Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples
Abstract
:1. Introduction
2. Way of the Silica Monolith to the Commercial Market
3. Main Features and Synthesis of the Silica-Based Monolithic Rod
4. Applicability of the Monolithic Column
4.1. Plant Samples
4.2. Medical and Pharmaceutical Application
4.3. New Generation of Monolithic Columns—Short Characterization and Applications
4.4. Preparative and Semi-Preparative Silica-Based Monolithic Column—Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, I.; Gaitonde, V.D.; Aboul-Enein, H.Y. Monolithic silica stationary phases in liquid chromatography. J. Chromatogr. Sci. 2009, 47, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Svec, F. Monolithic columns: A historical overview. Electrophoresis 2017, 38, 2810–2820. [Google Scholar] [CrossRef]
- Guiochon, G. Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A 2007, 1168, 101–168. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, K. Applications of silica-based monolithic HPLC columns. J. Sep. Sci. 2004, 27, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Tara, A.; Sharma, V.D. Advances in monolithic silica columns for high-performance liquid chromatography. J. Anal. Sci. Technol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Liu, S.; Wang, H.; Jia, Q. Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: Synthesis and application. Chromatographia 2014, 77, 5–14. [Google Scholar] [CrossRef]
- Vyviurska, O.; Lv, Y.; Mann, B.F.; Svec, F. Comparison of commercial organic polymer-based and silica-based monolithic columns using mixtures of analytes differing in size and chemistry. J. Sep. Sci. 2018, 41, 1558–1566. [Google Scholar] [CrossRef]
- Svec, F.; Lv, Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 2015, 87, 250–273. [Google Scholar] [CrossRef] [PubMed]
- Oberacher, H.; Huber, C.G. Capillary monoliths for the analysis of nucleic acids by high-performance liquid chromatography-electrospray ionization mass spectrometry. TrAC Trends Anal. Chem. 2002, 21, 166–174. [Google Scholar] [CrossRef]
- Štrancar, A.; Barut, M.; Podgornik, A.; Koselj, P.; Schwinn, H.; Raspor, P.; Josić, D. Application of compact porous tubes for preparative isolation of clotting factor VIII from human plasma. J. Chromatogr. A 1997, 760, 117–123. [Google Scholar] [CrossRef]
- Gupalova, T.V.; Lojkina, O.V.; Pàlàgnuk, V.G.; Totolian, A.A.; Tennikova, T.B. Quantitative investigation of the affinity properties of different recombinant forms of protein G by means of high-performance monolithic chromatography. J. Chromatogr. A 2002, 949, 185–193. [Google Scholar] [CrossRef]
- Van De Meent, M.H.M.; Eeltink, S.; De Jong, G.J. Potential of poly(styrene-co-divinylbenzene) monolithic columns for the LC-MS analysis of protein digests. Anal. Bioanal. Chem. 2011, 399, 1845–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungbauer, A.; Hahn, R. Polymethacrylate monoliths for preparative and industrial separation of biomolecular assemblies. J. Chromatogr. A 2008, 1184, 62–79. [Google Scholar] [CrossRef]
- Siouffi, A.M. About the C term in the van Deemter’s equation of plate height in monoliths. J. Chromatogr. A 2006, 1126, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Corradini, D. Handbook of HPLC; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-57444-554-1. [Google Scholar]
- Urban, J. Are we approaching a post-monolithic era? J. Sep. Sci. 2020, 43, 1628–1633. [Google Scholar] [CrossRef] [PubMed]
- Pellati, F.; Calò, S.; Benvenuti, S. High-performance liquid chromatography analysis of polyacetylenes and polyenes in Echinacea pallida by using a monolithic reversed-phase silica column. J. Chromatogr. A 2007, 1149, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Moon, S.O.; Kim, S.Y.; Yang, E.J.; Min, J.S.; An, J.H.; Choi, E.A.; Liu, K.H.; Park, E.J.; Lee, H.D.; et al. Rapid HPLC determination of gastrodin in Gastrodiae Rhizoma. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 409–413. [Google Scholar] [CrossRef]
- Bhandari, P.; Kumar, N.; Singh, B.; Singh, V.; Kaur, I. Silica-based monolithic column with evaporative light scattering detector for HPLC analysis of bacosides and apigenin in Bacopa monnieri. J. Sep. Sci. 2009, 32, 2812–2818. [Google Scholar] [CrossRef]
- Maruška, A.; Kornyšova, O. Application of monolithic (continuous bed) chromatographic columns in phytochemical analysis. J. Chromatogr. A 2006, 1112, 319–330. [Google Scholar] [CrossRef]
- Abro, K.; Mahesar, S.A.; Iqbal, S.; Perveen, S. Quantification of malachite green in fish feed utilising liquid chromatography-tandem mass spectrometry with a monolithic column. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 827–832. [Google Scholar] [CrossRef]
- Khayoon, W.S.; Saad, B.; Lee, T.P.; Salleh, B. High performance liquid chromatographic determination of aflatoxins in chilli, peanut and rice using silica based monolithic column. Food Chem. 2012, 133, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Zacharis, C.K.; Kika, F.S.; Tzanavaras, P.D.; Rigas, P.; Kyranas, E.R. Development and validation of a rapid HPLC method for the determination of five banned fat-soluble colorants in spices using a narrow-bore monolithic column. Talanta 2011, 84, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Brabcová, I.; Kovářová, L.; Šatínský, D.; Havlíková, L.; Solich, P. A fast HPLC method for determination of vitamin E acetate in dietary supplements using monolithic column. Food Anal. Methods 2013, 6, 380–385. [Google Scholar] [CrossRef]
- Deshpande, N.M.; Gangrade, M.G.; Kekare, M.B.; Vaidya, V.V. Determination of free and liposomal Amphotericin B in human plasma by liquid chromatography-mass spectroscopy with solid phase extraction and protein precipitation techniques. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 315–326. [Google Scholar] [CrossRef]
- Alebouyeh, M.; Amini, H. Rapid determination of lamivudine in human plasma by high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 975, 40–44. [Google Scholar] [CrossRef]
- Saito, K.; Yagi, K.; Ishizaki, A.; Kataoka, H. Determination of anabolic steroids in human urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2010, 52, 727–733. [Google Scholar] [CrossRef]
- Rieux, L.; Niederländer, H.; Verpoorte, E.; Bischoff, R. Silica monolithic columns: Synthesis, characterisation and applications to the analysis of biological molecules. J. Sep. Sci. 2005, 28, 1628–1641. [Google Scholar] [CrossRef]
- Zacharis, C.K. Accelerating the quality control of pharmaceuticals using monolithic stationary phases: A review of recent HPLC applications. J. Chromatogr. Sci. 2009, 47, 443–451. [Google Scholar] [CrossRef]
- Bunch, D.R.; Wang, S. Applications of monolithic columns in liquid chromatography-based clinical chemistry assays. J. Sep. Sci. 2011, 34, 2003–2012. [Google Scholar] [CrossRef]
- Rigobello-Masini, M.; Penteado, J.C.P.; Masini, J.C. Monolithic columns in plant proteomics and metabolomics. Anal. Bioanal. Chem. 2013, 405, 2107–2122. [Google Scholar] [CrossRef]
- Namera, A.; Miyazaki, S.; Saito, T.; Nakamoto, A. Monolithic silica with HPLC separation and solid phase extraction materials for determination of drugs in biological materials. Anal. Methods 2011, 3, 2189–2200. [Google Scholar] [CrossRef]
- Mistry, K.; Grinberg, N. Application of monolithic columns in high performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1055–1074. [Google Scholar] [CrossRef]
- Zhu, T.; Row, K.H. Monolithic materials and their applications in HPLC for purification and analysis of bioactive compounds from natural plants: A review. Instrum. Sci. Technol. 2012, 40, 78–89. [Google Scholar] [CrossRef]
- Ghanem, A.; Ikegami, T. Recent advances in silica-based monoliths: Preparations, characterizations and applications. J. Sep. Sci. 2011, 34, 1945–1957. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, K.; Soga, N. Phase separation in gelling silica–organic polymer solution: Systems containing poly(sodium styrenesulfonate). J. Am. Ceram. Soc. 1991, 74, 2518–2530. [Google Scholar] [CrossRef]
- Nakanishi, K.; Soga, N. Phase separation in silica sol-gel system containing polyacrylic acid II. Effects of molecular weight and temperature. J. Non. Cryst. Solids 1992, 139, 14–24. [Google Scholar] [CrossRef]
- Nakanishi, K.; Soga, N. Phase separation in silica sol-gel system containing polyacrylic acid I. Gel formaation behavior and effect of solvent composition. J. NonCryst. Solids 1992, 139, 1–13. [Google Scholar] [CrossRef]
- Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem. 1996, 68, 3498–3501. [Google Scholar] [CrossRef]
- Cabrera, K. A new generation of silica-based monoliths HPLC columns with improved performance. LCGC Eur. 2012, 30, 30–35. [Google Scholar]
- Díaz-Bao, M.; Barreiro, R.; Miranda, J.; Cepeda, A.; Regal, P. Recent advances and uses of monolithic columns for the analysis of residues and contaminants in food. Chromatography 2015, 2, 79–95. [Google Scholar] [CrossRef] [Green Version]
- Gritti, F.; Guiochon, G. Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6 mm I.D. monolithic columns. J. Chromatogr. A 2011, 1218, 5216–5227. [Google Scholar] [CrossRef] [PubMed]
- Gritti, F.; Guiochon, G. Mass transfer kinetic mechanism in monolithic columns and application to the characterization of new research monolithic samples with different average pore sizes. J. Chromatogr. A 2009, 1216, 4752–4767. [Google Scholar] [CrossRef] [PubMed]
- Cabooter, D.; Broeckhoven, K.; Sterken, R.; Vanmessen, A.; Vandendael, I.; Nakanishi, K.; Deridder, S.; Desmet, G. Detailed characterization of the kinetic performance of first and second generation silica monolithic columns for reversed-phase chromatography separations. J. Chromatogr. A 2014, 1325, 72–82. [Google Scholar] [CrossRef]
- Hlushkou, D.; Hormann, K.; Höltzel, A.; Khirevich, S.; Seidel-Morgenstern, A.; Tallarek, U. Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region. J. Chromatogr. A 2013, 1303, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Sklenářová, H.; Chocholouš, P.; Koblová, P.; Zahálka, L.; Šatínský, D.; Matysová, L.; Solich, P. High-resolution monolithic columns—A new tool for effective and quick separation. Anal. Bioanal. Chem. 2013, 405, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Vuignier, K.; Fekete, S.; Carrupt, P.A.; Veuthey, J.L.; Guillarme, D. Comparison of various silica-based monoliths for the analysis of large biomolecules. J. Sep. Sci. 2013, 36, 2231–2243. [Google Scholar] [CrossRef]
- Hormann, K.; Müllner, T.; Bruns, S.; Höltzel, A.; Tallarek, U. Morphology and separation efficiency of a new generation of analytical silica monoliths. J. Chromatogr. A 2012, 1222, 46–58. [Google Scholar] [CrossRef]
- Cabrera, K.; Lubda, D.; Eggenweiler, H.M.; Minakuchi, H.; Nakanishi, K. A new monolithic-type HPLC column for fast separations. HRC J. High Resolut. Chromatogr. 2000, 23, 93–99. [Google Scholar] [CrossRef]
- Kele, M.; Guiochon, G. Repeatability and reproducibility of retention data and band profiles on six batches of monolithic columns. J. Chromatogr. A 2002, 960, 19–49. [Google Scholar] [CrossRef]
- Núñez, O.; Nakanishi, K.; Tanaka, N. Preparation of monolithic silica columns for high-performance liquid chromatography. J. Chromatogr. A 2008, 1191, 231–252. [Google Scholar] [CrossRef]
- Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography. J. Chromatogr. A 1998, 797, 121–131. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Dondi, F.; Ciogli, A.; Gasparrini, F.; Piccin, A.; Serafini, M. Characterization of new types of stationary phases for fast and ultra-fast liquid chromatography by signal processing based on AutoCovariance Function: A case study of application to Passiflora incarnata L. extract separations. J. Chromatogr. A 2010, 1217, 4355–4364. [Google Scholar] [CrossRef] [PubMed]
- Biesaga, M.; Ochnik, U.; Pyrzynska, K. Fast analysis of prominent flavonoids in tomato using a monolithic column and isocratic HPLC. J. Sep. Sci. 2009, 32, 2835–2840. [Google Scholar] [CrossRef] [PubMed]
- Repollés, C.; Herrero-Martínez, J.M.; Ràfols, C. Analysis of prominent flavonoid aglycones by high-performance liquid chromatography using a monolithic type column. J. Chromatogr. A 2006, 1131, 51–57. [Google Scholar] [CrossRef]
- Yadav, A.K.; Manika, N.; Bagchi, G.D.; Gupta, M.M. Simultaneous determination of flavonoids in Oroxylum indicum by RP-HPLC. Med. Chem. Res. 2013, 22, 2222–2227. [Google Scholar] [CrossRef]
- Vachirapatama, N.; Chamnankid, B.; Kachonpadungkitti, Y. Determination of rutin in buckwheat tea and Fagopyrum tataricum seeds by high performance liquid chromatography and capillary electrophoresis. J. Food Drug Anal. 2011, 19, 463–469. [Google Scholar]
- Mehrdad, M.; Zebardast, M.; Abedi, G.; Koupaei, M.N.; Rasouli, H.; Talebi, M. Validated high-throughput HPLC method for the analysis of flavonol aglycones myricetin, quercetin, and kaempferol in Rhus coriaria L. using a monolithic column. J. AOAC Int. 2009, 92, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Chinnici, F.; Gaiani, A.; Natali, N.; Riponi, C.; Galassi, S. Improved HPLC determination of phenolic compounds in Cv. golden delicious apples using a monolithic column. J. Agric. Food Chem. 2004, 52, 3–7. [Google Scholar] [CrossRef]
- Liazid, A.; Barbero, G.F.; Palma, M.; Brigui, J.; Barroso, C.G. Rapid determination of simple polyphenols in grapes by lc using a monolithic column. Chromatographia 2010, 72, 417–424. [Google Scholar] [CrossRef]
- Sharma, U.K.; Sharma, N.; Sinha, A.K.; Kumar, N.; Gupta, A.P. Ultrafast UPLC-ESI-MS and HPLC with monolithic column for determination of principal flavor compounds in vanilla pods. J. Sep. Sci. 2009, 32, 3425–3431. [Google Scholar] [CrossRef]
- Biesaga, M.; Ochnik, U.; Pyrzynska, K. Analysis of phenolic acids in fruits by HPLC with monolithic columns. J. Sep. Sci. 2007, 30, 2929–2934. [Google Scholar] [CrossRef] [PubMed]
- Rahim, A.A.; Nofrizal, S.; Saad, B. Rapid tea catechins and caffeine determination by HPLC using microwave-assisted extraction and silica monolithic column. Food Chem. 2014, 147, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Sparzak, B.; Dybowski, F.; Krauze-Baranowska, M. Analysis of Securinega-type alkaloids from Phyllanthus glaucus biomass. Phytochem. Lett. 2015, 11, 353–357. [Google Scholar] [CrossRef]
- Staniak, M.; Wójciak-Kosior, M.; Sowa, I.; Strzemski, M.; Sawicki, J.; Dresler, S.; Tyszczuk-Rotko, K. Applicability of a monolithic column for separation of isoquinoline alkalodis from chelidonium majus extract. Molecules 2019, 24, 3612. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.M.; Singh, D.V.; Tripathi, A.K.; Pandey, R.; Verma, R.K.; Singh, S.; Shasany, A.K.; Khanuja, S.P.S. Simultaneous determination of vincristine, vinblastine, catharanthine, and vindoline in leaves of Catharanthus roseus by high-performance liquid chromatography. J. Chromatogr. Sci. 2005, 43, 450–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.P.; Govindarajan, R.; Rawat, A.K.S. Comparison of different analytical HPLC columns for determination of furocoumarins in Heracleum candicans fruits. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 421–427. [Google Scholar] [CrossRef]
- Barbero, G.F.; Liazid, A.; Palma, M.; Barroso, C.G. Fast determination of capsaicinoids from peppers by high-performance liquid chromatography using a reversed phase monolithic column. Food Chem. 2008, 107, 1276–1282. [Google Scholar] [CrossRef]
- Schmidt, A.H. Fast HPLC for quality control of Harpagophytum procumbens by using a monolithic silica column: Method transfer from conventional particle-based silica column. J. Chromatogr. A 2005, 1073, 377–381. [Google Scholar] [CrossRef]
- Schmidt, A.H. Validation of a fast-HPLC method for the separation of iridoid glycosides to distinguish between the Harpagophytum species. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 2339–2347. [Google Scholar] [CrossRef]
- Cieśla, Ł. Biological Fingerprinting of Herbal Samples by Means of Liquid Chromatography. Chromatogr. Res. Int. 2012, 2012, 532418. [Google Scholar] [CrossRef] [Green Version]
- Alaerts, G.; Pieters, S.; Logie, H.; Van Erps, J.; Merino-Arévalo, M.; Dejaegher, B.; Smeyers-Verbeke, J.; Vander Heyden, Y. Exploration and classification of chromatographic fingerprints as additional tool for identification and quality control of several Artemisia species. J. Pharm. Biomed. Anal. 2014, 95, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Hefny Gad, M.; Tuenter, E.; El-Sawi, N.; Younes, S.; El-Ghadban, E.M.; Demeyer, K.; Pieters, L.; Vander Heyden, Y.; Mangelings, D. Identification of some bioactive metabolites in a fractionated methanol extract from ipomoea aquatica (aerial parts) through TLC, HPLC, UPLC-ESI-QTOF-MS and LC-SPE-NMR fingerprints analyses. Phytochem. Anal. 2018, 29, 5–15. [Google Scholar] [CrossRef]
- Ardakani, Y.H.; Rouini, M.R. Improved liquid chromatographic method for the simultaneous determination of tramadol and its three main metabolites in human plasma, urine and saliva. J. Pharm. Biomed. Anal. 2007, 44, 1168–1173. [Google Scholar] [CrossRef]
- Wenk, M.; Haegeli, L.; Brunner, H.; Krähenbühl, S. Determination of furosemide in plasma and urine using monolithic silica rod liquid chromatography. J. Pharm. Biomed. Anal. 2006, 41, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Bugey, A.; Staub, C. Application of monolithic supports to online extraction and LC-MS analysis of benzodiazepines in whole blood samples. J. Sep. Sci. 2007, 30, 2967–2978. [Google Scholar] [CrossRef] [PubMed]
- Galaon, T.; Udrescu, S.; Sora, I.; David, V.; Medvedovici, A. High-throughput liquid-chromatography method with fluorescence detection for reciprocal determination of furosemide or norfloxacin in human plasma. Biomed. Chromatogr. 2007, 21, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Kučerová, B.; Krčmová, L.; Solichová, D.; Plíšek, J.; Solich, P. Comparison of a new high-resolution monolithic column with core-shell and fully porous columns for the analysis of retinol and α-tocopherol in human serum and breast milk by ultra-high-performance liquid chromatography. J. Sep. Sci. 2013, 36, 2223–2230. [Google Scholar] [CrossRef]
- Hoizey, G.; Lamiable, D.; Frances, C.; Trenque, T.; Kaltenbach, M.; Denis, J.; Millart, H. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by HPLC with UV detection. J. Pharm. Biomed. Anal. 2002, 30, 661–666. [Google Scholar] [CrossRef]
- Karageorgou, E.G.; Samanidou, V.F. Application of ultrasound-assisted matrix solid-phase dispersion extraction to the HPLC confirmatory determination of cephalosporin residues in milk. J. Sep. Sci. 2010, 33, 2862–2871. [Google Scholar] [CrossRef]
- Koyuturk, S.; Can, N.O.; Atkosar, Z.; Arli, G. A novel dilute and shoot HPLC assay method for quantification of irbesartan and hydrochlorothiazide in combination tablets and urine using second generation C18-bonded monolithic silica column with double gradient elution. J. Pharm. Biomed. Anal. 2014, 97, 103–110. [Google Scholar] [CrossRef]
- Hefnawy, M.M.; Aboul-Enein, H.Y. Fast high-performance liquid chromatographic analysis of mianserin and its metabolites in human plasma using monolithic silica column and solid phase extraction. Anal. Chim. Acta 2004, 504, 291–297. [Google Scholar] [CrossRef]
- Lavasani, H.; Giorgi, M.; Sheikholeslami, B.; Hedayati, M.; Rouini, M.R. A rapid and sensitive HPLC-fluorescence method for determination of mirtazapine and its two major metabolites in human plasma. Iran. J. Pharm. Res. 2014, 13, 853–862. [Google Scholar]
- Foroutan, S.M.; Zarghi, A.; Shafaati, A.; Khoddam, A. Application of monolithic column in quantification of gliclazide in human plasma by liquid chromatography. J. Pharm. Biomed. Anal. 2006, 42, 513–516. [Google Scholar] [CrossRef]
- Al Bratty, M.; Alhazmi, H.A.; Javed, S.A.; Lalitha, K.G.; Asmari, M.; Wölker, J.; El Deeb, S. Development and validation of LC–MS/MS method for simultaneous determination of metformin and four gliptins in human plasma. Chromatographia 2017, 80, 891–899. [Google Scholar] [CrossRef]
- Rouini, M.R.; Ardakani, Y.H.; Moghaddam, K.A.; Solatani, F. An improved HPLC method for rapid quantitation of diazepam and its major metabolites in human plasma. Talanta 2008, 75, 671–676. [Google Scholar] [CrossRef]
- Rouini, M.; Ardakani, Y.H.; Hakemi, L.; Mokhberi, M.; Badri, G. Simultaneous determination of clobazam and its major metabolite in human plasma by a rapid HPLC method. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 823, 167–171. [Google Scholar] [CrossRef]
- Muppavarapu, R.; Guttikar, S.; Rajappan, M.; Kamarajan, K.; Mullangi, R. Sensitive LC-MS/MS-ESI method for simultaneous determination of montelukast and fexofenadine in human plasma: Application to a bioequivalence study. Biomed. Chromatogr. 2014, 28, 1048–1056. [Google Scholar] [CrossRef]
- Gupta, A.; Guttikar, S.; Shah, P.A.; Solanki, G.; Shrivastav, P.S.; Sanyal, M. Selective and rapid determination of raltegravir in human plasma by liquid chromatography-tandem mass spectrometry in the negative ionization mode. J. Pharm. Anal. 2015, 5, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Miresan, H.; Rosca, C.; Matei, N.; Roncea, F.; Cazacincu, R.; Iancu, I.; Stefanescu, E.; Enache, D.; Bratu, M.; Popescu, A. Simultaneous quantification of four benzodiazepines from whole blood by highperformance liquid chromatography in forensic toxicological analysis. Analele Univ. Ovidius Constanta Ser. Chim. 2014, 25, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Curticapean, A.; Muntean, D.; Curticapean, M.; Dogaru, M.; Vari, C. Optimized HPLC method for tramadol and O-desmethyl tramadol determination in human plasma. J. Biochem. Biophys. Methods 2008, 70, 1304–1312. [Google Scholar] [CrossRef]
- Gritti, F.; Guiochon, G. Measurement of the eddy dispersion term in chromatographic columns: III. Application to new prototypes of 4.6 mm I.D. monolithic columns. J. Chromatogr. A 2012, 1225, 79–90. [Google Scholar] [CrossRef]
- Zhang, Q.; Di, Y.T.; He, H.P.; Fang, X.; Chen, D.L.; Yan, X.H.; Zhu, F.; Yang, T.Q.; Liu, L.L.; Hao, X.J. Phragmalin- and mexicanolide-type limonoids from the leaves of Trichilia connaroides. J. Nat. Prod. 2011, 74, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Malek, S.N.A.; Lee, G.S.; Hong, S.L.; Yaacob, H.; Wahab, N.A.; Weber, J.F.F.; Shah, S.A.A. Phytochemical and cytotoxic investigations of curcuma mangga rhizomes. Molecules 2011, 16, 4539–4548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bringmann, G.; Steinert, C.; Feineis, D.; Mudogo, V.; Betzin, J.; Scheller, C. HIV-inhibitory michellamine-type dimeric naphthylisoquinoline alkaloids from the Central African liana Ancistrocladus congolensis. Phytochemistry 2016, 128, 71–81. [Google Scholar] [CrossRef]
- Lai, H.Y.; Lim, Y.Y.; Kim, K.H. Isolation and characterisation of a proanthocyanidin with antioxidative, antibacterial and anti-cancer properties from fern Blechnum orientale. Pharmacogn. Mag. 2017, 13, 31–37. [Google Scholar]
- Kokotkiewicz, A.; Luczkiewicz, M.; Sowinski, P.; Glod, D.; Gorynski, K.; Bucinski, A. Isolation and structure elucidation of phenolic compounds from Cyclopia subternata Vogel (honeybush) intact plant and in vitro cultures. Food Chem. 2012, 133, 1373–1382. [Google Scholar] [CrossRef]
- Maurya, A.; Verma, R.K.; Srivastava, S.K. Silica-based monolithic coupled column for the simultaneous determination of echitamine, Nb-demethylalstogustine, and loganetin in alstonia scholaris by RP-HPLC and optimization of extraction method. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 543–549. [Google Scholar] [CrossRef]
- Pandotra, P.; Sharma, R.; Datt, P.; Kushwaha, M.; Gupta, A.P.; Gupta, S. Ultrasound-assisted extraction and fast chromolithic method development, validation and system suitability analysis for 6, 8, 10-gingerols and shogaol in rhizome of Zingiber officinale by liquid chromatography-diode array detection. Int. J. Green Pharm. 2013, 7, 189–195. [Google Scholar]
- Březinová, L.; Vlašínová, H.; Havel, L.; Humpa, O.; Slanina, J. Validated method for bioactive lignans in Schisandra chinensis in vitro cultures using a solid phase extraction and a monolithic column application. Biomed. Chromatogr. 2010, 24, 954–960. [Google Scholar]
- Fecka, I. Qualitative and quantitative determination of hydrolysable tannins and other polyphenols in herbal products from meadowsweet and dog rose. Phytochem. Anal. 2009, 20, 177–190. [Google Scholar] [CrossRef]
- Shanker, K.; Gupta, M.M.; Srivastava, S.K.; Bawankule, D.U.; Pal, A.; Khanuja, S.P.S. Determination of bioactive nitrile glycoside(s) in drumstick (Moringa oleifera) by reverse phase HPLC. Food Chem. 2007, 105, 376–382. [Google Scholar] [CrossRef]
- Merlin, J.F.; Gresti, J.; Bellenger, S.; Narce, M. Fast high performance liquid chromatography analysis in lipidomics: Separation of radiolabelled fatty acids and phosphatidylcholine molecular species using a monolithic C18 silica column. Anal. Chim. Acta 2006, 565, 163–167. [Google Scholar] [CrossRef]
- Malasoni, R.; Srivastava, A.; Pandey, R.R.; Srivastava, P.K.; Dwivedi, A.K. Development and validation of improved HPLC method for the quantitative determination of Curcuminoids in Herbal Medicament. J. Sci. Ind. Res. (India) 2013, 72, 88–91. [Google Scholar]
- Gupta, S.; Sharma, R.; Pandotra, P.; Jaglan, S.; Gupta, A.P. Chromolithic method development, validation and system suitability analysis of ultra-sound assisted extraction of glycyrrhizic acid and glycyrrhetinic acid from Glycyrrhiza glabra. Nat. Prod. Commun. 2012, 7, 991–994. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Tripathi, A.K.; Pandey, R.; Verma, R.K.; Gupta, M.M. Quantitative determination of reserpine, ajmaline, and ajmalicine in Rauvolfia serpentina by reversed-phase high-performance liquid chromatography. J. Chromatogr. Sci. 2006, 44, 557–560. [Google Scholar] [CrossRef]
- Jin, A.; Ozga, J.A.; Lopes-Lutz, D.; Schieber, A.; Reinecke, D.M. Characterization of proanthocyanidins in pea (Pisum sativum L.), lentil (Lens culinaris L.), and faba bean (Vicia faba L.) seeds. Food Res. Int. 2012, 46, 528–535. [Google Scholar] [CrossRef]
- Arapitsas, P.; Turner, C. Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta 2008, 74, 1218–1223. [Google Scholar] [CrossRef]
- Baj, T.; Błazewicz, A.; Świa̧tek, Ł.; Wolski, T.; Kocjan, R.; Głowniak, K. Analysis of phenolic acids in Hyssop (Hyssopus officinalis L.) by HPLC-DAD with monolithic column Chromolith™ RP-18e. Ann. Univ. Mariae Curie Sklodowska Sect. DDD Pharm. 2011, 24, 59–65. [Google Scholar]
- Kennedy, J.A.; Taylor, A.W. Analysis of proanthocyanidins by high-performance gel permeation chromatography. J. Chromatogr. A 2003, 995, 99–107. [Google Scholar] [CrossRef]
- Apers, S.; Naessens, T.; Van Den Steen, K.; Cuyckens, F.; Claeys, M.; Pieters, L.; Vlietinck, A. Fast high-performance liquid chromatography method for quality control of soy extracts. J. Chromatogr. A 2004, 1038, 107–112. [Google Scholar] [CrossRef]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Rutkowska, E.; Szwerc, W.; Kocjan, R.; Latalski, M. Carlina species as a new source of bioactive pentacyclic triterpenes. Ind. Crops Prod. 2016, 94, 498–504. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Palma, M.; Barroso, C.G. Solid-phase extraction of soy isoflavones. J. Chromatogr. A 2005, 1076, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Vian, M.A.; Tomao, V.; Gallet, S.; Coulomb, P.O.; Lacombe, J.M. Simple and rapid method for cis- and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using Chromolith columns. J. Chromatogr. A 2005, 1085, 224–229. [Google Scholar] [CrossRef]
- Maurya, A.; Srivastava, S.K. Large-scale separation of clavine alkaloids from Ipomoea muricata by pH-zone-refining centrifugal partition chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1732–1736. [Google Scholar] [CrossRef] [PubMed]
- Michel, T.; Destandau, E.; Elfakir, C. On-line hyphenation of centrifugal partition chromatography and high pressure liquid chromatography for the fractionation of flavonoids from hippophaë rhamnoides L. berries. J. Chromatogr. A 2011, 1218, 6173–6178. [Google Scholar] [CrossRef]
- Elendran, S.; Wang, L.W.; Prankerd, R.; Palanisamy, U.D. The physicochemical properties of geraniin, a potential antihyperglycemic agent. Pharm. Biol. 2015, 53, 1719–1726. [Google Scholar] [CrossRef]
- Van Nederkassel, A.M.; Vijverman, V.; Massart, D.L.; Vander Heyden, Y. Development of a Ginkgo biloba fingerprint chromatogram with UV and evaporative light scattering detection and optimization of the evaporative light scattering detector operating conditions. J. Chromatogr. A 2005, 1085, 230–239. [Google Scholar] [CrossRef]
- Troncoso, N.; Sierra, H.; Carvajal, L.; Delpiano, P.; Günther, G. Fast high performance liquid chromatography and ultraviolet-visible quantification of principal phenolic antioxidants in fresh rosemary. J. Chromatogr. A 2005, 1100, 20–25. [Google Scholar] [CrossRef]
- Kodamatani, H.; Saito, K.; Niina, N.; Yamazaki, S.; Tanaka, Y. Simple and sensitive method for determination of glycoalkaloids in potato tubers by high-performance liquid chromatography with chemiluminescence detection. J. Chromatogr. A 2005, 1100, 26–31. [Google Scholar] [CrossRef]
- Zarghi, A.; Foroutan, S.M.; Shafaati, A.; Khoddam, A. HPLC determination of omeprazole in human plasma using a monolithic column. Arzneim. Forsch. Drug Res. 2006, 56, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Zarghi, A.; Shafaati, A.; Foroutan, S.M.; Movahed, H.; Khoddam, A. A rapid high-performance liquid chromatographic method for the determination of pantoprazole in plasma using UV detection: Application in pharmacokinetic studies. Arzneim. Forsch. Drug Res. 2008, 58, 441–444. [Google Scholar]
- Cruz, A.D.C.; Suenaga, E.M.; Abib, E.; Pedrazzoli, J. On-line solid phase extraction coupled with liquid chromatography tandem mass spectrometry for the determination of codeine in human plasma. Quim. Nova 2017, 40, 25–29. [Google Scholar] [CrossRef]
- Abro, K.; Memon, N.; Bhanger, M.I.; Mahesar, S.A.; Perveen, S. Liquid chromatographic determination of pioglitazone in pharmaceuticals, serum and urine samples. Pak. J. Anal. Environ. Chem. 2011, 12, 49–54. [Google Scholar]
- Sora, I.; Galaon, T.; David, V.; Medvedovici, A. Determination of nimesulide and its active metabolite in plasma samples based on solvent deproteinization and HPLC-DAD analysis. Rev. Roum. Chim. 2007, 52, 499–507. [Google Scholar]
- Ali, I.; Gupta, V.K.; Singh, P.; Singh, R.; Negi, U. Analysis of chloramphenicol in biological samples by SPE-HPLC. Anal. Chem. Lett. 2013, 3, 181–190. [Google Scholar] [CrossRef]
- Leitão, S.G.; Leitão, G.G.; Vicco, D.K.T.; Pereira, J.P.B.; de Morais Simão, G.; Oliveira, D.R.; Celano, R.; Campone, L.; Piccinelli, A.L.; Rastrelli, L. Counter-current chromatography with off-line detection by ultra high performance liquid chromatography/high resolution mass spectrometry in the study of the phenolic profile of Lippia origanoides. J. Chromatogr. A 2017, 1520, 83–90. [Google Scholar] [CrossRef]
- Jeelani, S.M.; Farooq, U.; Gupta, A.P.; Lattoo, S.K. Phytochemical evaluation of major bioactive compounds in different cytotypes of five species of Rumex L. Ind. Crops Prod. 2017, 109, 897–904. [Google Scholar] [CrossRef]
- Can, N.Ö. Development of validated and stability-indicating LC-DAD and LC-MS/MS methods for determination of avanafil in pharmaceutical preparations and identification of a novel degradation product by LCMS-IT-TOF. Molecules 2018, 23, 1771. [Google Scholar] [CrossRef] [Green Version]
- El Kurdi, S.; Muaileq, D.A.; Alhazmi, H.A.; Al Bratty, M.; El Deeb, S. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins. Acta Pharm. 2017, 67, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Puram, S.; Batheja, R.; Vivekanand, P.A.; Nallamekala, S.R.B.; Kubal, A.; Kalaivani, R.A. Evaluation of aspirin and dipyridamole using low concentration potassium fluoride as a stabilizer in human plasma by LC-MS/MS mode. Asian J. Chem. 2016, 28, 2403–2406. [Google Scholar] [CrossRef]
- Bonde, S.L.; Bhadane, R.P.; Gaikwad, A.; Narendiran, A.S.; Srinivas, B. Simultaneous determination of dapsone and its major metabolite N-Acetyl Dapsone by LC-MS/MS method. Int. J. Pharm. Pharm. Sci. 2013, 5, 441–446. [Google Scholar]
Sample/Analytes | Part of Plant/Matrix | Type of Elution/Mobile Phase | Conditions (Flow Rate/Temperature/Numbero f Monolithic Columns) | Detector | Ref. |
---|---|---|---|---|---|
orientin, isovitexin, vitexin, luteolin-7-O-glucoside, hyperoside, luteolin, apigenin | tincture from Passiflora incarnata L. | gradient elution/ H2O/MeOH a/ACN b/THF c acidified with 0.05% acetic acid | 1.0 mL/min/30 °C/one column 2.0 mL/min/30 °C/two columns 2.5 mL/min/30 °C/three columns | PDA | [53] |
polyacetylenes and polyenes | roots from Echinacea pallida | gradient elution/ H2O/ACN | 2.0 mL/min/20 °C/one column | PDA | [17] |
(fingerprinting) | Artemisia vulgaris, A. absinthium, A. annua, A. capillaris | gradient elution/ H2O/MeOH (both with 0.05% of TFA d) | 1.0 mL/min/35 °C/four columns | DAD | [72] |
catechins and caffeine | tea samples (green tea, Oolong tea, “fermented” black tea) | isocratic elution/ H2O/ACN/MeOH (83:6:11, v/v) | 1.4 mL/min/-/one column | UV | [63] |
quercetin, naringenin, naringin, myricetin, rutin, kaempferol | tomatoes | isocratic elution/ A: 50 mM phosphate buffer (pH = 2.2)/ACN (75:25, v/v) B: 2 mM formic acid/ACN (75:25, v/v) | 1.0 mL/min/25 °C/one column | A: UV B: MS | [54] |
gallic acid, protocatechuic aldehyde, gentisic acid, catechin, vanillinic acid, caffeic acid, vanillin, epicatechin, syringaldehyde, p-coumaric acid, ferulic acid, sinapic acid, resveratrol | musts from grapes: Riesling and Monastrell | gradient elution/ 90% H2O, 2% acetic acid in MeOH/90% MeOH, 2% acetic acid in H2O | 2.5 mL/min/25 °C/one column | PDA and FL | [60] |
catechin, epicatechin, quercetin, kaempferol, apigenin, fisetin, morin, naringenin, hesperetin, chrysin | green tea, red wine, orange, propolis and Ginkgo biloba extracts | gradient elution/ H2O/MeOH/ACN each containing 0.05% (v/v) TFA | 2.0 mL/min/25 °C/one column | DAD | [55] |
(fingerprinting) | aerial parts from Ipomoea aquatica | gradient elution/ MeOH/H2O containing 0.05% TFA | 1.0 mL/min/25 °C/two columns | UV | [73] |
gastrodin | Gastrodiae Rhizoma | gradient elution/H2O/ACN | 1.0 mL/min/-/one column | DAD | [18] |
echitamine, N-demethylalstogustine, loganetin | stem, stem bark, root, root bark, fruits, leaves from Alstonia scholaris | isocratic elution/ ACN/0.01 M buffer (KH2PO4) containing 0.1% TFA (20:80, v/v) | 0.5 mL/min/25 °C/two columns (total length 150 mm) | DAD | [98] |
oroxylin A, chrysin, baicalein, hispidulin | roots from Oroxylum indicum | isocratic elution/ACN/H2O (acidified with 0.1% TFA) (34:66, v/v) | 1.0 mL/min/30 °C/one column | PDA | [56] |
6-gingerol, 8-gingerol, 10-gingerol, shogaol | rhizome from Zingiber officinale | gradient elution/ H2O/ACN | 3.0 mL/min/room temp./one column | PDA | [99] |
schizandrin, gomisin A, deoxyschizandrin, γ-schizandrin, gomisin N, wuweizisu C | callus from Schisandra chinensis | isocratic elution/ ACN/H2O (50:50, v/v) | 2.0 mL/min/-/one column | PDA | [100] |
bacopaside I, bacoside A3, bacopaside II, bacopaside X, bacopasaponin C, apigenin | herbs of Bacopa monnieri | isocratic elution/ ACN/H2O (30:70, v/v) | 0.7 mL/min/25 °C/one column | ELSD | [19] |
vanillin, vanillic acid, p-hydroxybenzoic acid, p-hydroxybenzaldehyde | pods from Vanilla planifolia | isocratic elution/ ACN/0.05% TFA in H2O (12:88, v/v) | 4.0 mL/min/35 °C/one column | PDA | [61] |
furocoumarins: heraclenol and bergapten | fruits from Heracleum candicans | gradient elution/ H2O/H3PO4 (99.7:0.3, v/v)/ ACN/H2O/H3PO4 (79.7:20:0.3, v/v) | 0.5 mL/min/-/one column | PDA | [67] |
tannins and polyphenols | commercial products Filipendula ulmaria Rosa canina | gradient elution/ACN/H2O containing 0.2% (v/v) formic acid | 2.5 mL/min/-/one column | UV | [101] |
phenolic acids: vanillic, gallic, syringic, p-coumaric, ferulic, chlorogenic, benzoic, p-hydroxybenzoic, p-hydroxyphenylacetic | plum fruits | gradient elution/ 50 mM phosphate buffer (pH = 2.2)/ACN | 1.0 mL/min/-/one column | DAD | [62] |
niaziridin and niazirin | leaves, pods, and bark from Moringa oleifera | isocratic elution/ MeOH/sodium dihydrogen phosphate–acetic acid buffer (0.1 M, pH = 3.8) (20:80, v/v) | 0.7 mL/min/25 °C/one column | PDA | [102] |
A. fatty acid methyl esters B. phosphatydylocholine | --- | isocratic elution/ A. ACN/H2O (97:3, v/v) B. ACN/MeOH/H2O (33:64.5:2, v/v/v) | 2.0 mL/min/25 °C/two columns | A. radioisotope detector B. UV | [103] |
iridoid glycosides: harpagoside and 8-p-coumaroyl-harpagide | extracts from Harpagophytum procumbens and H. zeyheri | gradient elution/ H2O (pH = 2.0)/ACN | 5.0 mL/min/30 °C/two columns | PDA | [70] |
harpagoside, acetoside, cinnamic acid, 8-p-coumaroyl-harpagide | root tubers from H. procumbens | gradient elution/ H2O (pH = 2.0)/ACN | 5.0 mL/min/30 °C/two columns | PDA | [69] |
curcuminoids: curcumin, demethoxycurcumin, bisdemethoxy curcumin | herbal medicament | isocratic elution/ H2O/ACN/glacial acetic acid (60:40:1, v/v/v) | 1.0 mL/min/-/one column | UV–Vis | [104] |
rutin | Buckwheat Tea and seeds from Fagopyrum tataricum | isocratic elution/MeOH/H2O (5:5, v/v) with 10 mM acetate buffer at pH = 4.1 | 1.5 mL/min/30 °C/one column | UV–Vis | [57] |
glycyrrhizic and glycyrrhetinic acids | roots from Glycyrrhiza glabra | gradient elution/H2O/ACN both acidified with 0.05% TFA | 2.5 mL/min/room temp./one column | PDA | [105] |
reserpine, ajmaline, ajmalicine | roots from Rauvolfia serpentina | gradient elution/ 0.01 M phosphate buffer containing 0.5% glacial acetic acid (pH = 3.5)/ACN | 1.0 mL/min/26 °C/one column | PDA | [106] |
myricetin, quercetin, kaempferol | fruits and leaves from Rhus coriaria | isocratic elution/ACN/10 mM potassium dihydrogen orthophosphate buffer (pH = 3.0) (38:62, v/v) | 4.0 mL/min/40 °C/one column | PDA | [58] |
allosecurinine, securinine | biomasses from Phyllanthus glaucus | gradient elution/H2O/ACN | 1.0 mL/min/25 °C/one column | PDA | [64] |
proanthocyanidins | pea from Pisum sativum, lentil from Lens culinaris,faba bean from Vicia faba | gradient elution/ H2O/ACN both with 1% acetic acid (v/v) | 3.0 mL/min/30 °C/two columns | DAD | [107] |
gallic acid, (+)-catechin, chlorogenic acid, procyanidin B2, p-coumaric acid, (-)-epicatechin, ferulic acid, hyperin, rutin, phloridzin | fresh peel or pulp from Golden Delicious apples | gradient elution/ 0.5% MeOH in 0.01 M H3PO4/ACN | 2.5 mL/min/25 °C/one column | PDA | [59] |
capsaicinoids: nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin, homodihydro-capsaicin | peppers (pericarp and placenta) from Capsicum frutescens | gradient elution/ H2O/MeOH both with 0.1% acetic acid | 6.0 mL/min/30 °C/one column | FL | [68] |
anthocyanins | red cabbage Brassica oleracea | gradient elution/ 5% formic acid/ACN | 4.0 mL/min/27 °C/one column | DAD | [108] |
protopine, allocryptopine, berberine, chelidonine, chelerythrine, sanguinarine, coptisine | roots from Chelidonium majus | gradient elution/ 15 mM ammonium acetate (pH = 4.0)/ACN/MeOH | 2.0 mL/min/25 °C/three columns | DAD | [65] |
vincristine, vinblastine, catharanthine, vindoline | leaves from Catharanthus roseus | isocratic elution/ACN/0.1 M phosphate buffer containing 0.5% glacial acetic acid (pH = 3.5), (21:79, v/v) | 1.2 mL/min/25 °C/one column | PDA | [66] |
gallic acid, protocatechuic acid, gentisic acid, chlorogenic acid, caffeic acid, ferulic acid, rosmarinic acid | aerial part from Hyssopus officinalis | gradient elution/ H2O with 1% acetic acid/ACN | 2.0 mL/min/26 °C/one column | DAD | [109] |
proanthocyanidins cleavage products | hop cones from Humulus lupulus and grapes from Vitis vinifera | gradient elution/H2O/ACN (each containing 1% acetic acid) | 3.0 mL/min/30 °C/two columns | DAD | [110] |
daidzin, gycitin, genistin, acetyldaidzin, acetylglycitin, daidzein, glycitein, acetylgenistin, genistein | extracts from Gycine max | gradient elution/ ACN/H2O with acetic acid (0.1:0.99, v/v) | flow gradient 3.0 mL and 4.0 mL/min/ two columns | DAD MS | [111] |
α-amyrin, α -amyrin acetate, β-amyrin, β-amyrin acetate, lupeol, lupeol acetate | flowers, leaves, roots and stems from five species of Carlina | isocratic elution/ACN/H2O (95:5, v/v) | 2.0 mL/min/25 °C/one column | PDA | [112] |
daidzin, glycitin, genistin, malonyl daidzin, malonyl glycitin, malonyl genistin, daidzein, glycitein, genistein | extracts from soybeans | gradient elution/MeOH/H2O each containing 0.1% acetic acid | 0.8 mL/min/-/two columns | PDA | [113] |
cis-resveratrol, trans-resveratrol, cis-piceid, trans-piceid | wine samples | gradient elution/ H2O/acetic acid (94:6, v/v) /H2O/ACN/acetic acid (65:30:5, v/v/v) | gradient flow 4.0 mL and 7.0 mL/min/two columns | PDA | [114] |
lysergol and chanoclavine | seeds from Ipomea muricata | isocratic elution/ ACN/0.01 M sodium dihydrogen phosphate buffer (with 0.2% TFA) (pH = 2.5) (15:85, v/v) | 1.0 mL/min/25 °C/one column | PDA | [115] |
rutin, isorhamnetine-3-O-rutinoside, isorhamnetine-3-O-glukoside, quercetin, isorhamnetin | berries from Hippophaë rhamnoides | gradient elution/H2O/ACN (both acidified with 1% acetic acid) | 3.0 mL/min/40 °C/one column | UV | [116] |
geraniin, ellagic acid, gallic acid | rind from Nephelium lappaceum | isocratic elution/ACN/H2O (30:70, v/v) | 0.5 mL/min/room temp./one column | UV–Vis | [117] |
(fingerprinting) | Ginkgo biloba dry extract | gradient elution/ iso-propanol/THF/H2O with 0.05% TFA | 1.0 mL/min/35 °C/two columns | UV–ELS | [118] |
carnosic acid, carnosol, rosmarinic acid | leaves from Rosmarinus officinalis | binary gradient/ACN–H2O–H3PO4 (65.1%:34.9%:0.02%)/ACN–H2O–H3PO4 (22%:78%:0.25%) | 1.5 mL/min/-/one column | UV–Vis | [119] |
α-solanine and α-chaconine | potato tubers | isocratic elution/20 mM phosphate buffer (pH = 7.8)/ACN (65:35, v/v) | 0.6 mL/min/-/one column | CL | [120] |
Name of Drug | Matrix | Type of Elution/Mobile Phase | Conditions (Flow Rate/Temperature/Number of Monolithic Columns) | Detector | Ref. |
---|---|---|---|---|---|
raltegravir | human plasma | isocratic elution/10 mM ammonium formate in water (pH = 3.0)/ACN b (3:7, v/v) | 1.2 mL/min/40 °C/one column | MS/MS | [89] |
amphotericin B | human plasma | gradient elution/ 5 mM ammonium acetate (pH = 6.0)/ACN/MeOH a | 1.8 mL/min/-/one column | MS/MS | [25] |
lamivudine | human plasma | isocratic elution/ 50 mM sodium dihydrogen phosphate/triethylamine (pH = 3.2) (996:4, v/v) | 1.5 mL/min/20 °C/one column | UV | [26] |
mirtazapine and metabolites: N-desmethyl mirtazapine, 8-hydroxymirtazapine | human plasma | isocratic elution/ ACN/0.025 M monobasic potassium phosphate buffer (pH = 3.0) (20:80, v/v) | 2.0 mL/min/-/one column | FL | [83] |
montelukast and fexofenadine | human plasma | isocratic elution/ 20 mM ammonium formate/ACN (20:80, v/v) | 1.2 mL/min/5 °C/one column | MS/MS | [88] |
clonazepam, diazepam, flunitrazepam, lorazepam, midazolam, N-desalkylflurazepam, nordiazepam, oxazepam | whole blood samples | isocratic elution/ 5 mM ammonium formate (pH = 3.0)/ACN (65:35, v/v) | 1.5 mL/min/-/one column | MS | [76] |
furosemide and norfloxacin | human plasma | isocratic elution/ 0.015 M sodium heptane-sulfonate, 0.2% triethylamine (pH = 2.5)/ ACN/MeOH (70:15:15, v/v/v) | 3.0 mL/min/25 °C/one column | FL | [77] |
omeprazole | human plasma | isocratic elution/ 0.01 M disodium hydrogen phosphate buffer/ACN (pH = 7.1) (93:7, v/v), | 1.5 mL/min/-/one column | UV | [121] |
cefadroxil, cefaclor, cephalexin, cefotaxime, cefazolin, cefuroxime, cefoperazone and ceftiofur | milk | gradient elution/ 0.1% formic acid/ MeOH/ACN (75:25 v/v) | 1.5 mL/min/-/one column | PDA | [80] |
pantoprazole | human plasma | isocratic elution/ ACN/potassium dihydrogen phosphate buffer (pH = 3.0) (25:75, v/v) | 1.5 mL/min/-/one column | UV | [122] |
codeine | human plasma | isocratic elution/ ACN/10 mM acetic acid (pH = 3.5) (50:50, v/v) | 1.0 mL/min/25 °C/one column | MS/MS | [123] |
pioglitazone | human serum and urine | isocratic elution/ ACN/10 mM phosphate buffer (pH = 2.5) (30:70, v/v) | 2.0 mL/min/-/one column | DAD | [124] |
diazepam, clonazepam, lorazepam, midazolam | whole blood | isocratic elution/ phosphate buffer (pH = 2.5)/ACN (65/35, v/v) | 2.0 mL/min/-/one column | DAD | [90] |
nimesulid and major metabolite 4′-hydroxy-nimesulide | human plasma | isocratic elution/ 0.2% triethylamine (pH = 3.0)/MeOH (50:50, v/v) | 1.5 mL/min/25 °C/one column | DAD | [125] |
chloramphenicol | human blood | isocratic elution/ 100 mM phosphate buffer (pH = 2.5)/ACN (75:25, v/v) | 1.5 mL/min/28 °C/one column | UV–Vis | [126] |
Active Compound/Drug | Matrix | Type of Elution/Mobile Phase | Conditions (Flow Rate/Temperature/Number of Monolithic Columns) | Detector | Ref. |
---|---|---|---|---|---|
retinol and α-tocopherol | serum and human breast milk | 100% MeOH a | 1.5 mL/min/50 °C/one column | FL | [78] |
terpenoids and flavonoid aglycones | aerial parts from Lippia origanoides | gradient elution/H2O/MeOH both containing 0.1% (v/v) formic acid | 1.0 mL/min/32 °C/one column | UV | [127] |
rutin, piceatannol, resveratrol, naringenin, kaempferol, emodin, physcion | root, stem and leaf from five species of Rumex L. | gradient elution/ H2O (0.1% formic acid)/ACN b | 0.4 mL/min/room temp./one column | MS | [128] |
avanafil and its degradation products | pharmaceutical preparation | isocratic elution/H2O/ACN both with 0.1% formic acid (pH = 2.6,75:25, v/v) | 0.5 mL/min/40 °C and 15 °C/one column | DAD, MS/MS | [129] |
vitamins K3, D3, E, and A | capsules and pediatric drops | isocratic elution/ACN/MeOH both with 0.1% (v/v) formic acid (pH = 2.6, 25:75, v/v) | 4.0 mL/min/room temp./one column | DAD | [130] |
metformin, linagliptin, sitagliptin, vildagliptin | human plasma | isocratic elution/ 0.01 M ammonium formate buffer (pH = 3.0)/ACN (80:20, v/v) | 0.4 mL/min/20 °C/one column | MS/MS | [85] |
aspirin and dipyridamole | human plasma | isocratic elution/MeOH/0.1% formic acid in H2O (90:10, v/v) | 1.0 mL/min/-/one column | MS/MS | [131] |
irbesartan and hydrochlorothiazide | tablets and urine | gradient elution/ ACN/0.025 M phosphate buffer (pH = 6.3)/H2O (3:87:10, v/v) | flow gradient: 0.8 mL and 1.5 mL/min/40 °C/one column | DAD | [81] |
dapsone and N-acetyl dapsone | human plasma | isocratic elution/ACN/2 mM ammonium acetate in H2O (90:10, v/v) | 0.8 mL/min/-/one column | MS/MS | [132] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staniak, M.; Wójciak, M.; Sowa, I.; Tyszczuk-Rotko, K.; Strzemski, M.; Dresler, S.; Myśliński, W. Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples. Molecules 2020, 25, 3149. https://doi.org/10.3390/molecules25143149
Staniak M, Wójciak M, Sowa I, Tyszczuk-Rotko K, Strzemski M, Dresler S, Myśliński W. Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples. Molecules. 2020; 25(14):3149. https://doi.org/10.3390/molecules25143149
Chicago/Turabian StyleStaniak, Michał, Magdalena Wójciak, Ireneusz Sowa, Katarzyna Tyszczuk-Rotko, Maciej Strzemski, Sławomir Dresler, and Wojciech Myśliński. 2020. "Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples" Molecules 25, no. 14: 3149. https://doi.org/10.3390/molecules25143149
APA StyleStaniak, M., Wójciak, M., Sowa, I., Tyszczuk-Rotko, K., Strzemski, M., Dresler, S., & Myśliński, W. (2020). Silica-Based Monolithic Columns as a Tool in HPLC—An Overview of Application in Analysis of Active Compounds in Biological Samples. Molecules, 25(14), 3149. https://doi.org/10.3390/molecules25143149