Biocatalysis of d,l-Peptide Nanofibrillar Hydrogel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Peptide Self-Assembly
2.2. Peptide Secondary Structure
2.3. Biocatalytic Performance
3. Materials and Methods
3.1. Materials
3.2. Peptide Synthesis and Characterisation
3.3. Self-Assembly Protocol
3.4. Oscillatory Rheometry
3.5. Transmission Electron Microscopy (TEM)
3.6. Thioflavin T Fluorescence
3.7. ATR-IR Spectroscopy
3.8. Circular Dichroism (CD) Spectroscopy
3.9. Biocatalysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Choi, J.M.; Han, S.S.; Kim, H.S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 2015, 33, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Duncan, K.L.; Ulijn, R.V. Short Peptides in Minimalistic Biocatalyst Design. Biocatalysis 2015, 2015, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Zozulia, O.; Dolan, M.A.; Korendovych, I.V. Catalytic peptide assemblies. Chem. Soc. Rev. 2018, 47, 3621–3639. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, M.; Miravet, J.F.; Ulijn, R.V.; Escuder, B. Peptide-Based Molecular Hydrogels as Supramolecular Protein Mimics. Chem. Eur. J. 2017, 23, 981–993. [Google Scholar] [CrossRef]
- Maeda, Y.; Makhlynets, O.V.; Matsui, H.; Korendovych, I.V. Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches. Ann. Rev. Biomed. Eng. 2016, 18, 311–328. [Google Scholar] [CrossRef]
- Zaramella, D.; Scrimin, P.; Prins, L.J. Self-Assembly of a Catalytic Multivalent Peptide–Nanoparticle Complex. J. Am. Chem. Soc. 2012, 134, 8396–8399. [Google Scholar] [CrossRef] [PubMed]
- Zaramella, D.; Scrimin, P.; Prins, L.J. Catalysis of Transesterification Reactions by a Self-Assembled Nanosystem. Int. J. Mol. Sci. 2013, 14, 2011–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia Martin, S.; Prins, L.J. Dynamic nanoproteins: Self-assembled peptide surfaces on monolayer protected gold nanoparticles. Chem. Commun. 2016, 52, 9387–9390. [Google Scholar] [CrossRef]
- Mancin, F.; Prins, L.J.; Pengo, P.; Pasquato, L.; Tecilla, P.; Scrimin, P. Hydrolytic metallo-nanozymes: From micelles and vesicles to gold nanoparticles. Molecules 2016, 21, 1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorlero, M.; Wieczorek, R.; Adamala, K.; Giorgi, A.; Schininà, M.E.; Stano, P.; Luisi, P.L. Ser-His catalyses the formation of peptides and PNAs. FEBS Lett. 2009, 583, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Maeda, Y.; Javid, N.; Duncan, K.; Birchall, L.; Gibson, K.F.; Cannon, D.; Kanetsuki, Y.; Knapp, C.; Tuttle, T.; Ulijn, R.V.; et al. Discovery of Catalytic Phages by Biocatalytic Self-Assembly. J. Am. Chem. Soc. 2014, 136, 15893–15896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulseren, G.; Khalily, M.A.; Tekinay, A.B.; Guler, M.O. Catalytic supramolecular self-assembled peptide nanostructures for ester hydrolysis. J. Mater. Chem. B 2016, 4, 4605–4611. [Google Scholar] [CrossRef] [PubMed]
- Rufo, C.M.; Moroz, Y.S.; Moroz, O.V.; Stöhr, J.; Smith, T.A.; Hu, X.; DeGrado, W.F.; Korendovych, I.V. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 2014, 6, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Gayen, K.; Basu, K.; Bairagi, D.; Castelletto, V.; Hamley, I.; Banerjee, A. An amino acid based metallo-hydrogel that acts like an esterase. ACS Appl. Bio Mater. 2018, 1, 1717–1724. [Google Scholar] [CrossRef]
- Zhang, C.; Xue, X.; Luo, Q.; Li, Y.; Yang, K.; Zhuang, X.; Jiang, Y.; Zhang, J.; Liu, J.; Zou, G.; et al. Self-Assembled Peptide Nanofibers Designed as Biological Enzymes for Catalyzing Ester Hydrolysis. ACS Nano 2014, 8, 11715–11723. [Google Scholar] [CrossRef]
- Huang, Z.; Guan, S.; Wang, Y.; Shi, G.; Cao, L.; Gao, Y.; Dong, Z.; Xu, J.; Luo, Q.; Liu, J. Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: A novel hydrolase model. J. Mater. Chem. B 2013, 1, 2297–2304. [Google Scholar] [CrossRef]
- Makam, P.; Yamijala, S.S.R.K.C.; Tao, K.; Shimon, L.J.W.; Eisenberg, D.S.; Sawaya, M.R.; Wong, B.M.; Gazit, E. Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nat. Catal. 2019, 2, 977–985. [Google Scholar] [CrossRef]
- Cringoli, M.C.; Bellotto, O.; De Zorzi, R.; Vargiu, A.V.; Marchesan, S. Self-Assembling L-D-L Tripeptides Dance the Twist. Synlett 2019, 434–438. [Google Scholar] [CrossRef]
- Vargiu, A.V.; Iglesias, D.; Styan, K.; Waddington, L.; Easton, C.; Marchesan, S. Design of a hydrophobic tripeptide that self-assembles into amphiphilic superstructures forming a hydrogel biomaterial. Chem. Commun. 2016, 52, 5912–5915. [Google Scholar] [CrossRef]
- Garcia, A.M.; Iglesias, D.; Parisi, E.; Styan, K.E.; Waddington, L.J.; Deganutti, C.; De Zorzi, R.; Grassi, M.; Melchionna, M.; Vargiu, A.V.; et al. Chirality Effects on Peptide Self-Assembly Unraveled from Molecules to Materials. Chem 2018, 4, 1862–1876. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.M.; Kurbasic, M.; Kralj, S.; Melchionna, M.; Marchesan, S. A biocatalytic and thermoreversible hydrogel from a histidine-containing tripeptide. Chem. Commun. 2017, 53, 8110–8113. [Google Scholar] [CrossRef] [PubMed]
- Guler, M.O.; Stupp, S.I. A Self-Assembled Nanofiber Catalyst for Ester Hydrolysis. J. Am. Chem. Soc. 2007, 129, 12082–12083. [Google Scholar] [CrossRef] [PubMed]
- Amdursky, N.; Erez, Y.; Huppert, D. Molecular rotors: What lies behind the high sensitivity of the thioflavin-T fluorescent marker. Acc. Chem. Res. 2012, 45, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, S.; Kinugasa, S.; Tanabe, K.; Tamura, T. Spectral Database for Organic Compunds. SDBS. Available online: https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=1051 (accessed on 22 June 2020).
- Mesu, J.G.; Visser, T.; Soulimani, F.; Weckhuysen, B.M. Infrared and Raman spectroscopic study of pH-induced structural changes of l-histidine in aqueous environment. Vibr. Spectrosc. 2005, 39, 114–125. [Google Scholar] [CrossRef]
- Garcia, A.M.; Lavendomme, R.; Kralj, S.; Kurbasic, M.; Bellotto, O.; Cringoli, M.C.; Semeraro, S.; Bandiera, A.; De Zorzi, R.; Marchesan, S. Self-Assembly of an Amino Acid Derivative into an Antimicrobial Hydrogel Biomaterial. Chem. Eur. J. 2020, 26, 1880–1886. [Google Scholar] [CrossRef]
- Cross, E.R.; Adams, D.J. Probing the self-assembled structures and pKa of hydrogels using electrochemical methods. Soft Matter 2019, 15, 1522–1528. [Google Scholar] [CrossRef] [Green Version]
- Tena-Solsona, M.; Nanda, J.; Díaz-Oltra, S.; Chotera, A.; Ashkenasy, G.; Escuder, B. Emergent Catalytic Behavior of Self-Assembled Low Molecular Weight Peptide-Based Aggregates and Hydrogels. Chem. Eur. J. 2016, 22, 6687–6694. [Google Scholar] [CrossRef]
- Chen, L.; Revel, S.; Morris, K.; C. Serpell, L.; Adams, D.J. Effect of Molecular Structure on the Properties of Naphthalene−Dipeptide Hydrogelators. Langmuir 2010, 26, 13466–13471. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Llansola, F.; Escuder, B.; Miravet, J.F. Switchable Perfomance of an L-Proline-Derived Basic Catalyst Controlled by Supramolecular Gelation. J. Am. Chem. Soc. 2009, 131, 11478–11484. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Smith, A.M.; Collins, R.F.; Ulijn, R.V.; Saiani, A. Fmoc-diphenylalanine self-assembly mechanism induces apparent pKa shifts. Langmuir 2009, 25, 9447–9453. [Google Scholar] [CrossRef] [PubMed]
- Kleinsmann, A.J.; Nachtsheim, B.J. A minimalistic hydrolase based on co-assembled cyclic dipeptides. Org. Biomol. Chem. 2020, 18, 102–107. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the peptide are available from the authors. |
[pNPA] | 0.1 mM | 1 mM | 5 mM | 10 mM |
---|---|---|---|---|
0.2 | 6.25 × 10−6 | 7.14 × 10−5 | 1.10 × 10−4 | 2.24 × 10−4 |
0.4 | 1.26 × 10−5 | 1.31 × 10−4 | 1.85 × 10−4 | 4.32 × 10−4 |
0.6 | 1.87 × 10−5 | 1.76 × 10−4 | 4.48 × 10−4 | 7.40 × 10−4 |
0.8 | 2.51 × 10−5 | 2.60 × 10−4 | 4.07 × 10−4 | 9.30 × 10−4 |
1.0 | 3.13 × 10−5 | 3.29 × 10−4 | 5.68 × 10−4 | 1.11 × 10−3 |
kobs | 1.63 × 10−4 | 3.22 × 10−4 | 5.72 × 10−4 | 1.14 × 10−3 |
Peptide Sequence | Number of His | pH | kcat/KM (s−1M−1) | Reference |
---|---|---|---|---|
cyclo(HF) + cyclo(CF) | 1 | 7.5 | 0.09 | [32] |
HSGQQKFQFQFEQQ | 1 | 7.4 | 0.09 | [15] |
cyclo(HF) + cyclo(CV) | 1 | 7.3 | 0.13 | [32] |
HSGQQKFQFQFEQQ + RSGQQKFQFQFEQQ | 1 | 7.4 | 0.15 | [15] |
cyclo(HF) + cyclo(CL) | 1 | 7.4 | 0.2 | [32] |
HLDLIHLDLI | 2 | 7.0 | 2.9 | This work |
H2KLLLAAA(Nε-palmytoyl)K-NH2 | 2 | 7.4 | 20 | [22] |
[Peptide] (mM) | [pNPA] (mM) | % Ac-Peptide (SNAc) | % pNPA (SNAc) | % pNPA (Catalysis) |
---|---|---|---|---|
1.0 | 0.2 | 7 | 35 | 65 |
1.0 | 1.0 | 26 | 26 | 74 |
0.1 | 0.4 | 36 | 9 | 91 |
0.1 | 1.0 | 64 | 6 | 94 |
0.1 | 2.0 | 81 | 4 | 96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlomagno, T.; Cringoli, M.C.; Kralj, S.; Kurbasic, M.; Fornasiero, P.; Pengo, P.; Marchesan, S. Biocatalysis of d,l-Peptide Nanofibrillar Hydrogel. Molecules 2020, 25, 2995. https://doi.org/10.3390/molecules25132995
Carlomagno T, Cringoli MC, Kralj S, Kurbasic M, Fornasiero P, Pengo P, Marchesan S. Biocatalysis of d,l-Peptide Nanofibrillar Hydrogel. Molecules. 2020; 25(13):2995. https://doi.org/10.3390/molecules25132995
Chicago/Turabian StyleCarlomagno, Tiziano, Maria C. Cringoli, Slavko Kralj, Marina Kurbasic, Paolo Fornasiero, Paolo Pengo, and Silvia Marchesan. 2020. "Biocatalysis of d,l-Peptide Nanofibrillar Hydrogel" Molecules 25, no. 13: 2995. https://doi.org/10.3390/molecules25132995
APA StyleCarlomagno, T., Cringoli, M. C., Kralj, S., Kurbasic, M., Fornasiero, P., Pengo, P., & Marchesan, S. (2020). Biocatalysis of d,l-Peptide Nanofibrillar Hydrogel. Molecules, 25(13), 2995. https://doi.org/10.3390/molecules25132995