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Table S1. Computational predictions of interactions between tested compounds (1-17) and homology
modeled tubulin BI

3D representation and 2D layout of colchicine derivatives—tubulin protein complex, binding energy and
active residues are tabulated.
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In 3D illustrations the interacting residues predicted from pairwise per-residue binding free energy decomposition calculations (E < -
2 kcal/mol) are shown in stick representation and their carbons and the ribbon are colored as green. Tubulin is shown in cartoon
representation. Hydrogen bonds and their directionality are represented as black dashed arrows. The structures are color coded as
follows: tubulin al, brown; tubulin BI, beige. Ligands are displayed with stick and the atoms are colored as O (red), C (gray), N
(blue), S (yellow), Cl (green) and F (pink). Binding energy defines the affinity of binding of colchicine derivatives complexed with
tubulin BI. Binding energies are predicted by the MM/GBSA method. The last column contains information about active residues
with binding free energy decomposition (E < -2 kcal/mol) and the residues with (E < -3 kcal/mol) are highlighted in bold. The last
line contains the graphical key to help interpret the 2D part of the ligand interactions panel.



MATERIALS AND METHODS
General

All solvents, substrates and reagents were obtained from TriMen Chemicals (Poland) or Sigma
Aldrich and were used without further purification. Spectral grade solvents were stored over 3 A molecular
sieves for several days. TLC analysis was performed using pre-coated glass plates (0.2 mm thickness, GF-
254, pore size 60 A) from Agela Technologies and spots were visualized by UV-light. Products were
purified by flash chromatography using high-purity grade silica gel (pore size 60 A, 230 - 400 mesh particle
size, 40-63 um particle size) from SiliCycle Inc. Solvents were removed using a rotary evaporator.

Spectroscopic measurements

NMR spectra were recorded on Bruker Avance DRX 500 ('"H NMR at 500 MHz and *C NMR at
126 MHz) magnetic resonance spectrometers. '"H NMR spectra are reported in chemical shifts downfield
from TMS using the respective residual solvent peak as internal standard (CDCl3 6 7.26 ppm, CD,Cl, 6 5.32
ppm and CD;CN & 1.94). 'H NMR spectra are reported as follows: chemical shift (5, ppm), multiplicity (s =
singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of
quartets, m = multiplet), coupling constant (J) in Hz, and integration. *C NMR spectra are reported in
chemical shifts downfield from TMS using the respective residual solvent peak as internal standard (CDCls o
77.2 ppm, CD,Cl, 6 53.8 ppm, CD3CN 6 1.3 and 118.3).

Electrospray ionization (ESI) mass spectra were obtained on a Waters Alliance 2695 separation
module with a PDA 2996 UV detector and Waters Micromass ZQ 2000 mass detector equipped with Restek
Ultra Biphenyl 50 x 3 mm, 3 um column eluted with 0.3 mL/min flow of 3-100% gradient (over 6 min) of
acetonitrile in water.

Synthesis of 2 and 3

Synthesis of 10-N-methylaminocolchicine 2 and N-deacetyl-10-methylamino-10-demethoxycolchicine 3 was
performed according to the previously published procedure [1].

Compound 2

To a solution of 1 (1.0 equiv.) in EtOH a methylamine (solution 33% in EtOH, 10.0 equiv.) was
added. The mixture was stirred at reflux for 24 h and then concentrated under reduced pressure to dryness.
The residue was purified using column flash chromatography (silica gel; DCM/MeOH, 40/1 v/v) and next
lyophilized from dioxane to give the pure product 2 as a yellow solid with a yield of 80%.

ESI-MS for C2H26N20s (m/z): [M+H]" 399, [M+Na]" 421, [2M+H]" 797, [2M+Na]* 819, [M-H]
397, [M+HCOO] 443.

"H NMR (500 MHz, CDCl;) 8 8.70 (d, J = 6.4 Hz, 1H), 7.58 (s, 1H), 7.46 (d, J = 11.1 Hz, 1H), 7.28
—7.25 (m, 1H), 6.58 (d, J = 11.3 Hz, 1H), 6.52 (s, 1H), 4.73 — 4.64 (m, 1H), 3.93 (s, 3H), 3.88 (s, 3H), 3.61
(s, 3H), 3.08 (d, J = 5.4 Hz, 3H), 2.47 — 2.43 (m, 1H), 2.37 - 2.31 (m, 1H), 2.29 — 2.22 (m, 1H), 2.02 — 1.96
(m, 1H), 1.94 (s, 3H).

BC NMR (126 MHz, CDCls) § 175.1, 170.2, 155.2, 152.9, 151.6, 151.1, 141.5, 139.4, 134.7, 130.4,
126.9, 122.8, 108.3, 107.2, 61.5, 61.4, 56.2, 52.7,37.1, 30.2, 29.5, 22.7.

Compound 3

To a solution of compound 2 (1.0 equiv.) in dioxane, 2M HCI (10.0 equiv.) was added and the
mixture was stirred at reflux. Reaction progress was monitored by LC-MS. Then the reaction mixture was



neutralized with 4M NaOH to pH~10 and extracted four times with EtOAc. The organic layers were
combined, washed with brine, dried over Na,SOs, filtered off and evaporated under reduced pressure. The
residue was purified using column flash chromatography (silica gel; DCM/MeOH, 20/1 v/) and next
lyophilized from dioxane to give the pure product 3 as a yellow solid with a yield of 73%.

ESI-MS for C20H24N,04 (m/z): [M+H]" 357, [M+Na]* 379, [2M+Na]* 735.

"H NMR (500 MHz, CDCl5) 8 7.61 (s, 1H), 7.33 (d, J = 11.1 Hz, 1H), 7.23 — 7.21 (m, 1H), 6.50 (s,
1H), 6.50 (d, J = 11.4 Hz, 2H), 3.87 (s, 3H), 3.87 (s, 3H), 3.75 — 3.72 (m, 1H), 3.59 (s, 3H), 3.05 (d, J =5.5
Hz, 3H), 2.41 — 2.37 (m, 1H), 2.33 — 2.31 (m, 2H), 2.25 (s, 2H), 1.71 — 1.61 (m, 1H).

3C NMR (126 MHz, CDCls) & 175.6, 155.0, 153.3, 152.8, 150.6, 141.1, 138.7, 135.4, 129.7, 126.6,
123.7,107.4, 106.9, 61.2, 60.8, 56.1, 54.0, 40.9, 30.7, 29.5.

In vitro antiproliferative activity
Cell lines and culturing conditions

Four human cancer cell lines and one murine normal cell line were used to evaluate antiproliferative
activity of colchicine and its derivatives 1-17: human lung adenocarcinoma (A549), human breast
adenocarcinoma (MCF-7), human colon adenocarcinoma cell lines sensitive and resistant to doxorubicin
(LoVo) and (LoVo/DX) respectively, and normal murine embryonic fibroblast cell line (BALB/3T3). The
A549 cell line was purchased from the European Collection of Authenticated Cell Cultures (ECACC,
Salisbury, UK). The MCF-7, LoVo and LoVo/DX cell lines was purchased from American Type Culture
Collection (ATCC, Manassas, VA, USA). All the cell lines are maintained in the Institute of Immunology
and Experimental Therapy (IIET), Wroclaw, Poland.

Human lung adenocarcinoma cell line was cultured in a mixture of OptiMEM and RPMI 1640 (1:1)
medium (IIET, Wroclaw, Poland), supplemented with 5% fetal bovine serum HyClone (GE Healthcare,
USA) and 2 mM L-glutamine (Sigma-Aldrich, Germany). Human breast adenocarcinoma cell line was
cultured in mixture of Eagle medium (IIET, Wroclaw, Poland), supplemented with 10% fetal bovine serum,
2 mM L-glutamine, 8 pg/mL insulin and 1% amino acids (Sigma-Aldrich, Germany). Human colon
adenocarcinoma cell lines were cultured in mixture of OptiMEM and RPMI 1640 (1:1) medium (IIET,
Wroclaw, Poland), supplemented with 5% fetal bovine serum HyClone (GE Healthcare, USA), 2 mM L-
glutamine, 1 mM sodium pyruvate (Sigma-Aldrich, Germany) and 10 ng/100 mL doxorubicin (Accord) for
LoVo/DX. Murine embryonic fibroblast cells were cultured in Dulbecco medium (Gibco), supplemented
with 10% fetal bovine serum (GE Healthcare, USA) and 2 mM L-glutamine (Sigma-Aldrich, Germany). All
culture media contained antibiotics: 100 U/mL penicillin (Polfa-Tarchomin, Poland) and 0,1 mg/mL
streptomycin (Sigma Aldrich, Germany). All cell lines were cultured during entire experiment in humid
atmosphere at 37°C and 5% CO,.

Cell viability assays

Twenty-four hours before adding the tested compounds, all cell lines were seeded in 384-well plates
(Sarstedt, Germany) in appropriate media with 1.0x10° cells per well for A549 cell line, 1.5x10° cells per
well for MCF-7 cell line and 2.0x10* cells per well for LoVo, LoVo/DX and BALB/3T3 cell lines. All cell
lines were exposed to each tested agent at different concentrations in the range 100-0.001 pg/mL for 72 h.
The cells were also exposed to the reference drug cisplatin (Teva Pharmaceuticals, Poland) and doxorubicin
(Accord Healthcare Limited, UK). Additionally, all cell lines were exposed to DMSO (solvent used for
tested compounds) (POCh, Poland) at concentrations corresponding to those present in tested agents
dilutions. After 72 h sulforhodamine B assay (SRB) was performed [2].



SRB

After 72 h of incubation with the tested compounds, the cells were fixed in situ by gently adding of
30 uL per well of cold 50% trichloroacetic acid TCA (POCh, Poland) and were incubated at room
temperature for one hour. Then the wells were washed four times with water and air dried. Next, 25 pL of
0.1% solution of sulforhodamine B (Sigma-Aldrich, Germany) in 1% acetic acid (POCh, Poland) were added
to each well and plates were incubated at room temperature for 0.5 h. After incubation time, unbound dye
was removed by washing plates four times with 1% acetic acid, whereas stain bound to cells was solubilized
with 70ul of 10 mM Tris base (Sigma-Aldrich, Germany). Absorbance of each solution was read off from a
Synergy H4 Hybrid Multi-Mode Microplate Reader (BioTek Instruments, USA) at the 540 nm wavelength.

Results are presented as mean ICso (concentration of the tested compound, that inhibits cell
proliferation by 50%) + standard deviation. ICso values were calculated in Cheburator 0.4, Dmitry Nevozhay
software (version 1.2.0 software by Dmitry Nevozhay, 2004-2014, http://www.cheburator.nevozhay.com,
freely available) for each experiment [3]. Compounds at each concentration were tested in triplicates in
single experiment and each experiment was repeated at least three times independently.

Molecular docking studies
Ligand preparation

The ligand structures were prepared using Ligprep from the Schrédinger suite [4]. Conformations
and tautomeric states were assigned to the ligands by following the ligand preparation protocol implemented
in Schrodinger suite with default settings. LigPrep generates variants of the same ligand with different
tautomeric, stereochemical, and ionization properties.

Tubulin model

The tubulin crystal structures available in the PDB are those for bovine protein. The bovine tubulin
structure of tubulin (PDB ID: 1SAO0) [5] was used as a template to construct the homology model of human
af-tubulin isotypes (Bl (UniProtKb: P07437), which is the most abundant isotype in most tumors using the
Molecular Operating Environment (MOE) software package [6]. The sequence corresponding to the gene
TUBAI1A (UniProt ID: Q71U36) was chosen as a reference sequence for human tubulin, whereas the gene
TUBB associated to BI isoform (UniProt ID: P07437) was chosen for human tubulin. Homology modeling
was performed using MOE by setting the number of generated models to 10 and by selecting the final model
based on MOE’s generalized Born/volume integral (GB/VI) scoring function.

Molecular dynamics simulations

The missing hydrogens for heavy atoms were added using the tLEAP module of AMBER 14 with
the AMBER14SB force field [7]. The protonation states of all ionizable residues were determined at pH = 7
using the MOE program [6]. Each protein model was solvated in a 12 A box of TIP3P water. In order to
bring the salt concentration to the physiological value of 0.15 M, 93 Na' ions and 57 CI” ions were
added. Minimization of the structure was carried out in two steps, using the steepest descent and conjugate
gradient methods successively. At first, minimization was made in 2 ps on solvent atoms only, by restraining
the protein-ligand complex. Next, minimization was run without the restraint in 10 ps. After minimization,
the molecular dynamics (MD) simulations were carried out in three steps: heating, density equilibration, and
production. At first, each solvated system was heated to 298 K for 50 ps, with weak restraints on all
backbone atoms. Next, density equilibration was carried out for 50 ps of constant pressure equilibration at



298 K, with weak restraints. Finally, MD production runs were performed for all systems for 70 ns. The
root-mean-square deviation (RMSD) of both the entire tubulin structure and the colchicine-binding site were
found to reach a plateau after 40 ns. Clustering analysis of the last 30 ns of the generated MD trajectory was
carried out using the Amber’s CPPTRAJ program [8] to identify representative conformations of the tubulin
dimer. Clustering was made via the hierarchical agglomerative approach using the RMSD of atoms in the
colchicine-binding site as a metric. An RMSD cutoff of 1.0 A was set to differentiate the clusters. On the
basis of the clustering analysis, three representative structures of the tubulin dimer were found. The docking
was performed on all the three representative structures and the one with the highest docking score was
selected, which was the largest cluster (about 70% of the simulation) conformation of the tubulin structure.
During the modeling, the cofactors including GTP, GDP, colchicine, and the magnesium ion located at the
interface between a - and B-monomers were kept as part of the environment and included in the refinement
step.

Docking simulations

We used the AutoDock Vina [9] and DOCK (http://dock.compbio.ucsf.edu/) programs to predict the
binding pose of the ligands under flexible ligand and rigid receptor conditions. Dockbox package was used to
facilitate preparation of docking inputs and post-processing of the docking results [10]. Docking simulations
performed with a cubic box (size 30.0 A) were centered at the middle of binding pockets and the docking
was run separately on the tubulin structure. Every generated pose was energy-minimized using Amber14 by
keeping the protein fixed and was re-scored using the MOE’s GBVI/WSA dG scoring function [6]. No
constraints were applied in the docking studies. For each compound/protein-structure pair, the pose with the
best score was identified and used as an initial configuration for molecular mechanics Gibbs—Boltzmann
surface area MM/GBSA computations.

Binding energy calculations using MM/GBSA method

The MM/GBSA technique is used to calculate the free energy associated with the binding of double
modified colchicine derivatives [11]. This method combines molecular mechanics with continuum solvation
models. We performed MM-GBSA integrated in Amber. The binding free energy is estimated as:

AGbind = G_complex - [G_protein + G_ligand] (1)

where G is the average free energy of the complex, protein, and ligand, are calculated according to the
equation:

G= EM+ G_solvation -TS (2)

where EMM are determined with the SANDER program and represent the internal energy (bond, angle, and
dihedral), van der Waals and electrostatic interactions (see equation (3)). TS is the entropy contribution
estimated using normal mode (nmode) analysis.

Em = Eint + Eelec +EvdW (3)

The solvation free energy can be calculated as the sum of polar and nonpolar contributions. The polar parts
are obtained by using the generalized-born (GB) model—resulting in the MM/GBSA method, whereas the



nonpolar terms are estimated from a linear relation (equation 4) to the solvent accessible surface area
(SASA).

Gnon—polar = ySASA+b 4)

In the present study, a 2 ns-duration MD trajectory was run in TIP3P water using Amber14, for every
top pose generated at the end of the docking step. It is worth noting that to assess the performance of
MM/GBSA methodology [12], we evaluated the prediction accuracy of this method by various simulation
protocols including 1 ns MD production calculations using PDBbind data set. Too long an MD simulation
could be prejudicious for the overall success of the MM/GBSA method. According to this study and the
common practice to calculate binding energies using MM/GBSA, we have decided to run MD production
simulation for 2 ns. The MM/GBSA calculations were performed on a subset of 200 frames collected at
regular time intervals from the trajectory. For PB calculations, an ionic strength of 0.0 nM (istrng = 0.0) and
a solvent probe radius of 1.6 A (prbrad = 1.6) were used. For GB calculations, the igb parameter was set to 5,
which corresponds to a modified GB model equivalent to model II in reference.

Free energy decomposition analysis

The interaction between inhibitors and each residue were computed using the MM/GBSA
decomposition process by the mm_gbsa program in AMBER 12.0. The binding interaction of each inhibitor-
residue pair includes three energy terms: van der Waals contribution (AE.4w), electrostatic contribution
(AEc), and solvation contribution (AGGB + AGSA), in which AE.w and AEc. are van der Waals and
electrostatic interactions between the inhibitor and each protein residue that could be computed by the
Sander program in AMBER 12.0. The polar contribution of desolvation (AGGB) was calculated using the
generalized Born (GB) model. The nonpolar contribution of desolvation (AGSA) was computed based on
SASA determined with the ICOSA method. All energy components were calculated using 300 snapshots
extracted from the MD trajectory from 7 to 10 ns (Molecular Dynamics Simulation of Tryptophan
Hydroxylase-1: Binding Modes and Free Energy Analysis to Phenylalanine Derivative Inhibitors paper).



LC-MS chromatograms and mass spectra, 'H NMR and 3C NMR spectra of compounds 2-17.
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Figure S1. The LC-MS chromatogram and mass spectra of 2.
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Figure S17. The LC-MS chromatogram and mass spectra of 8.
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Figure S20. The LC-MS chromatogram and mass spectra of 9.
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Figure S25. The LC-MS chromatogram and mass spectra of 11.
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Figure S28. The LC-MS chromatogram and mass spectra of 12.
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Al

0.25
] AN
0.20
1 s
0.15-
C gzl ;04
4 MW 446,54 he
0.10 S
005
0.00-] -
T T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T T T | T T | T T
1.00 200 3.00 400 500 5.00 7.00 8.00 a.00 10.00
Minutes
4506 Exfracted -A33-2 bP- ZQ F1 Scan 100.00-1200.00 ES+, Centroid, CV=40
| 471
B 481
6x107—
4x107
- 3401
2107
1 3122 5.1 1449 2
1 m.2299.1?i?-1 82 420119 14704 893 69155016 5
0 1 iy N [ '
4506 Exfracted -A33-2 bP- ZQ F2 Scan 100.00-1200.00 ES-, Centroid CV=40
7113.0
40000.0+
30000.0+
1| 1650
4 (1381
0__ 5134
7 676.4
E 1789 2349 636.2
3 764.6 867.0 10125
742 9g5.41007 1
6987 T
036
;I.U thl I | | IH !IL Al |-I-|- |l|.||;|. wl -IJ-I ] 4 Lalil | [
400.00 £00.00 800.00 1000.00 1200.00

miz

Figure S31. The LC-MS chromatogram and mass spectra of 13.
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Figure S37. The LC-MS chromatogram and mass spectra of 15.
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Figure S38. The '"H NMR spectrum of 15 in CDCls.
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Figure S39. The *C NMR spectrum of 15 in CDCls.
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Figure S40. The LC-MS chromatogram and mass spectra of 16.
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Figure S43. The LC-MS chromatogram and mass spectra of 17.
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Figure S44. The '"H NMR spectrum of 17 in CDCls.
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Figure S45. The *C NMR spectrum of 17 in CDCls.
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