Evaluation of the Content of Polyphenols, Antioxidant Activity and Physicochemical Properties of Tortillas Added with Bambara Groundnut Flour
Abstract
:1. Introduction
2. Result and Discussion
2.1. Thermal Properties of Composite Flour Blends
2.2. Proximate Composition of Maize-Bambara Groundnut Flour Blends and Tortillas
2.3. Polyphenolic Compounds and Antioxidant Activities of Maize-Bambara Groundnut Flour Blends and Tortillas
2.4. Texture Profile of Tortillas Added with Bambara Groundnut Flour
2.5. Physical Properties of Tortillas Added with Bambara Groundnut Flour
2.6. Degree of Puffing and Rollability of Tortillas Added with Bambara Groundnut Flour
3. Materials and Methods
3.1. Material
3.2. Bambara Groundnut Flour Preparation Flour
3.3. Blend Formulation
3.4. Tortillas Preparation
3.5. Thermal Properties of Composite Flour Blends
3.6. Proximate Composition of Composite Flours and Tortillas
3.7. Phenolic Compounds and Antioxidant Activity of Flour Blends and Tortillas
3.7.1. Extract Preparation
3.7.2. Determination of Total Phenolic Content
3.7.3. Determination of Total Flavonoids Content
3.7.4. Determination of DPPH (2,2-Diphenyl-1-picrylhydrazyl) Radical Scavenging Activity
3.7.5. Determination of Ferric Reducing Antioxidant Power (FRAP)
3.8. Physical Analyses of Tortillas
3.8.1. Texture Analysis of Tortillas
3.8.2. Physical Characteristics
3.8.3. Quality Properties
Puffing Degree
Rollability
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, G.; Jackson, D.S.; Graybosch, R.A.; Parkhurst, A.M. Wheat tortilla quality: Impact of amylose content adjustments using waxy wheat flour. Cereal Chem. 2003, 80, 427–436. [Google Scholar] [CrossRef]
- Sahasrabudhe, S.N. Corn Characterization and Development of a Convenient Laboratory Scale Alkaline Cooking Process. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2015. [Google Scholar]
- Winstone, L.M. Leavening and Temperature Effects on the Physical and Rheological Properties of Wheat Flour Tortillas. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2010. [Google Scholar]
- Lecuona-Villanueva, A.; Betancu-Ancona, D.A.; Chel-Guerrero, L.A.; Castellanos-Ruelas, A.F. Protein fortification of corn tortillas: Effect on physicochemical characteristic, nutritional value and acceptance. Food Nutr. Sci. 2012, 3, 1658–1663. [Google Scholar]
- Páramo-Calderóna, D.E.; Aparicio-Saguilána, A.; Aguirre-Cruza, A.; Carrillo-Ahumadaa, J.; Hernández-Uribeb, J.P.; Acevedo-Telloc, S.; Torruco-Ucod, J.G. Tortilla added with Moringa oleífera flour: Physicochemical, texture properties and antioxidant capacity. LWT Food Sci. Technol. 2019, 100, 409–415. [Google Scholar] [CrossRef]
- Aparicio-Saguilán, A.; Osorio-Díaz, P.; Agama-Acevedo, E.; Islas-Hernández, J.J.; Bello-Pérez, L.A. Tortilla added with unripe banana and cassava flour: Chemical composition and starch digestibility. CyTA J. Food. 2013, 11, 90–95. [Google Scholar] [CrossRef]
- Rendón-Villalobos, R.; Agama-Acevedo, E.; Osorio-Díaz, P.; Tovar, J.; Bello-Pérez, L.A. Proximal composition and in vitro starch digestibility in flaxseed-added corn tortilla. J. Sci. Food Agric. 2009, 89, 537–541. [Google Scholar] [CrossRef]
- Olapade, A.A.; Aworh, O.C. Chemical and nutritional evaluation of extruded complementary foods from blends of fonio (Digitaria exilis Stapf) and cowpea (Vigna unguiculata L. Walp) Flours. Int. J. Food Nutri Sci. 2012, 1, 4–9. [Google Scholar]
- Mahala, A.G.; Mohammed, A.A.A. Nutritive evaluation of Bambara groundnut (Vigna subterranean) pods, seeds and hull as animal feeds. J. Appl. Sci. Res. 2010, 6, 383–386. [Google Scholar]
- Hillocks, R.J.; Bennett, C.; Mponda, O.M. Bambara nut: A review of utilisation, market potential and crop improvement. Afr. Crop Sci. J. 2012, 20, 1–6. [Google Scholar]
- Mubaiwa, J.; Fogliano, V.; Chidewe, C.; Linnemann, A.R. Bambara groundnut (Vigna subterranea (L.) Verdc.) Flour: A functional ingredient to favour the use of an unexploited sustainable protein source. PLoS ONE 2018, 13, e0205776. [Google Scholar] [CrossRef]
- Tsamo, A.T.; Ndibewu, P.P.; Dakora, F.D. Phytochemical profile of seeds from 21 Bambara groundnut landraces via UPLC-qTOF-MS. Food Res. Int. 2018, 112, 160–168. [Google Scholar] [CrossRef]
- Mayes, S.; Massawe, F.J.; Alderson, P.G.; Roberts, J.A.; Azam-Ali, S.N.; Hermann, M. The potential for underutilized crops to improve security of food production. J. Exp. Bot. 2012, 63, 1075–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sindhu, R.; Khatkar, B.S. Thermal, pasting and micro-structural properties ofstarch and flour of Tartary buckwheat (F. Tataricum). Int. J. Eng. Res. Technol. 2016, 5, 305–308. [Google Scholar]
- Gabriel, E.G.; Jideani, V.A.; Ikhu-omoregbe, D.I.O. Investigation of the emulsifying properties of Bambara groundnut flour and starch. Int. J. Food Sci. Eng. 2013, 7, 539–547. [Google Scholar]
- Kaptso, K.G.; Njintang, Y.N.; Nguemtchouin, M.M.G.; Scher, J.; Hounhouigan, J.; Mbofung, C.M. Physicochemical and micro-structural properties of flours, starch and proteins from two varieties of legumes: Bambara groundnut (Vigna subterranea). J. Food Sci. Technol. 2015, 52, 4915–4924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirivongpaisal, P. Structure and functional properties of starch and flour from Bambara groundnut. Songklanakarin J. Sci. Technol. 2008, 30, 51–56. [Google Scholar]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Reddy, C.K.; Haripriya, S.; Vidya, P.V. Morphology, physicochemical and functional characteristics of starches from different banana cultivars. J. Food Sci. Technol. 2015, 52, 7289–7296. [Google Scholar] [CrossRef]
- Pérez, S.J.; Rojas, C.C.; Eliasson, A.C.; Sjoo, M.E. Phase separation, water and thermal properties of Andean grain flours and their effect on wheat flour dough. J. Food Process Technol. 2018, 10, 779. [Google Scholar]
- Quintero-Fuentes, X.; McDonough, C.M.; Rooney, L.W.; Almeida-Dominguez, H. Functionality of rice and sorghum flours in baked tortilla and corn chips. Cereal Chem. 1999, 76, 705–710. [Google Scholar] [CrossRef]
- Vazquez-Carrillo, M.G.; Santiago-Ramos, D.; Gaytan-Martínez, M.; Morales-Sanchez, E.; Guerrero-Herrera, M. High oil content maize: Physical, thermal and rheological properties of grain, masa, and tortillas. LWT Food Sci. Technol. 2015, 60, 156–161. [Google Scholar] [CrossRef]
- Orhevba, B.A.; Mbamalu, C.A. Effect of moisture content on some quality parameters of stored Bambara nut (Vigna subterranea) flour. FUW Trends Sci. Technol. J. 2017, 2, 865–868. [Google Scholar]
- Islamic, M.N.; Lirio, M.E.; Delvalle, R.R. Mould inhibition in tortilla by dimethyl fumarate. J. Food Process Preserv. 1984, 8, 41–45. [Google Scholar] [CrossRef]
- Ayele, E.; Urga, K.; Chandravanshi, B.S. Effect of cooking temperature on mineral content and anti-nutritional factors of yam and taro grown in southern Ethiopia. Int. J. Food Eng. 2015, 11, 371–382. [Google Scholar] [CrossRef]
- Abdualrahman, M.; Ma, H.; Yagoub, A.; Zhou, C.; Ali, A.; Yang, W. Nutritional value, protein quality and antioxidant activity of Sudanese sorghum-based kissra bread fortified with Bambara groundnut (Voandzeia subterranea) seed flour. J. Saudi Soc. Agric. Sci. 2019, 18, 32–40. [Google Scholar] [CrossRef]
- Jensen, S.; Oestdal, H.; Clausen, M.R.; Andersen, M.L.; Skibsted, L.H. Oxidative stability of whole wheat bread during storage. LWT Food Sci. Technol. 2011, 44, 637–642. [Google Scholar] [CrossRef]
- Vázquez-Rodríguez, J.A.; Amaya-Guerra, C.A.; Báez-González, J.G.; Núñez-González, M.A.; Figueroa-Cárdenas, J.D. Study of the fortification with bean and amaranth flours in nixtamalized maize tortilla. CyTA J. Food. 2013, 11, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Oyeleke, G.O.; Afolabi, O.; Isola, A.D. Some quality characteristics and carbohydrate fractions of Bambara groundnut (Vigna subterranea L.) seed flour. IOSR J. Appl. Chem. 2012, 2, 16–19. [Google Scholar]
- Ayo, J.A.; Popoola, C.A.; Ayo, V.A.; Andrew, E. Effect of added Bambara groundnut flour on the quality of acha based fura. Curr. J. Appl. Sci. Technol. 2014, 4, 168–176. [Google Scholar] [CrossRef]
- Joshua, Z.P.; Suleiman, M.M. The effect of cooking time on the vitamin C, dietary fibre and mineral compositions of some local vegetables. Sci. World J. 2012, 7, 29–30. [Google Scholar]
- Etiosa, O.R.; Chika, N.B.; Benedicta, A. Mineral and proximate composition of soya bean. Asian J. Phys. Chem. Sci. 2017, 4, 1–6. [Google Scholar] [CrossRef]
- Kavitha, S.; Parimalavalli, R. Effect of processing methods on proximate composition of cereal and legume flours. J. Hum. Nutr. Food Sci. 2014, 2, 1051. [Google Scholar]
- Morrison, T.A.; Pressey, R.; Kays, S.J. Changes in α- and β-amylase activities during storage of sweet potato lines with varying starch hydrolysis potential. J. Am. Soc. Hort. Sci. 1993, 118, 236–242. [Google Scholar] [CrossRef]
- Snow, P.; O’Dea, K. Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr 1981, 34, 2721–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23, 1527–1534. [Google Scholar] [CrossRef]
- Nguimbou, R.M.; Njintang, N.Y.; Makhlouf, H.; Gaiani, C.; Scher, J.; Mbofung, C.M. Effect of cross-section differences and drying temperature on the physicochemical, functional and antioxidant properties of giant taro flour. Food Bioproc. Tech. 2013, 6, 1809–1819. [Google Scholar] [CrossRef]
- Abdel-Gawad, A.S.; Rashwan, M.R.A.; El-Naggar, E.A.; Hassan, M.A. Composite flours from wheat-legumes flour: Chemical composition, functional properties and antioxidant Activity. ASSIUT J. Agric. Sci. 2016, 47, 430–442. [Google Scholar]
- Sahin, H.; Topuz, A.; Pischetsrieder, M.; Ozdemir, F. Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur. Food Res. Technol. 2009, 230, 155–161. [Google Scholar] [CrossRef]
- Shahidi, F.; Wanasundara, P.K. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef]
- Hernández-Martínez, V.; Salinas-Moreno, Y.; Ramírez-Díaz, J.L.; Vázquez-Carrillo, G.; Domínguez-López, A.; Ramírez-Romero, A.G. Colour, phenolic composition and antioxidant activity of blue tortillas from Mexican maize races. CyTA J. Food. 2016, 14, 473–481. [Google Scholar]
- Chlopicka, J.; Pasko, P.; Gorinstein, S.; Jedryas, A.; Zagrodzki, P. Total phenolic and total flavonoids content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT Food Sci. Technol. 2012, 46, 548–555. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Ge’rardin, C.; Paris, C. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Pres. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Krystyjan, M.; Gumul, D.; Ziobro, R.; Korus, A. The fortification of biscuits with bee pollen and its effect on physicochemical and antioxidant properties in biscuits. LWT Food Sci. Technol. 2015, 63, 640–646. [Google Scholar] [CrossRef]
- Siddhuraju, P. The antioxidant activity and free radical-scavenging capacity of phenolics of raw and dry heated moth bean (Vigna aconitifolia)(Jacq.) Marechal seed extracts. Food Chem. 2006, 99, 149–157. [Google Scholar] [CrossRef]
- Li, Y.; Ma, D.; Sun, D.; Wang, C.; Zhang, J.; Xie, Y.; Guo, T. Total phenolic, flavonoid content, and antioxidant activity of flour, noodles, and steamed bread made from different colored wheat grains by three milling methods. Crop. J. 2015, 3, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Song, J.F.; Liu, C.Q.; Li, D.J.; Meng, L.L. Effect of cooking methods on total phenolic and carotenoid amounts and DPPH radical scavenging activity of fresh and frozen sweet corn (Zea mays) kernels. Czech J. Food Sci. 2013, 31, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Gujral, H.S. Effect of sand roasting and microwave cooking on antioxidant activity of barley. Food Res. Int. 2011, 44, 235–240. [Google Scholar] [CrossRef]
- Fernández-Muñoz, J.L.; Rodríguez, M.E.; Pless, R.C.; Martínez-Flores, H.M.; Leal, M.; Martínez, J.L. Changes in nixtamalized corn flour in dependence of post-cooking steeping time. Cereal Chem. 2002, 79, 162–166. [Google Scholar] [CrossRef]
- Salinas, M.Y.; Castillo, L.E.B.; Vazquez, C.M.G.; Buendia, G.M.O. Blends of waxy with normal maize and their effect on tortilla quality. Rev. Mex. Cienc. Agrícola 2011, 2, 689–702. [Google Scholar]
- Chel-Guerrero, L.; Parra-Pérez, J.; Betancur-Ancona, D.; Castellanos-Ruelas, A.; Solorza-Feria, J. Chemical, rheological and mechanical evaluation of maize dough and tortillas in blends with cassava and malanga flour. J. Food Sci. Technol. 2015, 52, 4387–4395. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Vega, M.L.; Peralta-Rodriguez, R.D.; Anzaldua-Morales, A.; Figueroa-Cardenas, J.P.; Martinez-Bustos, F. Relating sensory textural attributes of corn tortillas to some instrumental measurements. J. Texture Stud. 1998, 29, 361–373. [Google Scholar] [CrossRef]
- Arambula-Villa, G.; Gonzalez-Hernandez, J.; Ordorica-Falomir, C.A. Physicochemical, structural and textural properties from extruded instant corn flour supplemented with various types of corn lipids. J. Cereal Sci. 2001, 33, 245–252. [Google Scholar] [CrossRef]
- Baljeet, S.Y.; Yadar, R.B.; Yadar, R. Studies on functional properties and incorporation of buckwheat flour for biscuit making. Int. Food Res. J. 2010, 17, 1067–1077. [Google Scholar]
- Hussein, A.M.S.; Ali, H.S.; Bareh, G.F.; Al-Khalifa, A.R. Physicochemical, Sensory and Functional properties of gelatinized corn-triticale flour composite tortilla. Aust. J. Basic Appl. Sci. 2011, 5, 43–54. [Google Scholar]
- Mcwatters, K.H. Formulation, evaluation and optimization of tortillas containing wheat, cowpea and peanut flours using mixture response surface methodology. J. Food Sci. 1978, 57, 121–127. [Google Scholar]
- Ram, B.; Nigam, S. Puffing and textural characteristics of chapati in relation to varietal differences in gluten composition. J. Food Sci. 1982, 47, 231–233. [Google Scholar] [CrossRef]
- Weber, R.J. Shelf-Life Extension of Corn Tortillas. Master’s Thesis, Kansas State University, Manhattan, KS, USA, 2000. [Google Scholar]
- Limanond, B.; Castell-Perez, E.; Moeriera, R.G. Effect of time and storage conditions on the rheological properties of masa for corn tortillas. LWT Food Sci. Technol. 2000, 32, 344–348. [Google Scholar] [CrossRef]
- Moreno-Castro, L.E.; Quintero-Ramos, A.; Ruiz-Gutierrez, M.G.; Sanchez-Madrigal, M.A.; Melendez-Pizzarro, C.O.; Perez-Reyes, I.; Lardizabal-Gutierrez, D. Nixtamalization assisted with ultrasound: Effect on mass transfer and physicochemical properties of nixtamal, masa and tortilla. Rev. Mex. Ing. Quinica 2015, 14, 265–279. [Google Scholar]
- Sun, Q.; Gong, M.; Li, Y.; Xiong, L. Effect of dry heat treatment on the physicochemical properties and structure of proso millet flour and starch. Carbohydr. Polym. 2014, 110, 128–134. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Arlington, VA, USA, 2016. [Google Scholar]
- Anyasi, T.A.; Jideani, A.I.; Mchau, G.R.A. Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chem. 2015, 172, 515–522. [Google Scholar] [CrossRef]
- Shen, Y.; Jin, L.; Xiao, P.; Lu, Y.; Bao, J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J. Cereal Sci. 2009, 49, 106–111. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Bejosano, F.P.; Joseph, S.; Lopez, R.M.; Kelekci, N.N.; Waniska, R.D. Rheological and sensory evaluation of wheat flour tortillas during storage. Cereal Chem. 2005, 82, 256–263. [Google Scholar] [CrossRef]
- Cuevas-Martínez, D.; Moreno-Ramos, C.; Martínez-Manrique, E.; Martínez, M.E.; Méndez, A.A. Nutrition and texture evaluation of maize white common bean nixtamalized tortillas. Interciencia 2010, 35, 828–832. [Google Scholar]
- Cepeda, M.; Waniska, R.D.; Rooney, L.W.; Bejosano, F.P. Effects of leavening acids and dough temperature on wheat flour tortillas. Cereal Chem. 2000, 77, 489–494. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Sample | To (°C) | Tp (°C) | Tc (°C) | ∆H (J/G) |
---|---|---|---|---|
Control | 57.50 ± 0.58 a | 74.94 ± 0.61 a | 91.58 ± 1.49 b | 5.57 ± 1.39 a |
BGN1 | 61.70 ± 0.72 b | 75.86 ± 0.87 a | 89.93 ± 1.86 b | 6.31 ± 0.83 b |
BGN2 | 66.10 ± 0.70 c | 76.74 ± 0.71 ab | 87.70 ± 0.81 c | 8.59 ± 1.99 c |
BGN3 | 67.38 ± 0.44 d | 77.95 ± 0.32 b | 84.34 ± 0.45 a | 11.31 ± 0.29 d |
BGN4 | 71.95 ± 0.62 e | 78.45 ± 0.70 b | 81.72 ± 0.69 a | 14.81 ± 0.49 e |
Proximate Composition | Moisture | Ash | Protein | Fat | Fibre | Carbohydrates |
---|---|---|---|---|---|---|
Flours | ||||||
Control | 3.69 ± 0.04 a | 1.23 ± 0.03 a | 3.31 ± 0.06 a | 1.74 ± 0.02 a | 2.03 ± 0.04 a | 88.00 ± 0.12 g |
BGN1 | 3.92 ± 0.08 b | 1.32 ± 0.03 b | 4.69 ± 0.02 b | 1.79 ± 0.03 a | 2.15 ± 0.04 ab | 86.00 ± 0.04 g |
BGN2 | 3.97 ± 0.05 b | 2.06 ± 0.02 e | 5.79 ± 0.05 c | 2.33 ± 0.04 b | 2.34 ± 0.05 b | 83.51 ± 0.01 f |
BGN3 | 4.12 ± 0.01 b | 2.16 ± 0.01 f | 7.24 ± 0.03 e | 2.40 ± 0.02 b | 2.77 ± 0.03 c | 81.31 ± 0.05 f |
BGN4 | 4.39 ± 0.21 c | 3.08 ± 0.05 g | 7.87 ± 0.03 f | 2.95 ± 0.01 c | 3.53 ± 0.26 e | 78.18 ± 0.11 e |
Tortillas | ||||||
Control | 14.93 ± 0.13 d | 1.04 ± 0.04 a | 3.14 ± 0.02 a | 1.73 ± 0.02 a | 2.09 ± 0.03 a | 77.07 ± 0.27 e |
BGN1 | 20.59 ± 0.46 e | 1.33 ± 0.04 b | 4.60 ± 0.11 b | 1.78 ± 0.03 b | 2.24 ± 0.01 a | 69.46 ± 0.09 d |
BGN2 | 23.76 ± 0.07 f | 1.36 ± 0.04 b | 5.06 ± 0.01 c | 2.33 ± 0.04 b | 2.99 ± 0.57 d | 64.5 ± 0.56 c |
BGN3 | 25.04 ± 0.27 g | 1.53 ± 0.01 c | 5.41 ± 0.01 c | 2.40 ± 0.12 b | 3.84 ± 0.05 f | 61.78 ± 0.09 b |
BGN4 | 29.86 ± 0.25 h | 1.63 ± 0.04 d | 6.33 ± 0.52 d | 2.93 ± 0.04 c | 4.03 ± 0.02 g | 55.22 ± 0.58 a |
Sample | TPC (mg GAE/g) | TFC (mg CE/g) | FRAP (mg GAE/g) | DPPH (%) |
---|---|---|---|---|
Flours | ||||
Control | 43.82 ± 2.00 a | 10.83 ± 1.10 a | 0.071 ± 0.01 a | 43.09 ± 1.92 a |
BGN1 | 55.05 ± 3.01 b | 13.21 ± 1.23 b | 0.112 ± 0.01 b | 55.87 ± 3.07 b |
BGN2 | 60.21 ± 3.52 d | 17.34 ± 1.50 c | 0.124 ± 0.01 b | 65.46 ± 3.48 d |
BGN3 | 66.04 ± 3.88 e | 20.44 ± 1.68 d | 0.141 ± 0.03 c | 75.19 ± 5.60 e |
BGN4 | 72.05 ± 4.22 f | 23.58 ± 1.98 e | 0.156 ± 0.04 d | 80.54 ± 6.17 f |
Tortillas | ||||
Control | 46.61 ± 2.10 b | 10.03 ± 1.15 a | 0.106 ± 0.01 b | 60.70 ± 3.50 c |
BGN1 | 60.11 ± 3.49 d | 10.87 ± 1.30 a | 0.118 ± 0.02 b | 77.87 ± 4.96 b |
BGN2 | 62.11 ± 3.92 d | 13.31 ± 1.63 b | 0.126 ± 0.02 b | 82.38 ± 5.93 f |
BGN3 | 72.86 ± 4.20 f | 16.43 ± 1.70 c | 0.131 ± 0.02 c | 87.21 ± 6.32 g |
BGN4 | 79.31 ± 5.60 g | 19.87 ± 1.99 d | 0.183 ± 0.01 d | 90.99 ± 6.66 h |
Sample | Hardness (N) | Springiness (mm) | Cohesiveness | Gumminess | Chewiness |
---|---|---|---|---|---|
Control | 8.99 ± 1.55 e | 0.58 ± 0.003 e | 0.09 ± 0.003 d | 24.17 ± 2.69 e | 13.97 ± 1.22 d |
BGN1 | 8.82 ± 1.33 de | 0.57 ± 0.004 d | 0.06 ± 0.002 c | 20.96 ± 2.20 d | 11.79 ± 1.12 d |
BGN2 | 8.52 ± 1.20 c | 0.56 ± 0.004 c | 0.03 ± 0.001 b | 15.05 ± 1.70 c | 8.41 ± 0.99 c |
BGN3 | 7.72 ± 1.05 b | 0.54 ± 0.004 b | 0.03 ± 0.001 ab | 13.24 ± 1.32 b | 7.17 ± 0.89 b |
BGN4 | 6.52 ± 1.00 a | 0.52 ± 0.007 a | 0.02 ± 0.001 a | 11.81 ± 1.06 a | 6.12 ± 0.80 a |
Sample | Weight (g) | Diameter (cm) | Thickness (mm) | Spread Ratio |
---|---|---|---|---|
Control | 35.93 a ± 0.70 a | 14.60 ± 0.10 e | 2.17 ± 0.58 a | 6.72 ± 0.16 e |
BGN1 | 36.92 b ± 0.12 b | 14.17 ± 0.58 d | 2.37 ± 0.58 b | 5.99 ± 0.16 d |
BGN2 | 37.67 c ± 0.24 c | 13.80 ± 0.10 c | 2.60 ± 0.10 c | 5.31 ± 0.25 c |
BGN3 | 38.25 d ± 0.29 d | 13.40 ± 0.10 b | 2.83 ± 0.58 d | 4.72 ± 012 b |
BGN4 | 39.26 e ± 0.19 e | 13.07 ± 0.15 a | 3.07 ± 0.34 e | 4.17 ± 0.25 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashau, M.E.; Mabodze, T.; Tshiakhatho, O.J.; Silungwe, H.; Ramashia, S.E. Evaluation of the Content of Polyphenols, Antioxidant Activity and Physicochemical Properties of Tortillas Added with Bambara Groundnut Flour. Molecules 2020, 25, 3035. https://doi.org/10.3390/molecules25133035
Mashau ME, Mabodze T, Tshiakhatho OJ, Silungwe H, Ramashia SE. Evaluation of the Content of Polyphenols, Antioxidant Activity and Physicochemical Properties of Tortillas Added with Bambara Groundnut Flour. Molecules. 2020; 25(13):3035. https://doi.org/10.3390/molecules25133035
Chicago/Turabian StyleMashau, Mpho Edward, Tumelo Mabodze, Ompilela Justice Tshiakhatho, Henry Silungwe, and Shonisani Eugenia Ramashia. 2020. "Evaluation of the Content of Polyphenols, Antioxidant Activity and Physicochemical Properties of Tortillas Added with Bambara Groundnut Flour" Molecules 25, no. 13: 3035. https://doi.org/10.3390/molecules25133035
APA StyleMashau, M. E., Mabodze, T., Tshiakhatho, O. J., Silungwe, H., & Ramashia, S. E. (2020). Evaluation of the Content of Polyphenols, Antioxidant Activity and Physicochemical Properties of Tortillas Added with Bambara Groundnut Flour. Molecules, 25(13), 3035. https://doi.org/10.3390/molecules25133035