Achillea millefolium L. and Achillea biebersteinii Afan. Hydroglycolic Extracts–Bioactive Ingredients for Cosmetic Use
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of the Investigated Samples
2.2. The Antiradical Potential of A. Millefolium and A. Biebersteinii Hydro-Glycolic Extracts
2.3. Tyrosinase Inhibitory Activity
2.4. In Vitro Sun Protection Factor (SPF)
2.5. In Vitro Cytotoxicity
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material and Extraction Procedure
3.3. The HPLC-ESI-Q-TOF-MS Analysis of the Obtained Hydroglycolic Extracts
3.4. Antiradical Activity Assays
3.4.1. DPPH Radical Scavenging Assay
3.4.2. ABTS Radical Scavenging Assay
3.5. Mushroom Tyrosinase Inhibitory Assay
3.6. In Vitro Cytotoxicity Assay
3.7. Determination of the In Vitro Sun Protection Factor
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ahshawat, M.S.; Saraf, S.; Saraf, S. Preparation and characterization of herbal creams for improvement of skin viscoelastic properties. Int. J. Cosmet. Sci. 2008, 30, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Centella asiatica in cosmetology. Postepy. Dermatol. Alergol. 2013, 30, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Jadoon, S.; Karim, S.; Bin Asad, M.H.; Akram, M.R.; Khan, A.K.; Malik, A.; Chen, C.; Murtaza, G. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity. Oxid Med. Cell Longev. 2015, 709628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaweł-Bęben, K.; Kukula-Koch, W.; Hoian, U.; Czop, M.; Strzepek-Gomółka, M.; Antosiewicz, B. Characterization of Cistus × incanus L. and Cistus ladanifer L. Extracts as Potential Multifunctional Antioxidant Ingredients for Skin Protecting Cosmetics. Antioxidants 2020, 9, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.I.; Gopalakrishnan, B.; Venkatesalu, V. Pharmacognosy, Phytochemistry and Pharmacological Properties of Achillea Millefolium L.: A Review. Phytother. Res. 2017, 31, 1140–1161. [Google Scholar] [CrossRef] [PubMed]
- Cosmetic Ingredient Database (CosIng). Available online: https://ec.europa.eu/growth/sectors/cosmetics/cosing_en (accessed on 20 June 2020).
- Zengin, G.; Aktumsek, A.; Ceylan, R.; Uysal, S.; Mocan, A.; Guler, G.O.; Mahomoodally, M.F.; Glamočlija, J.; Ćirić, A.; Soković, M. Shedding the light on biological and chemical fingerprints of three Achillea species (A.biebersteinii, A.millefolium and A.teretifolia). Food Funct. 2017, 22, 1152–1165. [Google Scholar] [CrossRef] [PubMed]
- Ghobadian, Z.; Ahmadi, M.R.H.; Rezazadeh, L.; Hoseini, E.; Kokhazadeh, T.; Ghavam, S. In Vitro Evaluation of Achillea Millefolium on the Production and Stimulation of Human Skin Fibroblast Cells (HFS-PI-16). Med. Arh. 2015, 69, 212–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pain, S.; Altobelli, C.; Boher, A.; Cittadini, L.; Favre-Mercuret, M.; Gaillard, C.; Sohm, B.; Vogelgesang, B.; André-Frei, V. Surface rejuvenating effect of Achillea millefolium extract. Int. J. Cosmet. Sci. 2011, 33, 535–542. [Google Scholar] [CrossRef]
- Tadić, V.; Arsić, I.; Zvezdanović, J.; Zugić, A.; Cvetković, D.; Pavkov, S. The estimation of the traditionally used yarrow (Achillea millefolium L. Asteraceae) oil extracts with anti-inflamatory potential in topical application. J. Ethnopharmacol. 2017, 199, 138–148. [Google Scholar]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Achillea millefolium as Used in Cosmetics. Int J. Toxicol. 2016, 35 (Suppl. S5–S15). [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkol, E.K.; Koca, U.; Pesin, I.; Yilmazer, D. Evaluation of the Wound Healing Potential of Achillea biebersteinni Afan (Asteraceae) by In Vivo Excision and Incision Models. Evid.-Based Complementary Altern. Med. 2011, 474026. [Google Scholar]
- Hormozi, M.; Baharvand, P. Achillea biebersteinni Afan may inhibit scar formation: In vitro study. Mol Genet. Genomic Med. 2019, 7, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varasteh-Kojourian, M.; Abrishamchi, P.; Bahrami, A.; Matin, M.; Ejtehadi, H.; Varasteh-Kojourian, M. Antioxidant, cytotoxic and DNA protective properties of Achillea eriophora DC. and Achillea biebersteinii Afan. extracts: A comparative study. AJP 2017, 7, 157–168. [Google Scholar]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (Text with EEA relevance); European Parliament: Brussels, Belgium, 2009.
- Jang, H.-J.; Shin, C.Y.; Kim, K.-B. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use. Toxicol. Res. 2015, 31, 105–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şabanoğlu, S.; Gökbulut, A.; Altun, M.L. Characterization of phenolic compounds, total phenolic content and antioxidant activity of three Achillea species. J. Res. Pharm. 2019, 23, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Sim, M.O.; Woo, K.W.; Jeong, D.; Jung, H.K.; An, B.; Cho, H.W. Antioxidant and anti-melanogenic activities of compound isolated from the aerial parts of Achillea alpina L. Chem. Biodivers. 2019, 16, 1900033. [Google Scholar] [CrossRef] [PubMed]
- Afshari, M.; Rahimmalek, M.; Miroliaei, M. Variation in Polyphenolic Profiles, Antioxidant and Antimicrobial Activity of Different Achillea Species as Natural Sources of Antiglycative Compounds. Chem. Biodivers. 2018, 15, 1800075. [Google Scholar] [CrossRef] [PubMed]
- Güneş, A.; Kordali, Ş.; Turan, M.; Bozhüyük, A.U. Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicinal plants. Ind. Crop. Prod. 2019, 137, 208–213. [Google Scholar] [CrossRef]
- Agar, O.T.; Dikmen, M.; Ozturk, N.l.; Yilmaz, M.A.; Temel, H.; Turkmenoglu, F.P. Comparative Studies on Phenolic Composition, Antioxidant, Wound Healing and Cytotoxic Activities of Selected Achillea L. Species Growing in Turkey. Molecules 2015, 20, 17976–18000. [Google Scholar] [CrossRef] [Green Version]
- Argentieri, M.P.; Madeo, M.; Avato, P.; Iriti, M.; Vitalini, S. Polyphenol content and bioactivity of Achillea moschata from the Italian and Swiss Alps. Z. Naturforsch. C. 2020, 75, 57–64. [Google Scholar] [CrossRef]
- Zengin, G.; Bulut, G.; Mollica, A.; Haznedaroglu, M.Z.; Dogan, A.; Aktumsek, A. Bioactivities of Achillea Phrygia and Bupleurum Croceum Based on the Composition of Phenolic Compounds: In Vitro and in Silico Approaches. Food Chem. Toxicol. 2017, 107, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Chulasiri, M.; Wanaswas, P.; Sriaum, D.; Nakamat, S.; Wongkrajang, Y.; Songchitsomboon, S.; Leelarungrayub, D. Utilizing hydroglycolic extract from myrobalan fruits to counteract reactive oxygen species. Int. J. Cosm. Sci. 2011, 33, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.L.; Falqué, E.; Dominguez, H. Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compost. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Hung, T.M.; Na, M.; Thuong, P.T.; Su, N.D.; Sok, D.; Song, K.S.; Seong, Y.H.; Bae, K. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall. J. Ethnopharmacol. 2006, 108, 188–192. [Google Scholar] [CrossRef]
- Akihisa, T.; Kawashima, K.; Orido, M.; Akazawa, H.; Matsumoto, M.; Yamamoto, A.; Ogihara, E.; Fukatsu, M.; Tokuda, H.; Fuji, J. Antioxidative and melanogenesis-inhibitory activities of caffeoylquinic acids and other compounds from moxa. Chem. Biodivers. 2013, 10, 313–327. [Google Scholar] [CrossRef]
- Topal, M.; Gocer, H.; Topal, F.; Kalin, P.; Köse, L.P.; Gülçin, İ.; Çakmak, K.C.; Küçük, M.; Durmaz, L.; Gören, A.C.; et al. Antioxidant, antiradical, and anticholinergic properties of cynarin purified from the Illyrian thistle (Onopordum illyricum L.). J. Enzyme Inhib Med. Chem 2016, 31, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Rutkowska, M.; Olszewska, M.A.; Kolodziejczyk-Czepas, J.; Nowak, P.; Owczarek, A. Sorbus domestica Leaf Extracts and Their Activity Markers: Antioxidant Potential and Synergy Effects in Scavenging Assays of Multiple Oxidants. Molecules 2019, 24, 2289. [Google Scholar] [CrossRef] [Green Version]
- Hajimehdipoor, H.; Shahrestani, R.; Shekarchi, M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res. J. Pharmacogn. 2014, 1, 35–40. [Google Scholar]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [Green Version]
- Nishigori, C.; Hattori, Y.; Toyokuni, S. Role of reactive oxygen species in skin carcinogenesis. Antioxid. Redox Signal. 2004, 6, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Schalka, S. New data on hyperpigmentation disorders. J. Eur. Acad. Dermatol. Venereol. 2017, 5, 18–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medical chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, J.H.; Park, S.N. Mechanism underlying inhibitory effect of six dicaffeoylquinic acid isomers on melanogenesis and the computational molecular modeling studies. Bioorg. Med. Chem. 2018, 26, 4201–4208. [Google Scholar] [CrossRef] [PubMed]
- Poon, F.; Kang, S.; Chien, A.L. Mechanisms and treatments of photoaging. Photodermatol. Photoimmunol. Photomed. 2015, 31, 65–74. [Google Scholar] [CrossRef]
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef]
- Radice, M.; Manfredini, S.; Ziosi, P.; Dissette, V.; Buso, P.; Fallacara, A.; Vertuani, S. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia 2016, 114, 144–162. [Google Scholar] [CrossRef]
- Korać, R.R.; Khambholja, K.M. Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn. Rev. 2011, 5, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Mansur, J.S.; Breder, M.N.; Mansur, M.C.; Azulay, R.D. Determination of Sun protection factor by spectrophotometry. An. Bras. Dermatol. 1986, 61, 121–124. [Google Scholar]
- Peng, H.-Y.; Lin, C.-C.; Wang, H.-Y.; Shih, Y.; Chou, S.-T. The Melanogenesis Alteration Effects of Achillea Millefolium L. Essential Oil and Linalyl Acetate: Involvement of Oxidative Stress and the JNK and ERK Signaling Pathways in Melanoma Cells. PLoS ONE 2014, 9, 95186. [Google Scholar] [CrossRef] [PubMed]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abruzzo, A.; Armenise, N.; Bigucci, F.; Cerchiara, T.; Gösser, M.B.; Samorì, C.; Galletti, P.; Tagliavini, E.; Brown, D.M.; Johnston, H.J.; et al. Surfactants from itaconic acid Toxicity to HaCaT keratinocytes in vitro, micellar solubilization, and skin permeation enhancement of hydrocortisone. Int. J. Pharm. 2017, 524, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Matejic, J.S.; Dzamic, A.M.; Mihajilov-Krstev, T.; Randelovic, V.N.; Krivosej, Z.D.; Marin, P.D. Total phenolic content, flavonoid concentration, antioxidant and antimicrobial activity of methanol extracts from three Seseli L. Taxa. Cent. Eur. J. Biol. 2012, 7, 1116–1122. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, M.-M.; Sun, Y.; Wang, L.-F.; Wang, H.; Zhang, Y.-J.; Li, H.-Y.; Zhuang, P.-W.; Yang, Z. Synergistic Promotion on Tyrosinase Inhibition by Antioxidants. Molecules 2018, 23, 106. [Google Scholar] [CrossRef] [Green Version]
- Uchida, R.; Ishikawa, S.; Tomoda, H. Inhibition of tyrosinase activity and melanin pigmentation by 2-hydroxytyrosol. Acta. Pharm. Sin. B 2014, 4, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Sayre, R.M.; Agin, P.P.; Levee, G.J.; Marlowe, E. Comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 1979, 29, 559–566. [Google Scholar] [CrossRef]
- Mistry, N. Guidelines for Formulating Anti-Pollution Products. Cosmetics 2017, 4, 57. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of raw plant material and hydroglycolic extracts are available from the authors. |
Ionization Mode | Rt [min] | Molecular Formula | m/z Experimental | m/z Calculated | Delta [ppm] | DBE | Tentative Compound | MS/MS Fragments | Ref. | AB HG 1:1 | AB HG 4:1 | AB HG 6:1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[M−H]− | 4.2 | C7H12O6 | 191.0573 | 191.0561 | −6.19 | 2 | Quinic acid | 129, 101 | [21] | + | + | - |
[M−H]− | 8.5 | C16H18O9 | 353.0917 | 353.0878 | −11 | 8 | 3-caffeoylquinic acid | 191, 179 | [7,19] | + | + | - |
[M−H]− | 10.6 | C16H18O9 | 353.0914 | 353.0878 | −10.15 | 8 | 5-caffeoylquinic acid | 191, 179 | [22] | + | + | - |
[M−H]− | 11.4 | C16H18O9 | 353.0916 | 353.0878 | −10.72 | 8 | 4-caffeoylquinic acid | 191 | [7,19] | + | - | - |
[M−H]− | 11.5 | C9H8O4 | 179.035 | 179.035 | −0.1 | 6 | Caffeic acid | 135 | [19] | + | - | + |
[M−H]− | 11.7 | C16H18O8 | 337.0918 | 337.0929 | 3.23 | 8 | Coumaroyl-quinic acid isomers | 191,173 | [18,19] | + | - | - |
[M−H]− | 12.6 | C16H18O8 | 337.0964 | 337.0929 | −10.67 | 8 | Coumaroyl-quinic acid isomers | 191 | [18,19] | + | + | - |
[M−H]− | 14.8 | C25H24O12 | 515.1195 | 515.1195 | 0 | 14 | Cynarin | 353, 191, 179 | [7,19] | + | + | + |
[M−H]− | 17.5 | C15H10O6 | 285.0407 | 285.0405 | −0.83 | 11 | Kaempferol | 133 | [23] | + | + | + |
[M−H]− | 18.2 | C17H14O8 | 345.0604 | 345.0616 | 3.44 | 11 | Axillarin | 330, 315 | [18] | + | + | + |
[M−H]− | 20.4 | C17H1407 | 329.065 | 329.0667 | 5.08 | 11 | 3,8-Dimethylherbacetin | 314, 299 | [18] | + | + | - |
[M−H]− | 20.6 | C18H16O8 | 359.076 | 359.0772 | 3.45 | 11 | Jaceidin | 329, 344 | [19] | + | + | + |
Ionization Mode | Rt [min] | Molecular Formula | m/z Experimental | m/z Calculated | Delta [ppm] | DBE | Tentative Compound | MS/MS Fragments | Ref. | AM HG 1:1 | AM HG 4:1 | AM HG 6:1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[M−H]− | 3.9 | C7H12O6 | 191.0568 | 191.0561 | −3.58 | 2 | Quinic acid | 129, 101 | [21] | + | + | + |
[M−H]− | 8.4 | C16H18O9 | 353.091 | 353.0878 | −9.02 | 8 | 3-caffeoylquinic acid | 191, 179 | [7,19] | + | - | - |
[M−H]− | 10.3 | C16H18O9 | 353.0905 | 353.0878 | −7.61 | 8 | 5-caffeoylquinic acid | 191, 179 | [22] | + | + | - |
[M−H]− | 11.3 | C16H18O9 | 353.0904 | 353.0878 | −7.33 | 8 | 4-caffeoylquinic acid | 191, 179 | [7,19] | + | - | - |
[M−H]− | 11.7 | C16H18O8 | 337.0958 | 337.0929 | −8.6 | 8 | Coumaroyl-quinic acid isomers | 191 | [18,19] | + | - | - |
[M−H]− | 12.56 | C16H18O8 | 337.0958 | 337.0929 | −8.6 | 8 | Coumaroyl-quinic acid isomers | 191 | [9,19] | + | - | - |
[M−H]− | 14.8 | C25H24O12 | 515.1243 | 515.1195 | −9.3 | 14 | Cynarin | 353, 179 | [7,19] | + | - | - |
[M−H]− | 17.5 | C15H10O6 | 285.0386 | 285.0405 | 6.51 | 11 | Kaempferol | 193, 127 | [23] | + | + | + |
[M−H]− | 20.6 | C18H16O8 | 359.0769 | 359.0772 | 0.95 | 11 | Jaceidin | 329, 344 | [18] | + | - | - |
Compound/Extract | Achillea biebersteinii | Achillea millefolium | ||||
---|---|---|---|---|---|---|
HG 1:1 | HG 4:1 | HG 6:1 | HG 1:1 | HG 4:1 | HG 6:1 | |
Cynarin | 1.215 ± 0.008 | 0.076 ± 0.004 a | 0.078 ± 0.000 a | 0.119 ± 0.002 | ND | ND |
3-caffeoylquinic acid | 1.922 ± 0.089 | 0.524 ± 0.011 b | 0.451 ± 0.039 b | 0.595 ± 0.068 b | ND | ND |
5-caffeoylquinic acid | 3.181 ± 0.139 | 1.435 ± 0.033 | 1.102 ± 0.093 c | 0.993 ± 0.092 c | 0.036 ± 0.004 | ND |
4-caffeoylquinic acid | 1.207 ± 0.021 | 0.209 ± 0.024 d | 0.193 ± 0.005 d | 0.466 ± 0.013 | ND | ND |
Caffeic acid | 0.036 ± 0.003e | 0.035 ± 0.009 e | 0.037 ± 0.005 e | ND | ND | ND |
Kaempferol | 0.784 ± 0.001 | 0.141 ± 0.003 | 0.113 ± 0.012 | 0.272 ± 0.021 | 0.065 ± 0.001 | 0.022 ± 0.001 |
Jaceidin | 0.815 ± 0.048 | ND | 0.005 ± 0.001 f | 0.043 ± 0.008 f | ND | ND |
Axillarin | 2.539 ± 0.265 | 0.055 ± 0.007 | ND | ND | ND | ND |
Coumaroyl-quinic acid isomers | 0.203 ± 0.016 g | 0.129 ± 0.010 g | 0.131 ± 0.000 g | 0.734 ± 0.069 | ND | ND |
Coumaroyl-quinic acid isomers | 0.121 ± 0.007 h | 0.106 ± 0.002 h | 0.117 ± 0.012 h | 1.733 ± 0.105 | ND | ND |
Quinic acid | 0.684 ± 0.470 i | 0.868 ± 0.008 i,j | 0.071 ± 0.000 | 1.172 ± 0.142 i,k | 1.201 ± 0.050 i,k | 1.294 ± 0.126 j,k |
3,8-Dimethylherbacetin | 0.660 ± 0.025 | 0.023 ± 0.002 | ND | ND | ND | ND |
IC50 (%) ± SD | |||
---|---|---|---|
DPPH Scavenging | ABTS Scavenging | ||
A. millefolium | HG 1:1 | 3.58 ± 0.96 | 0.43 ± 0.14 b,c |
HG 4:1 | 0.68 ± 0.02 a | 0.30 ± 0.03 b | |
HG 6:1 | 1.68 ± 0.38 a | 0.49 ± 0.14 b,c | |
A. biebersteinii | HG 1:1 | 0.91 ± 0.05 a | 0.72 ± 0.17 c |
HG 4:1 | 0.68 ± 0.05 a | 0.38 ± 0.04 b | |
HG 6:1 | 1.01 ± 0.08 a | 0.56 ± 0.05 b,c | |
Vitamin C | 0.78 ± 0.05 μg/mL | 0.46 ± 0.02 μg/mL |
5% | 2.5% | 1.25% | ||
---|---|---|---|---|
A. millefolium | HG 1:1 | 12.24 ± 0.20 | 5.65 ± 0.15 b | 2.59 ± 0.21 d,f |
HG 4:1 | 14.04 ± 0.17 | 7.15 ± 0.14 | 2.98 ± 0.18 f | |
HG 6:1 | 9.49 ± 0.24 | 4.78 ± 0.08 | 1.90 ± 0.11 c,e | |
A. biebersteinii | HG 1:1 | 11.67 ± 0.30 a | 5.74 ± 0.13 b | 2.24 ± 0.06 c,d,e,f |
HG 4:1 | 11.64 ± 0.09 a | 5.90 ± 0.14 b | 2.37 ± 0.13 c,d | |
HG 6:1 | 8.30 ± 0.04 | 3.86 ± 0.16 | 1.85 ± 0.21 e | |
Zinc oxide | 1 mg/mL | 16.79 ± 0.49 |
Wavelength (λ, nm) | EE × I (Normalized) |
---|---|
290 | 0.0150 |
295 | 0.0817 |
300 | 0.2874 |
305 | 0.3278 |
310 | 0.1864 |
315 | 0.0839 |
320 | 0.0180 |
Total | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Czop, M.; Sakipova, Z.; Głowniak, K.; Kukula-Koch, W. Achillea millefolium L. and Achillea biebersteinii Afan. Hydroglycolic Extracts–Bioactive Ingredients for Cosmetic Use. Molecules 2020, 25, 3368. https://doi.org/10.3390/molecules25153368
Gaweł-Bęben K, Strzępek-Gomółka M, Czop M, Sakipova Z, Głowniak K, Kukula-Koch W. Achillea millefolium L. and Achillea biebersteinii Afan. Hydroglycolic Extracts–Bioactive Ingredients for Cosmetic Use. Molecules. 2020; 25(15):3368. https://doi.org/10.3390/molecules25153368
Chicago/Turabian StyleGaweł-Bęben, Katarzyna, Marcelina Strzępek-Gomółka, Marcin Czop, Zuriyadda Sakipova, Kazimierz Głowniak, and Wirginia Kukula-Koch. 2020. "Achillea millefolium L. and Achillea biebersteinii Afan. Hydroglycolic Extracts–Bioactive Ingredients for Cosmetic Use" Molecules 25, no. 15: 3368. https://doi.org/10.3390/molecules25153368
APA StyleGaweł-Bęben, K., Strzępek-Gomółka, M., Czop, M., Sakipova, Z., Głowniak, K., & Kukula-Koch, W. (2020). Achillea millefolium L. and Achillea biebersteinii Afan. Hydroglycolic Extracts–Bioactive Ingredients for Cosmetic Use. Molecules, 25(15), 3368. https://doi.org/10.3390/molecules25153368