High-Temperature Performance Evaluation of Asphaltenes-Modified Asphalt Binders
Abstract
:1. Introduction
2. Materials and Test Methods
2.1. Materials
2.1.1. Asphalt Binder
2.1.2. Asphaltenes
2.2. Test Methods
2.2.1. Preparation of Asphaltenes-Modified Asphalt Binders
2.2.2. Aging Process and Aging Indices
2.2.3. Dynamic Shear Rheometry (DSR)
2.2.4. Rotational Viscosity
2.2.5. SARA Analysis
3. Results and Discussion
3.1. PG Grading Results
3.2. Rheological Properties
3.3. Aging Indices
3.4. High-Temperature Viscosity
3.5. SARA Analysis
4. Conclusions
- The addition of asphaltenes increases the stiffness and elasticity of the asphalt binder, which in turn results in a considerable improvement in resistance against permanent deformation. On average, a 6% increase in asphaltenes content corresponds to a one-interval increase in high PG temperature grade of the asphalt binder.
- The effect of asphaltenes on high-temperature performance parameters, shear modulus, phase angle, and rutting factor is more pronounced as the binder ages.
- As the temperature decreases, the asphaltenes exhibit a stronger impact in terms of increasing the asphalt binder’s stiffness and elasticity due to aging. Since higher values of stiffness and elasticity adversely affect the cracking resistance at lower temperatures, this indicates that the possibility of cracking would increase at lower temperatures with increased asphaltenes content.
- The use of asphaltenes to modify asphalt binder serves to increase the binder’s high-temperature viscosity. The effect of asphaltenes on the binder viscosity is more evident at higher levels of asphaltenes content and lower temperatures.
- Comparing the rheological and SARA analysis results, it can be concluded that the increase in polar fraction content due to the addition of asphaltenes, causes the stiffness, elasticity, and viscosity of the asphalt binder to increase.
- From the CI values, it can be concluded that the addition of asphaltenes increases the instability of the asphaltenes particles in the maltenes matrix; a phenomenon which is largely the result of polarity level differences between the asphaltenes and other fractions of the asphalt binder.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kocak, S.; Kutay, M. Fatigue performance assessment of recycled tire rubber modified asphalt mixtures using viscoelastic continuum damage analysis and AASHTOWare pavement ME design. Constr. Build. Mater. 2020, 248, 118658. [Google Scholar]
- Liu, H.; Chen, Z.; Wang, Y.; Zhang, Z.; Hao, P. Effect of poly phosphoric acid (PPA) on creep response of base and polymer modified asphalt binders/mixtures at intermediate-low temperature. Constr. Build. Mater. 2018, 159, 329–337. [Google Scholar] [CrossRef]
- Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; ICE Publishing: Westminster, UK, 2015. [Google Scholar]
- Junaid, M.; Irfan, M.; Ahmed, S.; Ali, Y. Effect of binder grade on performance parameters of asphaltic concrete paving mixtures. Int. J. Pavement Res. Technol. 2018, 11, 435–444. [Google Scholar] [CrossRef]
- Vamegh, M.; Ameri, M.; Naeni, S.F.C. Performance evaluation of fatigue resistance of asphalt mixtures modified by SBR/PP polymer blends and SBS. Constr. Build. Mater. 2019, 209, 202–214. [Google Scholar] [CrossRef]
- Siddig, E.A.; Feng, C.P.; Ming, L.Y. Effects of ethylene vinyl acetate and nanoclay additions on high-temperature performance of asphalt binders. Constr. Build. Mater. 2018, 169, 276–282. [Google Scholar] [CrossRef]
- Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface Sci. 2015, 224, 72–112. [Google Scholar] [CrossRef]
- Firoozifar, S.H.; Foroutan, S.; Foroutan, S. The effect of asphaltene on thermal properties of bitumen. Chem. Eng. Res. Des. 2011, 89, 2044–2048. [Google Scholar] [CrossRef]
- Behnood, A.; Gharehveran, M.M. Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 2019, 112, 766–791. [Google Scholar] [CrossRef]
- Padhan, R.K.; Sreeram, A. Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Constr. Build. Mater. 2018, 188, 772–780. [Google Scholar] [CrossRef]
- Ghasemirad, A.; Asgharzadeh, S.M.; Tabatabaee, N. A comparative evaluation of crumb rubber and devulcanized rubber modified binders. Pet. Sci. Technol. 2017, 35, 1091–1096. [Google Scholar] [CrossRef]
- Choudhary, J.; Kumar, B.; Gupta, A. Utilization of solid waste materials as alternative fillers in asphalt mixes: A review. Constr. Build. Mater. 2020, 234, 117271. [Google Scholar] [CrossRef]
- Kalantar, Z.N.; Karim, M.R.; Mahrez, A. A review of using waste and virgin polymer in pavement. Constr. Build. Mater. 2012, 33, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Meisen, A. Bitumen Beyond Combustion (BBC) Project Phase 1 Report; BBC Project-Phase 1 Report 0416x.docx; Alberta Innovates Corp.: Edmonton, AB, Canada, 2017; Available online: https://albertainnovates.ca/wp-content/uploads/2018/04/BBC-Report-1.pdf (accessed on 10 June 2020).
- Ashtari, M. New pathways for asphaltenes upgrading via oxy-cracking in liquid phase. In Chemical Engineering; University of Calgary: Calcary, AB, Canada, 2016. [Google Scholar]
- Alipour, M.; Kurian, V.; Dhir, S.; Gupta, R. Analysis of syngas cooler fouling from asphaltene gasification. Fuel Process. Technol. 2016, 152, 7–14. [Google Scholar] [CrossRef]
- Yang, C.; Xie, J.; Wu, S.; Amirkhanian, S.; Zhou, X.; Ye, Q.; Yang, D.; Hu, R. Investigation of physicochemical and rheological properties of SARA components separated from bitumen. Constr. Build. Mater. 2020, 235, 117437. [Google Scholar] [CrossRef]
- Lesueur, D. The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. [Google Scholar] [CrossRef] [PubMed]
- Michalica, P.; Kazatchkov, I.B.; Stastna, J.; Zanzotto, L. Relationship between chemical and rheological properties of two asphalts of different origins. Fuel 2008, 87, 3247–3253. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, E.; Shan, L. Effect of SARA on Rheological Properties of Asphalt Binders. J. Mater. Civ. Eng. 2019, 31, 04019086. [Google Scholar] [CrossRef]
- Sultana, S.; Bhasin, A. Effect of chemical composition on rheology and mechanical properties of asphalt binder. Constr. Build. Mater. 2014, 72, 293–300. [Google Scholar] [CrossRef]
- Ramírez-Corredores, M.M. The Science and Technology of Unconventional Oils: Finding Refining Opportunities; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Airey, G. Styrene butadiene styrene polymer modification of road bitumens. J. Mater. Sci. 2004, 39, 951–959. [Google Scholar] [CrossRef]
- Mangiafico, S.; Di Benedetto, H.; Sauzéat, C.; Olard, F.; Pouget, S.; Planque, L. Effect of colloidal structure of bituminous binder blends on linear viscoelastic behaviour of mixtures containing reclaimed asphalt pavement. Mater. Des. 2016, 111, 126–139. [Google Scholar] [CrossRef]
- Varanda, C.; Portugal, I.; Ribeiro, J.; Silva, A.; Silva, C.M. Influence of polyphosphoric acid on the consistency and composition of formulated bitumen: Standard characterization and NMR insights. J. Anal. Methods Chem. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Hofko, B.; Eberhardsteiner, L.; Füssl, J.; Grothe, H.; Handle, F.; Hospodka, M.; Grossegger, D.; Nahar, S.N.; Schmets, A.J.M.; Scarpas, A. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen. Mater. Struct. 2016, 49, 829–841. [Google Scholar] [CrossRef] [Green Version]
- Eberhardsteiner, L.; Füssl, J.; Hofko, B.; Handle, F.; Hospodka, M.; Blab, R.; Grothe, H. Influence of asphaltene content on mechanical bitumen behavior: Experimental investigation and micromechanical modeling. Mater. Struct. 2015, 48, 3099–3112. [Google Scholar] [CrossRef]
- Robertson, R.E.; Branthaver, J.F.; Plancher, H.; Duvall, J.J.; Ensley, E.K.; Harnsberger, P.M. Chemical Properties of Asphalts and Their Relationship to Pavement Performance; National Research Council Washington: Washington, DC, USA, 1991. [Google Scholar]
- Specifications and Typical Anlyses of an Asphalt Cement 80/100 A PEN used in the Construction of Pavements; DS No. 0303; Husky Asphalt: Saskatoon, SK, Canada, 2019.
- ASTM D70-18. Standard Test Method for Density of Semi-Solid Asphalt Binder (Pycnometer Method); ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM D5-05. Standard Test Method for Penetration of Bituminous Materials; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- ASTM D92-18. Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM D113-17. Standard Test Method for Ductility of Asphalt Materials; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM D2042-15. Standard Test Method for Solubility of Asphalt Materials in Trichloroethylene; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM D2171-18. Standard Test Method for Viscosity of Asphalts by Vacuum Capillary Viscometer; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- ASTM D4402-15. Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM D1754-14. Standard Test Method for Effects of Heat and Air on Asphaltic Materials (Thin-Film Oven Test); ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Zuo, P.; Qu, S.; Shen, W. Asphaltenes: Separations, structural analysis and applications. J. Energy Chem. 2019, 34, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Speight, J.G. Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum. Oil Gas Sci. Technol. 2004, 59, 467–477. [Google Scholar] [CrossRef] [Green Version]
- AASHTO T240-13. Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test). In AASHTO Provisional Standards; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2017. [Google Scholar]
- Zhang, H.; Chen, Z.; Xu, G.; Shi, C. Physical, rheological and chemical characterization of aging behaviors of thermochromic asphalt binder. Fuel 2018, 211, 850–858. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Wang, Q.; Yao, H. Rheological and structural evolution of SBS modified asphalts under natural weathering. Fuel 2016, 184, 242–247. [Google Scholar] [CrossRef]
- Yu, J.Y.; Feng, P.C.; Zhang, H.L.; Wu, S.P. Effect of organo-montmorillonite on aging properties of asphalt. Constr. Build. Mater. 2009, 23, 2636–2640. [Google Scholar] [CrossRef]
- AASHTO T315-12. Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). In AASHTO Provisional Standards; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2016. [Google Scholar]
- AASHTO M320-17. Performance-Graded Asphalt Binder. In AASHTO Provisional Standards; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2017. [Google Scholar]
- AASHTO T316-13. Viscosity Determination of Asphalt Binder Using Rotational Viscometer. In AASHTO Provisional Standards; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2017. [Google Scholar]
- ASTM D6560-17. Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Wang, J.; Wang, T.; Hou, X.; Xiao, F. Modelling of rheological and chemical properties of asphalt binder considering SARA fraction. Fuel 2019, 238, 320–330. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Ali, M.F. Studies on the aging behavior of the Arabian asphalts. Fuel 1999, 78, 1005–1015. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Property | ASTM | Specification | Typical Value | |
---|---|---|---|---|
Minimum | Maximum | |||
Density @ 15 °C, kg/L | D 70 [30] | --- | --- | 1.0341 |
Penetration @ 25 °C (100 g, 5 s), dmm | D 5 [31] | 80 | 100 | 90 |
Flash Point (COC), °C | D 92 [32] | 230 | --- | 276 |
Ductility @ 25 °C (5cm/min), cm | D 113 [33] | 100 | --- | 150+ |
Solubility in trichloroethylene, % | D 2042 [34] | 99.5 | --- | 99.9 |
Absolute viscosity @ 60 °C, Pa.s | D 2171 [35] | 150 | --- | 183 |
Viscosity @ 135 °C, Pa.s | D 4402 [36] | --- | 3.00 | 0.42 |
Mass loss, % | D 1754 [37] | --- | 1.0 | 0.37 |
Binder + Asphaltenes, (% Binder wt) | High PG Grade (Unaged Binder) °C | High PG Grade (RTFO-Aged Binder) °C | Continuous High PG Grade °C | Standard High PG Grade °C |
---|---|---|---|---|
0% Asph | 70.5 | 71.1 | 70.5 | 70 |
3% Asph | 73.9 | 75.1 | 73.9 | 70 |
6% Asph | 76.5 | 78.2 | 76.5 | 76 |
9% Asph | 81.3 | 81.1 | 81.1 | 76 |
12% Asph | 82.9 | 84.6 | 82.9 | 82 |
15% Asph | 85.9 | 87.6 | 85.9 | 82 |
18% Asph | 88.0 | 90.3 | 88.0 | 88 |
20% Asph | 89.9 | 92.6 | 89.9 | 88 |
Binder + Asphaltenes, (% Binder wt) | Mixing Temperature Range (°C) | Compaction Temperature Range (°C) |
---|---|---|
0% Asph | 152–158 | 141–145 |
3% Asph | 158–164 | 147–152 |
6% Asph | 161–167 | 149–154 |
9% Asph | 164–170 | 152–157 |
12% Asph | 167–173 | 154–160 |
15% Asph | 169–175 | 158–163 |
18% Asph | 173–179 | 161–166 |
20% Asph | 177–184 | 165–170 |
Binder/Material | Saturate | Aromatic | Resin | Asphaltenes | Polar Fraction | Non-Polar Fraction | Colloidal Index |
---|---|---|---|---|---|---|---|
Asphaltenes | 6.85 | 9.68 | 3.84 | 79.62 | 83.46 | 16.53 | 6.40 |
0% Asph | 25.41 | 20.36 | 31.58 | 22.59 | 54.17 | 45.77 | 0.92 |
12% Asph | 21.63 | 20.94 | 24.75 | 32.17 | 56.92 | 42.57 | 1.18 |
18% Asph | 18.83 | 20.25 | 25.23 | 35.16 | 60.39 | 39.08 | 1.19 |
20% Asph | 17.93 | 19.74 | 21.57 | 39.76 | 61.33 | 37.67 | 1.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemirad, A.; Bala, N.; Hashemian, L. High-Temperature Performance Evaluation of Asphaltenes-Modified Asphalt Binders. Molecules 2020, 25, 3326. https://doi.org/10.3390/molecules25153326
Ghasemirad A, Bala N, Hashemian L. High-Temperature Performance Evaluation of Asphaltenes-Modified Asphalt Binders. Molecules. 2020; 25(15):3326. https://doi.org/10.3390/molecules25153326
Chicago/Turabian StyleGhasemirad, Amirhossein, Nura Bala, and Leila Hashemian. 2020. "High-Temperature Performance Evaluation of Asphaltenes-Modified Asphalt Binders" Molecules 25, no. 15: 3326. https://doi.org/10.3390/molecules25153326
APA StyleGhasemirad, A., Bala, N., & Hashemian, L. (2020). High-Temperature Performance Evaluation of Asphaltenes-Modified Asphalt Binders. Molecules, 25(15), 3326. https://doi.org/10.3390/molecules25153326