty detection fNIRS brain responses in 5- and 8-month old infants: The Gambia and UK. Dev. Sci. 2019, 22, e12817. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef]
- Boas, D.A.; Elwell, C.E.; Ferrari, M.; Taga, G. Twenty years of functional near-infrared spectroscopy: Introduction for the special issue. Neuroimage 2014, 85, 1–5. [Google Scholar] [CrossRef]
- Irani, F.; Platek, S.M.; Bunce, S.; Ruocco, A.C.; Chute, D. Functional near infrared spectroscopy (fNIRS): An emerging neuroimaging technology with important applications for the study of brain disorders. Clin. Neuropsychol. 2007, 21, 9–37. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, Z.; Yuan, T.; Feng, W.; Wang, P. A systemic review of functional near-infrared spectroscopy for stroke: Current application and future directions. Front. Neurol. 2019, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Pinti, P.; Aichelburg, C.; Gilbert, S.; Hamilton, A.; Hirsch, J.; Burgess, P.; Tachtsidis, I. A Review on the use of wearable functional near-infrared spectroscopy in naturalistic environments. Jpn. Psychol. Res. 2018, 60, 347–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinti, P.; Scholkmann, F.; Hamilton, A.; Burgess, P.; Tachtsidis, I. Current status and issues regarding pre-processing of fNIRS neuroimaging data: An investigation of diverse signal filtering methods within a general linear framework. Front. Hum. Neurosci. 2019, 12, 505. [Google Scholar] [CrossRef] [Green Version]
- Quaresima, V.; Ferrari, M. A mini-review on functional near-infrared spectroscopy (fNIRS): Where do we stand, and where should we go? Photonics 2019, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Counsell, K.R.; Vance, C.K. Recent Advances of near infrared spectroscopy in wildlife and ecology studies. NIR News 2016, 27, 29–32. [Google Scholar] [CrossRef]
- Natesan, S.; Armenakis, C.; Benari, G.; Lee, R. Use of UAV-Borne Spectrometer for Land Cover Classification. Drones 2018, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Elliot, K.C.; Montgomery, R.; Resnik, D.B.; Godvin, R.; Mudumba, T.; Booth, J.; Whyte, K. Drone use for environmental research. IEEE Geosci. Remote Sens. Mag. 2019, 7, 106–111. [Google Scholar] [CrossRef]
- Segtnan, V.H.; Šašić, S.; Isaksson, T.; Ozaki, Y. Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis. Anal. Chem. 2001, 73, 3153–3161. [Google Scholar] [CrossRef]
- Czarnik-Matusewicz, B.; Pilorz, S.; Hawranek, J.P. Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy. Anal. Chim. Acta 2005, 544, 15–25. [Google Scholar] [CrossRef]
- Muncan, J.; Tsenkova, R. Aquaphotomics—From innovative knowledge to integrative platform in science and technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Wavenumber in cm−1 | Wavelength in nm | Vibrational Mode Assignment and the Associated Most Characteristic Compounds a) |
---|---|---|
8250 | 1210 | 3 C–H str. (C-H rich compounds, e.g., carbohydrates, lipids) |
7375–7150 | 1355–1400 | 2 C–H str. + C–H def. (carbohydrates, lipids) |
6980 | 1435 | 2 N–H str. (proteins) |
6750 | 1480 | 2 O–H str. (carbohydrates, alcohols, polyphenols) |
6660 | 1500 | 2 N–H str. (proteins) |
6500 | 1540 | 2 O–H str. (carbohydrates, alcohols, polyphenols upon matrix effects, e.g., hydrogen bonded OH groups) |
6400 | 1565 | 2 N–H str. (proteins) |
6200–5800 | 1610–1725 | 2 C–H str. (carbohydrates, lipids) |
5625 | 1780 | 2 C–H str. (C-H rich compounds, e.g., carbohydrates, lipids) |
5500 | 1820 | O–H str. + 2 C–O str. (carbohydrates) |
5120 | 1955 | 3 C–O str. (carbohydrates) |
4880 | 2050 | N–H sym. str. + amide II (proteins) |
4825 | 2075 | O–H str. + O–H def. (alcohols, polyphenols) |
4645 | 2155 | Amide I + amide III (proteins) |
4440 | 2255 | O–H str. + O–H def. (carbohydrates, alcohols, polyphenols) |
4360 | 2295 | N–H str. + CO str. (proteins) |
NIR | IR | Raman | |
---|---|---|---|
Spectral region wavelength [nm] wavenumbers [cm−1] | 1000–2500 10,000–4000 | 2500–25,000 4000–400 | 2500–200,000 4000–50 |
excitation mechanism | absorption | absorption | inelastic photon scattering |
relative complexity of instrumentation | low | medium | high |
selection rule (chemical sensitivity) | change in dipole moment (polar moieties, enhanced signal of X–H groups, e.g., O–H, N–H, C–H) | change in dipole moment (polar moieties) | change in polarizability (non-polar symmetrical bonds, e.g., C–C, skeletal vibrations) |
sampling (i.e., spectra acquisition modes) | transmission; diffuse reflection; transflection | transmission; diffuse reflection (only after sample preparation); transflection; attenuated total reflectance (ATR) | reflection (scattering) |
remarks about sample preparation | no/minimal sample preparation needed; moderate suitability of water as solvent or glass as container/optics | optimal sample thickness (in transmission mode); sample dilution (e.g., KBr pellet) for diffuse reflectance mode; optimal/stable sample-IRE contact surface (in ATR mode) | suitability of water as solvent or glass as container/optics |
chemical specificity | low to moderate | high | high |
major issues and challenges | low sensitivity; overlapping contributions in the spectra; difficult spectral interpretation; | limited suitability of moist samples; unsuitability of glass optics and materials (absorption of glass); interfering signal from atmospheric H2O and CO2 | Raman signal obscured by autofluorescence (stronger for excitation lasers with shorter emission wavelengths); laser heating, danger of destruction of molecular structure, e.g., proteins; or sample thermal decomposition (particularly of dried material) |
Model | Factor | R2 | RMSECV in mg/dL | RMSEP in mg/dL | LODmin in mg/dL | LODmax in mg/dL | LOQmin in mg/dL | LOQmax in mg/dL | ||
---|---|---|---|---|---|---|---|---|---|---|
Urea | CV | NIR | 4 | 0.97 | 12 | - | 10 | 24 | 29 | 72 |
IR | 4 | 0.99 | 7.9 | - | 10 | 18 | 31 | 55 | ||
TV | NIR | 4 | 0.98 | - | 19 | - | - | - | - | |
IR | 5 | 0.99 | - | 6.6 | - | - | - | - | ||
Glucose | CV | NIR | 4 | 0.89 | 37 | - | 36 | 73 | 108 | 218 |
IR | 3 | 0.96 | 22 | - | 47 | 142 | 140 | 428 | ||
TV | NIR | 4 | 0.86 | - | 54 | - | - | - | - | |
IR | 2 | 0.99 | - | 11 | - | - | - | - | ||
Lactate | CV | NIR | - | - | - | - | - | - | - | - |
IR | 5 | 0.95 | 8.2 | - | 28 | 90 | 84 | 271 | ||
TV | NIR | - | - | - | - | - | - | - | - | |
IR | 8 | 0.99 | 3.0 | - | - | - | - | - | ||
Phosphate | CV | NIR | - | - | - | - | - | - | - | - |
IR | 8 | 0.99 | 1.1 | - | 1.0 | 2.6 | 3.0 | 7.9 | ||
TV | NIR | - | - | - | - | - | - | - | - | |
IR | 8 | 0.95 | - | 2.0 | - | - | - | - | ||
Creatinine | CV | NIR | - | - | - | - | - | - | - | - |
IR | 5 | 0.98 | 1.8 | - | 2.6 | 4.5 | 7.9 | 13 | ||
TV | NIR | - | - | - | - | - | - | - | - | |
IR | 4 | 0.96 | - | 2.1 | - | - | - | - |
Wavenumber Region [cm−1] | Wavelength Region [nm] | Parameters Measured | Ref. |
---|---|---|---|
15,873–11,111 | 630–900 | changes in hemoglobin oxygenation; quantification of total hemoglobin; tissue oxygen saturation | [52] |
10341, 10204, 8665, 8368, 7133, 6925, 5297, 5144 | 967, 980, 1154, 1195, 1402, 1444, 1888, 1944 | water | [72] |
6798, 5233 | 1471, 1911 | DNA | [72] |
4866, 4604, 4261 | 2055, 2172, 2347 | proteins | [72] |
9000–7905 6000–5500 | 1111–1265 1666–1818 | lipids | [72] |
15,385–25,000 | 650–400 | tissue scattering profile | [73] |
Spectrometer | NIRFlex N-500 | microPHAZIR | MicroNIR 2200 | ||||
---|---|---|---|---|---|---|---|
samples | 60 | 60 | 60 | ||||
outliers | 6 | 8 | 4 | ||||
CRA (w/w) range/% | 1.138–2.425 | 1.138–2.425 | 1.138–2.425 | ||||
validation method | CV | TSV | CV | TSV | CV | TSV | |
R2 | 0.91 | 0.91 | 0.73 | 0.73 | 0.84 | 0.85 | |
SECV/% | SEP/% | 0.072 | 0.069 | 0.12 | 0.11 | 0.091 | 0.11 |
SECV/SEC | SEP/SEC | 1.46 | 1.43 | 1.28 | 1.24 | 1.55 | 2.09 |
factors | 8 | 8 | 5 | 5 | 11 | 12 | |
RPD | 3.27 | 3.41 | 1.88 | 2.06 | 2.46 | 2.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beć, K.B.; Grabska, J.; Huck, C.W. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020, 25, 2948. https://doi.org/10.3390/molecules25122948
Beć KB, Grabska J, Huck CW. Near-Infrared Spectroscopy in Bio-Applications. Molecules. 2020; 25(12):2948. https://doi.org/10.3390/molecules25122948
Chicago/Turabian StyleBeć, Krzysztof B., Justyna Grabska, and Christian W. Huck. 2020. "Near-Infrared Spectroscopy in Bio-Applications" Molecules 25, no. 12: 2948. https://doi.org/10.3390/molecules25122948
APA StyleBeć, K. B., Grabska, J., & Huck, C. W. (2020). Near-Infrared Spectroscopy in Bio-Applications. Molecules, 25(12), 2948. https://doi.org/10.3390/molecules25122948