In Vitro Anticancer and Radiosensitizing Activities of Phlorethols from the Brown Alga Costaria costata
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Phlorethols Isolated from Costaria costata
2.2. Bioactivity of the Phlorethols from C. costata
3. Materials and Methods
3.1. Reagents
3.2. Cell Culture
3.3. Isolation of the Phlorethol Fraction (CcPh) from C. costata
3.4. Preparation of the Phlorethol Fraction (CcPh) for Bioassays
3.5. MTS Assay
3.6. Soft Agar Assay
3.7. Cell Irradiation Assay
3.8. Combination Index (CI) Calculation
3.9. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Matthias, F.; Debusa, H.; Debusa, J. Radiotherapy for colorectal cancer: Current standards and future perspectives. Visc. Med. 2016, 32, 172–177. [Google Scholar]
- Mishra, J.; Dromund, J.; Quazi, S.H.; Karanki, S.S.; Shaw, J.J.; Chen, B.; Kumar, N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit. Rev. Oncol. Hematol. 2013, 86, 232–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nambiar, D.; Rajamani, P.; Singh, R.P. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat. Res. 2011, 728, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Gao, G.; Zou, G.; Yu, H.; Zheng, X. Natural products as adjunctive treatment for pancreatic cancer: Recent trends and advancements. Biomed. Res. Int. 2017, 2017, 8412508. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.X.; Wijeseker, I.; Li, Y.; Kim, S.K. Phlorotannins as bioactive agents from brown algae. Process. Biochem. 2011, 46, 2219–2224. [Google Scholar] [CrossRef]
- Imbs, T.I.; Krasovskaya, N.P.; Ermakova, S.P.; Makarieva, T.N.; Shevchenko, N.M.; Zvyagintseva, T.N. Comparative study of chemical composition and antitumor activity of aqueous–ethanol extracts of brown algae Laminaria cichorioides, Costaria costata, and Fucus evanescens. Russ. J. Mar. Biol. 2009, 35, 164–170. [Google Scholar] [CrossRef]
- Imbs, T.I.; Silchenko, A.S.; Fedoreev, S.A.; Isakov, V.V.; Ermakova, S.P.; Zvyagintseva, T.N. Fucoidanase inhibitory activity of phlorotannins from brown algae. Algal. Res. 2018, 32, 54–59. [Google Scholar] [CrossRef]
- Javed, A.; Hussain, M.B.; Tahir, A.; Waheed, M.; Anwar, A.; Shariati, M.A.; Plygun, S.; Laishevtcev, A.; Pasalar, M. Pharmacological applications of phlorotannins: A comprehensive review. Curr. Drug. Discov. Technol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Dordevic, A.L.; Bonham, M.P.; Ryan, L. Do marine algal polyphenols have antidiabetic, antihyperlipidemic or anti-inflammatory effects in humans? A systematic review. Crit. Rev. Food. Sci. Nutr. 2018, 58, 2039–2054. [Google Scholar] [CrossRef]
- Pangestuti, R.; Siahaan, E.A.; Ki, S.K. Photoprotective substances derived from marine algae. Mar. Drugs. 2018, 16, E399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imbs, T.I.; Zvyagintseva, T.N. Florotannins are polyphenolic metabolites of brown algae. Russ. J. Mar. Biol. 2018, 44, 217–227. [Google Scholar] [CrossRef]
- Aravindan, S.; Delma, C.R.; Thirugnanasambandan, S.S.; Herman, T.S.; Aravindan, N. Anti-pancreatic cancer deliverables from Sea: First-hand evidence on the efficacy, molecular targets and mode of action for multifarious polyphenols from five different brown-algae. PLoS ONE. 2013, 8, e61977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahnaz, K.; Maryam, N.; Nargess, S.; Mohammadreza, A.; Jelveh, S.; Seyed, N.; Padideh, G.; Seyed, O. Cytotoxic activity of some marine brown algae against cancer cell lines. Biol. Res. 2010, 43, 31–37. [Google Scholar]
- Mansur, A.A.; Brown, M.T.; Billington, R.A. The cytotoxic activity of extracts of the brown alga Cystoseira tamariscifolia (Hudson) Papenfuss, against cancer cell lines changes seasonally. J. Appl. Phycol. 2020. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Z.J.; Kim, M.; Kim, S.K. Cytotoxic activities of phlorethol and fucophlorethol derivatives isolated from Laminariaceae Ecklonia cava. J. Food. Biochem. 2011, 35, 357–369. [Google Scholar] [CrossRef]
- Jin, H.; Gao, S.; Guo, H.; Ren, S.; Ji, F.; Liu, Z.; Chen, X. Re-sensitization of radiation resistant colorectal cancer cells to radiation through inhibition of AMPK pathway. Oncol. Lett. 2016, 11, 3197–3201. [Google Scholar] [CrossRef] [Green Version]
- Yadollahpour, A.; Rezaee, Z.; Bayati, V.; Tahmasebi Birgani, M.J.; Negad Dehbashi, F. Radiotherapy Enhancement with Electroporation in Human Intestinal Colon Cancer HT-29 Cells. Asian. Pac. J. Cancer Prev. 2018, 19, 1259–1262. [Google Scholar]
- Bijnsdorp, I.V.; Giovannetti, E.; Peters, G.J. Analysis of drug interactions. Methods Mol. Biol. 2011, 731, 421–434. [Google Scholar]
- Zhang, R.; Kang, K.A.; Piao, M.J.; Ko, D.O.; Wang, Z.H.; Lee, I.K.; Kim, B.J.; Jeong, I.Y.; Shin, T.; Park, J.W.; et al. Eckol protects V79-4 lung fibroblast cells against γ-ray radiation-induced apoptosis via the scavenging of reactive oxygen species and inhibiting of the c-Jun NH2-terminal kinase pathway. Euro. J. Pharmacol. 2008, 591, 114–123. [Google Scholar] [CrossRef]
- Nair, C.K.; Parida, D.K.; Nomura, T. Radioprotectors in radiotherapy. J. Radiat. Res. 2001, 42, 21–37. [Google Scholar] [CrossRef]
- Sebastià, N.; Montoro, A.; Hervás, D.; Pantelias, G.; Hatzi, V.I.; Soriano, J.M.; Villaescusa, J.I.; Terzoudi, G.I. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay. Mutat. Res. 2014, 766-767, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Sample of the phlorethols from C. costata (1 mg) is available from the authors. |
Concentration of CcPh, µg/mL | Dose of X-ray, Gy | Combination Effect, % of Control | Combination Index, CI * | ||
---|---|---|---|---|---|
HT-29 | HCT 116 | HT-29 | HCT 116 | ||
2.5 | 2 | 40 | 30 | 0.67879 ± 0.024 | 0.58038 ± 0.012 |
5 | 2 | 52 | 37 | 0.61559 ± 0.03 | 0.48424 ± 0.035 |
10 | 2 | 63 | 45 | 0.58341 ± 0.027 | 0.43194 ± 0.042 |
20 | 2 | 65 | 62 | 0.66600 ± 0.021 | 0.33167 ± 0.037 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malyarenko, O.S.; Imbs, T.I.; Ermakova, S.P. In Vitro Anticancer and Radiosensitizing Activities of Phlorethols from the Brown Alga Costaria costata. Molecules 2020, 25, 3208. https://doi.org/10.3390/molecules25143208
Malyarenko OS, Imbs TI, Ermakova SP. In Vitro Anticancer and Radiosensitizing Activities of Phlorethols from the Brown Alga Costaria costata. Molecules. 2020; 25(14):3208. https://doi.org/10.3390/molecules25143208
Chicago/Turabian StyleMalyarenko, Olesya S., Tatiana I. Imbs, and Svetlana P. Ermakova. 2020. "In Vitro Anticancer and Radiosensitizing Activities of Phlorethols from the Brown Alga Costaria costata" Molecules 25, no. 14: 3208. https://doi.org/10.3390/molecules25143208
APA StyleMalyarenko, O. S., Imbs, T. I., & Ermakova, S. P. (2020). In Vitro Anticancer and Radiosensitizing Activities of Phlorethols from the Brown Alga Costaria costata. Molecules, 25(14), 3208. https://doi.org/10.3390/molecules25143208