Electronic Supplementary Material

for the paper

Mechanochemical Preparation of Pd(II) and Pt(II) Composites with Carbonaceous Materials and Their Application in the Suzuki-Miyaura Reaction at Several Energy Inputs

Mohamed M.A. Soliman ^{1,2}, Andreia F. Peixoto ³, Ana P.C. Ribeiro ¹, Maximilian N. Kopylovich ^{1,*}, Elisabete C.B.A. Alegria ^{1,2,*} and Armando J. L. Pombeiro ¹

- ¹ Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; mohamed.soliman@tecnico.ulisboa.pt (M.M.A.S.); apribeiro@tecnico.ulisboa.pt (A.P.C.R.); pombeiro@tecnico.ulisboa.pt (A.J.L.P.)
- ² Área Departamental de Engenharia Química, ISEL, Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal
- ³ REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; andreia.peixoto@fc.up.pt
- * Correspondence: maximilian.kopylovich@tecnico.ulisboa.pt (M.N.K.); ebastos@deq.isel.ipl.pt (E.C.B.A.A.); Tel.: +351 218317163 (E.C.B.A.A.)

Received: date; Accepted: date; Published: date

Academic editors: Raquel G. Soengas and Humberto Rodríguez-Solla

Calculation of the theoretical content of metals in the composite materials

AC-Pd1:

Atomic mass of Pd = 106.42 g/mol Molar mass of Pd(CH₃COO)₂ = 224.51 g/mol 106.42 g/mol in 224.51 g/mol = x mg in 11 mg x = 5.21 mg 5.21 mg of Pd in 111 mg of a composite = 4.7 %

AC-Pd2:

Atomic mass of Pd = 106.42 g/mol Molar mass of Pd(CH₃COO)₂ = 224.51 g/mol 106.42 g/mol in 224.51 g/mol = x mg in 22 mg x = 10.42 mg 10.42 mg of Pd in 122 mg of a composite = 8.5 %

AC-Pt1:

Atomic mass of Pt = 195.08 g/mol Molar mass of K₂PtCl₄ = 415.09 g/mol 195.08 g/mol in 415.09 g/mol = x mg in 11 mg x = 5.17 mg 5.17 mg of Pt in 111 mg of a composite = 4.6 %

AC-Pt2:

Atomic mass of Pt = 195.08 g/mol Molar mass of K₂PtCl₄ = 415.09 g/mol 195.08 g/mol in 415.09 g/mol = x mg in 22 mg x = 10.34 mg 10.34 mg of Pt in 122 mg of a composite = 8.5 %

EDX and XPS analysis

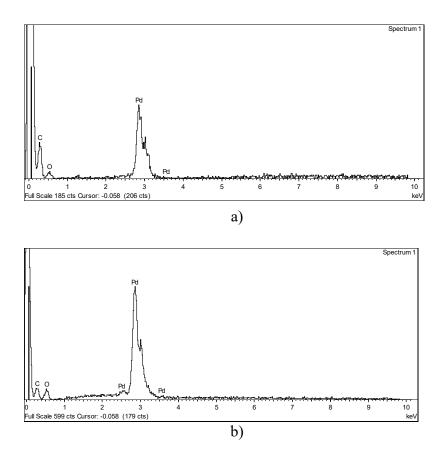


Figure S1. EDX analysis of the AC-Pd1 (a) and AC-Pd2 (b) composite materials.

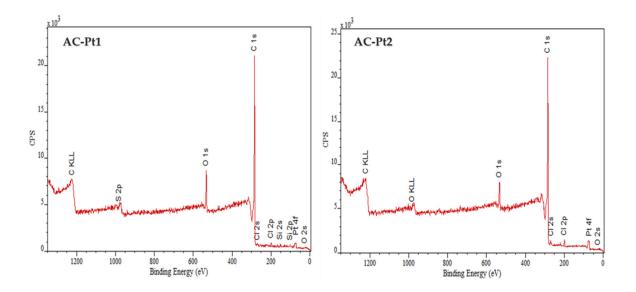


Figure S2. XPS survey spectra of the Pt/AC composites.

Material	Surface atomic %					-	
	Metal	C 1s	O 1s	O ~531.5 eV	O 533.3 eV	O534.2 eV	O/C
AC ^[2]	-	91.47	8.53	-	-	-	0.093
AC-Pd1 ^a	0.82	90.06	9.12	6.92	-	2.33	0.101
AC-Pd2 ^a	1.39	85.51	13.1	10.48	-	2.85	0.153
AC-Pt1	0.18	91.29	8.53	3.40	4.04	-	0.093
AC-Pt2	0.34	93.00	6.66	3.45	3.40	-	0.072

Table S1. Surface atomic percentages determined by XPS for the pristine AC and within the studied Pd/AC and Pt/AC catalytic materials.

^a In O 1s high resolution spectrum it was also observed a peak at 536.0 eV attributed to chemisorbed water.

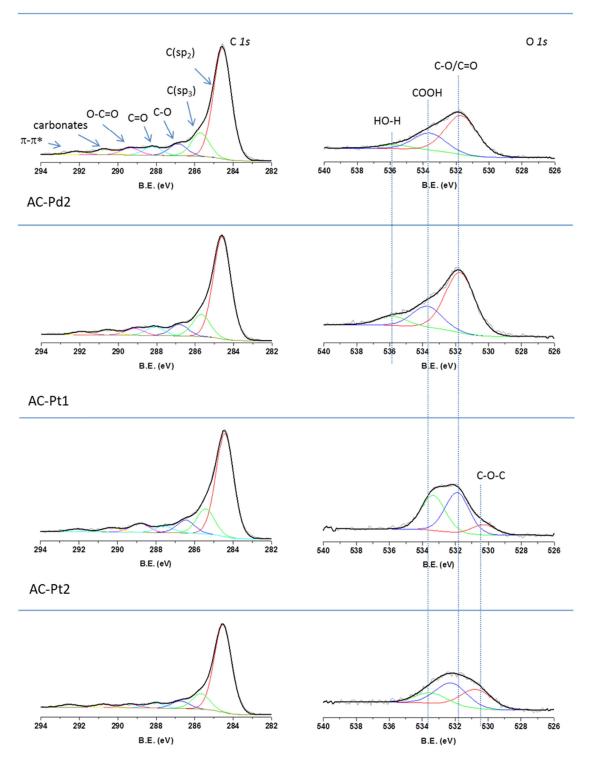


Figure S3. XPS profiles of the studied Pd/AC and Pt/AC catalytic materials in C $1s^{[1]}$ and O 1s regions.

Catalytic studies

Calculation of yields by NMR

The yield was calculated by ¹H NMR based on the integration of well-defined selected peak areas of limiting reactant (bromobenzene) and the corresponding product (biphenyl).

Integral area of limiting reactant (PhBr)	(x)	>	2H
Integral area of product(biphenyl)	(y)		4H

 $Yield = [areaproduct / (areasubstrate + areaproduct)] \times 100$

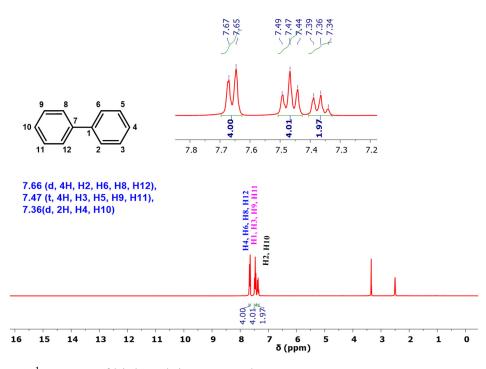


Figure S4. ¹H NMR of biphenyl, in DMSO-d₆.

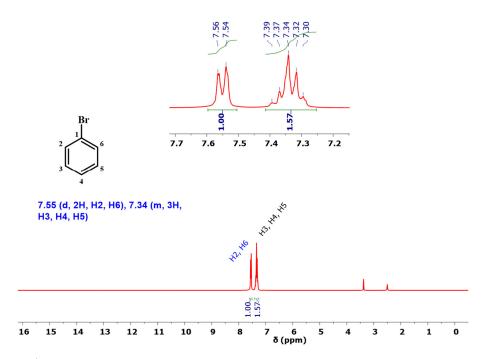


Figure S5. ¹H NMR of bromobenzene, in DMSO-d₆.

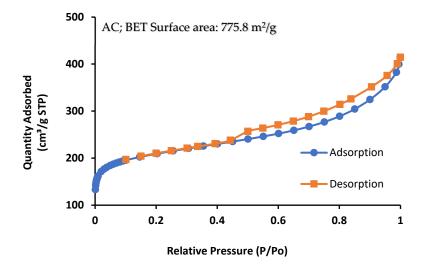
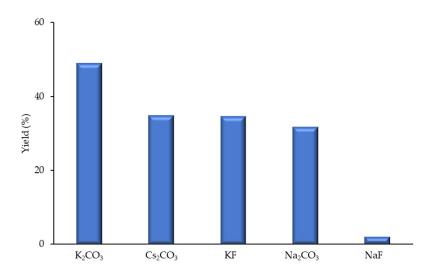
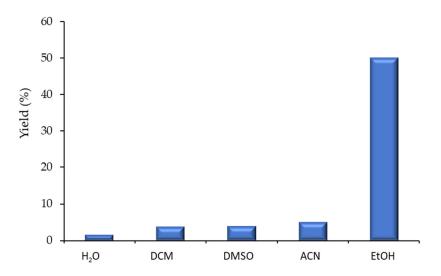
Figure S6. Selected ¹H NMR of Suzuki Miyaura reaction mixture the yield calculations (Yield 69%, Table 3, entry 7), in DMSO-d₆.

An example of calculation of TONs and TOFs

Table 4, entry 6 (Yield = 49%, reaction time = 30 min, 0.5 mmol PhBr (limiting reagent).

<u>AC-Pd1</u>:

Atomic mass of Pd = 106.42 g/mol Found (ICP-MS) Pd content = 4.13wt% 2.5 mg of catalyst (composite) contains 4.13wt% or 0.10325 mg or 0.00097 mmol of Pd TON = $[(\eta/100)^*0.5]/0.00097 = [(49/100)^*0.5]/0.00097 = 136$ TOF = 136/(0.5 h⁻¹) = 272 h⁻¹

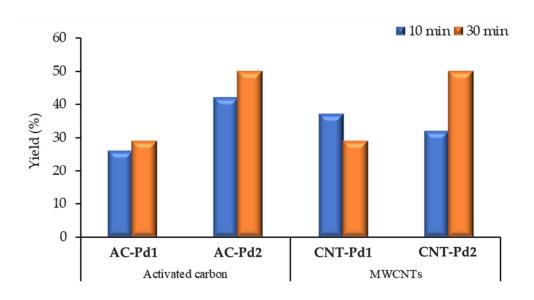

Figure S7. N₂ adsorption-desorption isotherms of the pristine activated carbon (AC).

Figure S8. Effect of the different bases in the cross-coupling Suzuki-Miyaura reaction of bromobenzene and phenylboronic, catalyzed by AC-Pd2. Reaction conditions: 2.5 mg catalyst, 0.6 mmol PhB(OH)₂, 0.5 mmol PhBr, 1.0 mmol base, 2 mL EtOH, Ball mill: 10 milling spheres, 500 rpm, 500 rpm, rotation interval (5 min), 30 min.

Figure S9. Effect of the different solvents in the cross-coupling Suzuki-Miyaura reaction of bromobenzene and phenylboronic, catalyzed by AC-Pd2. Reaction conditions: 2.5 mg of the composite, 0.6 mmol PhB(OH)₂, 0.5 mmol PhBr, 1.0 mmol K₂CO₃, 2 mL solvent, Ball milling: 10 spheres, 500 rpm, 30 min interval with 5 min inversion.

Figure S10. Effect of the different supports. Reaction conditions: 2.5 mg catalyst, 0.6 mmol PhB(OH)₂, 0.5 mmol PhBr, 1.0 mmol base, 2 mL EtOH. Ball milling: 10 spheres, 500 rpm, 30 min interval with 5 min inversion.

References

[1] Y.-C. Chiang, Y.-J. Chen and C.-Y. Wu, Materials 2017, 10, 1296.

[2] Shuttleworth, P. S.; Baccile, N.; White, R.J.; Nectoux E.; Budarin V.L. Bulk and surface analysis of carbonaceous materials, in *RSC Green Chemistry Series No.32: Porous carbon materials from sustainable precursors*, R.J. White (ed.). RSC Publisher, **2015**, p. 311-354.