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Abstract: Green petroleum coke, a form of industrial waste produced in the oil-refining process,
was used to synthesize nitrogen-doped graphene-like plates (N-GLPs) together with melamine.
In this study, characterization and batch experiments were performed to elucidate the interaction
mechanism of N-GLPs and bisphenol A (BPA). Structural analysis of N-GLPs, including scanning
electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR),
Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS), showed an obvious
graphene-like structure and successful nitrogen doping. In addition, compared with 8.0 m2/g for green
petroleum coke, the BET surface area of N-GLPs markedly increased to 96.6 m2/g. The influences of
various factors, including contact time, temperature, and initial pH on BPA removal efficiency were
investigated. It was found that 92.0% of BPA was successfully removed by N-GLPs at 50 ◦C. Based
on the adsorption experiments, it was shown that electrostatic attraction, hydrogen bonding, and π-π
interaction enhanced the adsorption capacity of N-GLPs for BPA. According to the thermodynamic
data, the adsorption process was spontaneous, physical, and endothermic in nature. Therefore,
N-GLPs are efficient adsorbent material to remove BPA from wastewater.

Keywords: green petroleum coke; nitrogen doping; bisphenol A; electrostatic attraction; adsorption

1. Introduction

As a phenolic compound with high production, bisphenol A (BPA) is widely utilized in the
manufacturing of epoxy resins and polycarbonate plastics [1,2]. Due to its pervasive application,
a tremendous amount of BPA is discharged into the environment. Indeed, BPA has been confirmed to
be present in a broad variety of areas, such as water systems, air, sediment, landfills, and some food
matrices [3]. BPA is known as an endocrine-disrupting compound and may lead to deleterious effects
on humans due to its estrogenic activity [4]. As the existence of BPA in water environments constitutes
a potential major hazard for both humans and aquatic organisms, it is critical to develop an efficient
method to remove BPA.

Among the various methods available for the removal of BPA, adsorption has attracted great
attention due to its economic applicability, high efficiency, easy operation, and hypotoxicity [5,6].
The particular adsorbent used in an adsorption process determines both adsorption efficiency and cost
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and thus plays a key role in its use and effectiveness. Carbonaceous materials, including activated
carbon, graphene, graphene oxide, and reduced graphene oxide, have been widely utilized in water
purification processes. They can achieve rapid adsorption rates due to their large surface area and pore
volume [7]. However, these adsorbents possess numerous disadvantages, such as high production
cost, low productivity, and challenging regeneration. All of these disadvantages have demonstrated
the necessity to identify or develop a novel adsorbent with superior adsorption efficiency and lower
production cost to remove BPA from wastewater.

Green petroleum coke is a by-product from the carbonization of petroleum feedstock and
oil-refining process [8,9]. It offers numerous advantages, such as high fixed carbon content, low content
of ash, extensive sources, low cost, and abundant benzene rings or aromatic domains [10,11]. However,
as a by-product with high production, a vast amount of green petroleum coke is not utilized in a
timely manner and is instead stacked. This presents a major environmental concern because soluble
substances in green petroleum coke will permeate into the groundwater and soil during the leaching
process [12]. Consequently, the development of a method to promptly and effectively utilize green
petroleum coke is needed. Considering its major advantages, it is feasible for green petroleum coke to
serve as a raw adsorbent material to deal with BPA in aqueous solution.

In this work, we report a cost-effective method for synthesizing nitrogen-doped graphene-like
plates from green petroleum coke as a novel adsorption material. Green petroleum coke was calcined
at high temperature as a post-treatment to obtain petroleum coke as a precursor. Melamine was chosen
as the nitrogen source for the nitrogen-doped graphene-like plates (N-GLPs). Nitrogen doping on
a carbon network has been confirmed to introduce positive charge and then augment electrostatic
interaction [13]. In addition, nitrogen doping on petroleum coke would obtain pyridinic N, pyrrolic
N, and graphitic N, thus regularizing the crystal structure [14]. Moreover, a π-π interaction might
form between nitrogen-doped graphene-like plates and benzene rings in BPA. Scanning electron
microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier
transform infrared spectroscopy (FT-IR), the Brunauer-Emmett-Teller (BET) specific surface area,
and X-ray photoelectron spectroscopy (XPS) were utilized to analyze the physicochemical properties of
nitrogen-doped graphene-like plates. Subsequently, the influence of adsorption conditions, including
contact time, temperature, and pH, were investigated, thereby determining the optimum conditions
for maximum removal efficiency of BPA. The adsorption mechanism of BPA was also elucidated with
the structure of nitrogen-doped graphene-like plates and the adsorption isotherms.

2. Results and Discussions

2.1. Optimization of Adsorption Materials

2.1.1. Effect of N-Doped Temperature

N-doped temperature is a key factor affecting a material’s physicochemical properties. For the
variation in physicochemical properties, we used several techniques, e.g., SEM, XED, FT-IR, BET,
and XPS, to characterize the obtained materials. In this work, we fixed the N-doping time at 2 h and
varied the N-doped temperature to 350, 550, and 750 ◦C to produce three N-doped samples. After
calcination and nitrogen doping, green petroleum coke particles transformed into N-GLPs. We defined
the three obtained N-doped samples as N-GLPs 3502, N-GLPs 5502, and N-GLPs 7502.

SEM

SEM was performed to analyze the morphologies and microstructures of the green petroleum
coke and N-GLP samples obtained from calcination at 350, 550, and 750 ◦C. SEM images of green
petroleum coke, N-GLPs 3502, N-GLPs 5502, and N-GLPs 7502 composites at the same magnification
are shown in Figure 1. Compared with green petroleum coke’s irregular granular structure (Figure 1a),
N-GLP samples with N-doping and thermal processing (Figure 1b–d) showed a more regular and
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larger lamella structure. The SEM images indicated that calcination and nitrogen doping transformed
the green petroleum coke into a more regular and neater lamella structure. Moreover, the SEM image
of N-GLPs 7502 (Figure 1d) demonstrated that N-doping at 750 ◦C obtained the N-GLP sample with
the smoothest lamellar structure among the samples mentioned above.
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XRD

X-ray diffraction analysis determined the crystal structure in green petroleum coke and N-GLP
samples by measuring the reflection angle from the crystal lattice. The XRD profiles of green petroleum
coke, graphene, N-GLPs 3502, N-GLPs 5502, and N-GLPs 7502 are given in Figure 2. As shown in
Figure 2, green petroleum coke, graphene, and all of the N-GLP samples exhibited a characteristic
peak at 2θ = 26◦ on their XRD diffraction spectrum. With the temperature increasing, a small peak at
2θ = 44◦ on XRD diffraction spectrums of N-GLP samples could be identified. The peak at 2θ = 26◦

and 2θ = 44◦ corresponded to crystalline regions of diffraction from layering of graphitic carbons and
formation of small 2D lattices, respectively [15]. In addition, the peak height and intensity at 2θ = 26◦

of the N-GLP samples were higher than those of green petroleum coke, which demonstrated that green
petroleum coke was led to an orderly crystal structure through calcination and N-doping. Compared
with other samples, N-GLPs 7502 (Figure 2e) exhibited the highest peak intensity. The XRD results
revealed that the green petroleum coke tended to be graphitized to a greater extent with N-doping and
the increase in temperature [16].Molecules 2020, 25, x 4 of 20 
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FT-IR

Information about surface functional groups and chemical bonding behavior was obtained by
FT-IR [17,18]. The FT-IR spectra of green petroleum coke, N-GLPs 3502, N-GLPs 5502, and N-GLPs 7502

are shown in Figure 3. For green petroleum coke (Figure 3a), the bands in the FT-IR spectrum can be
summarized as follows: (1) the typical band at 3446 cm−1 can be attributed to -OH stretching vibration;
(2) the bands at 3044 and 2915 cm−1 can be assigned to C-H asymmetric and symmetric stretching
vibrations of CH2 and CH3 groups [19]; (3) the bands at 1596 and 1438 cm−1 can be identified as C-C
stretching vibration; and (4) the bands at 869, 806, and 747 cm−1 can be ascribed to the characteristic
peaks of aromatic structure [20,21]. The characteristic bands of green petroleum coke decreased
apparently with increasing N-doping temperature. In addition, the bands at 3044 and 2915 cm−1

disappeared, indicating that calcination removed some aromatic hydrocarbons with small molecular
weight from the green petroleum coke. Compared with green petroleum coke, the FT-IR spectrum of
N-GLPs exhibited a typical transformation process of bands with increasing N-doping temperature.
For the FT-IR spectrum of N-GLPs 7502 (Figure 3d), five main regions were identified: (1) the bands at
3864 and 3743 cm−1 can be assigned to -OH stretching vibration [22]; (2) the band at 3447 cm−1 can
be attributed to N-H symmetric stretching vibration [23]; (3) the band at 1636 cm−1 can be identified
as N-H in-plane deformation vibration [23–25]; (4) the band at 1520 cm−1 can be ascribed to C=N
stretching vibration, while the band at 1052 cm−1 can be assigned to C-N stretching vibration [25,26];
and (5) the bands at 753 and 630 cm−1 can be attributed to -NH2 vibration bands [27]. All of these
characteristics indicated the existence of N-containing functional groups and the successful doping of
nitrogen in N-GLP samples.Molecules 2020, 25, x 5 of 20 
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BET

It is important to measure specific surface area and pore volume of green petroleum coke and
N-GLP samples in order to determine their physicochemical properties [28]. To identify the pore
volume and specific surface area, we performed N2 sorption measurements. The BET method from the
N2 adsorption isotherm was carried out to determine the BET surface area (SBET) of green petroleum
coke and N-GLP samples, while the pore volume was obtained by holding the N2 volume at a relative
pressure of P/P0 = 0.998. The SBET and pore volume (Vp) of the green petroleum coke and N-doped
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samples are listed in Table 1. The green petroleum coke only possessed a small SBET and Vp of
8.0 m2/g and 0.013 cm3/g, respectively. After thermal processing and N-doping, the SBET of N-GLPs
3502, N-GLPs 5502, and N-GLPs 7502 increased to 35.9, 44.8, and 65.4 m2/g, respectively. In addition,
the Vp of N-GLPs 3502, N-GLPs 5502, and N-GLPs 7502 also increased to 0.029, 0.040, and 0.055 cm3/g,
respectively. These analysis data indicated that N-GLP samples with a larger specific surface area and
higher porosity would constitute potential adsorbents for BPA.

Table 1. Surface area and porous volume of the green petroleum coke and N-doped samples.

Sample SBET (m2/g) Vp (cm3/g)

Green petroleum coke 8.0 0.013
N-GLPs 3502 35.9 0.029
N-GLPs 5502 44.8 0.040
N-GLPs 7502 65.4 0.055

XPS

The elemental composition and nitrogen bonding configurations in green petroleum coke and
N-GLP samples were obtained by XPS characterizations. The detailed characteristics of the nitrogen
species on the surface of the samples were probed by high-resolution N 1s spectra, as shown in
Figure 4. For all samples, the raw peaks of N 1s were deconvoluted into three types of nitrogen
species. The peaks around 398.8, 399.8, and 401.3 eV were ascribed to pyridinic N, pyrrolic N, and
graphitic N, respectively [29–31]. The ratio of pyrrolic N:pyridinic N:graphitic N was 1:0.20:0.36
(overall 3.97 at%), 1:6.22:1.98 (overall 5.59 at%), and 1:2.20:1.68 (overall 6.21 at%) for N-GLPs 3502,
N-GLPs 5502, and N-GLPs 7502, respectively. With increasing thermal annealing temperature, more
graphitic N incorporated into the graphene-like plane due to superior thermal stability compared
to pyrrole-like N [32–35]. Moreover, the binding energy of graphitic N increased with the increase
in temperature, which was due to successful nitrogen doping [36–38]. The increase in graphitic N
content indicate that N-GLPs can be successfully synthesized by calcining green petroleum coke with
melamine. Moreover, nitrogen species and doping content can be controlled by synthesis conditions.
Higher temperatures cause more nitrogen atoms to be doped into N-GLPs films, and graphitic N
structures are formed preferably at higher temperatures [39]. Combining the nitrogen compositional
species and nitrogen content, N-GLPs 7502 at 750 ◦C (Figure 4d) obtained the ideal N-doping effect.
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Based on the analysis results of all characterizations, we chose 750 ◦C as the most appropriate
N-doped temperature.

2.1.2. Effect of N-Doping Time

N-doping time is another crucial factor affecting a material’s physicochemical properties, thereby
further influencing a material’s adsorption capacities. In this study, we fixed N-doped temperature at
750 ◦C and varied the N-doping time from 2 to 6 h to produce three N-doped samples. The obtained
three N-doping samples were defined as N-GLPs 7502, N-GLPs 7504, and N-GLPs 7506, corresponding
to an N-doping time of 2, 4, and 6 h, respectively.

SEM

The morphological and structural features of green petroleum coke and N-GLP samples were
characterized by SEM. SEM images of green petroleum coke, N-GLPs 7502, N-GLPs 7504, and N-GLPs
7506 composites are shown in Figure 5. All N-GLP samples obtained at 750 ◦C (Figure 5b–d) exhibited
a regular lamella structure in contrast to that of green petroleum coke (Figure 5a). Furthermore,
the lamella structure became more apparent with the increase in N-doping time. As shown in Figure 5d,
the lamella of N-GLPs 7506 was extremely obvious and defined, demonstrating that the structure of
N-GLPs would become clear and ordered with longer N-doping time. Consequently, we identified that
controlling the N-doping time at 6 h could obtain the N-GLP sample with the optimal lamella structure.Molecules 2020, 25, x 7 of 20 

 

Figure 5. Effect of N-doping time on material’s optimization: (a) green petroleum coke, (b) N-GLPs 
7502, (c) N-GLPs 7504, and (d) N-GLPs 7506. 

XRD 

The X-ray diffraction profiles of green petroleum coke, N-GLPs 7502, N-GLPs 7504, and N-GLPs 
7506 are given in Figure 6. All the XRD diffraction spectrum of N-GLP samples showed two 
characteristic peaks at 2θ = 26° and 2θ = 44°, indicating that the crystal structures of N-GLP samples 
were identical to that of graphene. In addition, all of the N-GLP samples at 750 °C exhibited great 
peak height and intensity with narrow difference (Figure 6b–d). Compared with other N-GLP 
samples, N-GLPs 7506 (Figure 6d) revealed a slightly higher peak intensity. In this case, we concluded 
that N-GLP samples obtained at 750 °C contained an excellent crystal structure and increasing the N-
doping time would narrowly improve the material property. 

Figure 6. XRD patterns of (a) green petroleum coke, (b) N-GLPs 7502, (c) N-GLPs 7504, and (d) N-GLPs 
7506. 

Figure 5. Effect of N-doping time on material’s optimization: (a) green petroleum coke, (b) N-GLPs
7502, (c) N-GLPs 7504, and (d) N-GLPs 7506.

XRD

The X-ray diffraction profiles of green petroleum coke, N-GLPs 7502, N-GLPs 7504, and N-GLPs
7506 are given in Figure 6. All the XRD diffraction spectrum of N-GLP samples showed two characteristic
peaks at 2θ = 26◦ and 2θ = 44◦, indicating that the crystal structures of N-GLP samples were identical
to that of graphene. In addition, all of the N-GLP samples at 750 ◦C exhibited great peak height and
intensity with narrow difference (Figure 6b–d). Compared with other N-GLP samples, N-GLPs 7506

(Figure 6d) revealed a slightly higher peak intensity. In this case, we concluded that N-GLP samples
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obtained at 750 ◦C contained an excellent crystal structure and increasing the N-doping time would
narrowly improve the material property.
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FT-IR

The FT-IR spectra of green petroleum coke, N-GLPs 7502, N-GLPs 7504, and N-GLPs 7506 are
shown in Figure 7. The N-GLP samples at 750 ◦C with different N-doping times exhibited similar
characteristic bands, while the N-GLPs 7504 and N-GLPs 7506 (Figure 7c,d) showed some differences.
Compared with N-GLPs 7502 (Figure 7b), for the FT-IR spectrum of N-GLPs 7504 (Figure 7c), two main
differences could be identified: (1) the broad band at 753 and 630 cm−1 of N-GLPs 7502 shifted to 700
and 632 cm−1 with increasing N-doping time, and the intensity of these two bands was also lower,
which indicated the decrease in -NH2 bands; and (2) the intensity of the band at 3447 cm−1 was
higher, suggesting the improvement of N-H concentration. The FT-IR spectra also revealed that the
increase in N-doping time would decrease unstable -NH2 bands and increase the concentration of
stable N-H bands.
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BET

The SBET and Vp of the green petroleum coke and N-doped samples of different N-doping times
are listed in Table 2. After extending the N-doping time, the SBET of N-GLPs 7502, N-GLPs 7504,
and N-GLPs 7506 increased to 65.4, 76.9, and 96.6 m2/g, respectively. The Vp of N-GLPs 7502, N-GLPs
7504, and N-GLPs 7506 also rose to 0.055, 0.068, and 0.082 cm3/g, respectively. Compared with green
petroleum coke’s low SBET and Vp parameters, N-GLPs 7506 calcined at 750 ◦C for 6 h could obtain
larger SBET and Vp and thus offer great adsorption efficiency.

Table 2. Surface area and porous volume of the green petroleum coke and N-doped samples.

Sample SBET (m2/g) Vp (cm3/g)

Green petroleum coke 8.0 0.013
N-GLPs 7502 65.4 0.055
N-GLPs 7504 76.9 0.068
N-GLPs 7506 96.6 0.082

XPS

The N 1s XPS spectrum of green petroleum coke and N-GLP samples at different N-doping times is
illustrated in Figure 8. The ratio of pyrrolic N:pyridinic N:graphitic N was 1:2.20:1.68 (overall 6.21 at%),
1:3.51:3.79 (overall 6.37 at%), and 1:2.40:2.81 (overall 7.11 at%) for N-GLPs 7502, N-GLPs 7504, and
N-GLPs 7506, respectively. With increasing N-doping time, the total content of doped nitrogen
for N-GLP samples rose. In addition, the increase in graphitic N indicated that N-GLP samples at
longer N-doping time would become more stable. N-GLPs 7506 (Figure 8d) contained the greatest
nitrogen content and a stable nitrogen composition, thereby having the potential to improve the
adsorption capacity.
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Combining the analysis results of all characterizations, we chose 6 h as the optimal N-doping time.
Therefore, N-GLPs 7506 at 750 ◦C for 6 h was the ideal adsorbent used in further adsorption experiments.
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2.2. Adsorption of BPA on N-GLPs 7506

2.2.1. Effect of Contact Time and Initial BPA Concentration

The effect of contact time on the adsorption of BPA at various BPA concentrations was investigated
at 30 ◦C. As shown in Figure 9, the adsorption capacity of N-GLPs 7506 rose with increasing initial BPA
concentration. Moreover, with increasing contact time, it was observed that the adsorption capacity
of N-GLPs 7506 rose rapidly in the first 10 h and then slowly attained the maximum adsorption
capacity after 48 h, indicating the adsorption equilibrium. Due to the large molecular size of BPA,
it took a long time for BPA molecules to move to the surface of N-GLPs 7506 through Brownian
movement. BPA then entered the adsorbent and was adsorbed under various forces, thus enhancing
the adsorption time [40,41]. In further adsorption studies, based on the above results, 48 h was selected
as the most appropriate contact time to reach the adsorption equilibrium. Pseudo-first-order and
pseudo-second-order kinetic models were adopted to understand the adsorption behavior of N-GLPs
7506 for BPA [42–44]. As shown in Table S1 (Supplementary Materials), the adsorption kinetics of
BPA on N-GLPs 7506 could be better fitted by the pseudo-second-order model (0.9993–1) than the
pseudo-first-order model (0.8343–0.9152), indicating that the adsorption process was controlled by
multiple factors. When the adsorption was far from equilibrium, the adsorption process was governed
by the rate of surface reactions (electrostatic interaction and π-π interaction), and the intraparticle
diffusion became predominant before approaching equilibrium [45,46].
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2.2.2. Effect of pH

As one of the most important adsorption parameters for practical water environmental
remediation, the initial pH of a solution intensively influences the surface physicochemical properties
of adsorbents [46]. As shown in Figure 10, the initial pH of the BPA aqueous solution was varied from 4
to 11 to investigate its effect on BPA removal efficiency. With the initial pH increasing to 8, the removal
efficiency of BPA on N-GLPs 7506 decreased slightly. Then, the removal efficiency decreased rapidly
as the pH further increased. This phenomenon can be attributed to the following: (1) The charge of
the adsorbent and pollutant. To determine the conditions of charge on N-GLPs 7506 layers and BPA
aqueous solution, zeta potential was measured. The zeta potential values of N-GLPs 7506 dispersion
and BPA solution were measured at 25 ◦C in 10−3 mol/L NaCl solution, and the results are presented in
Figure 11. A charge inversion from positive to negative was observed in the N-GLPs 7506 dispersion
with the BPA solution containing a negative charge. At pH = 4–6, the N-GLPs 7506 layers contained
high positive charge density. Therefore, strong electrostatic attraction existed between N-GLPs 7506
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and BPA. Correspondingly, the removal efficiency of BPA showed a high level at pH = 4–6. When
the positively charged N-GLPs 7506 interacted with electronegative pollutants, it possessed enhanced
electrostatic attraction for removing BPA in aqueous solution. With the pH further increasing, there
were more negatively charged sites on the surface of adsorbents because of the available hydroxyl
ions [47]. In this way, electrostatic repulsion between the negatively charged BPA and N-GLPs 7506

decreased the adsorption capacity. (2) The pKa of BPA (9.5), which also affected removal efficiency [48].
When the pH was less than the pKa, BPA was present in its molecular form, thus containing a lower
negative charge. However, when the pH of the solution was higher than the pKa, BPA was present in
the form of the phenolate ion. With the hydroxyl ion increasing, BPA was highly negatively charged.
Moreover, the number of negatively charged sites on the N-GLPs 7506 also rose. The electrostatic
repulsion between BPA and N-GLPs 7506 induced the decrease in adsorption capacity and removal
efficiency. The equilibrium pH for BPA adsorption was also measured. As shown in Figure 10, when the
equilibrium pH was lower, the removal efficiency of BPA increased. In contrast, when the equilibrium
pH was higher, the adsorption of BPA was negatively influenced, which corresponds to the conclusions
from the analysis of the initial pH. Combining the removal efficiency and the feasibility in practical
application, we chose pH of 6 as the optimal adsorption condition.
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2.2.3. Effect of Temperature

Temperature exerts a major effect on the adsorption capacity of BPA. The effect of temperature on
the adsorption of BPA with N-GLPs 7506 was investigated in a temperature range from 10 to 60 ◦C at
constant pH (6.0) and contact time (48 h). As shown in Figure 12, the removal efficiency of BPA on
N-GLPs 7506 rose with increasing temperature, indicating that the adsorption of BPA onto N-GLPs
7506 was endothermic. In addition, Brownian movement of BPA molecules increased with rising
temperature, which resulted in an increase in the rate of mass transfer from the liquid phase to the
solid/liquid phase [49]. BPA would have been attached on the surface of N-GLPs 7506 and led to
further interaction when they became closer. The viscosity of bulk also decreased with increasing
temperature, thus augmenting the mobility of BPA in aqueous solution. Moreover, the active sites on
N-GLPs 7506 contained intensive electrostatic attraction with BPA at higher temperatures [47]. Overall,
the increase in temperature enhanced the interaction between BPA and N-GLPs 7506 and modified the
adsorption condition. Considering removal efficiency and economic feasibility, we chose 50 ◦C as the
ideal adsorption temperature.Molecules 2020, 25, x 12 of 20 
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Figure 12. Effect of temperature on removal efficiency (experimental conditions: adsorbent
dose = 7.0 g/L, initial concentration = 10 mg/L, contact time = 48 h, pH = 6.0).

2.2.4. BPA Adsorption Isotherms and Thermodynamics Studies

It is important to identify and understand the adsorption mechanisms and the interactions between
BPA and the adsorbents through equilibrium adsorption isotherms [50]. The adsorption isotherms of
BPA on N-GLPs 7506 at different temperatures are shown in Figure S1. The Langmuir and Freundlich
isotherms were utilized to analyze the equilibrium adsorption data. The equations are expressed as
follows [42,51–53]:

Langmuir isotherm : qe =
qmaxKLce

(1 + KLce)
(1)

Freundlich isotherm : qe = KFc1/n
e (2)

where qe is the equilibrium adsorption concentration of BPA (mg/g); ce is the equilibrium BPA
concentration in aqueous solution (mg/L); qmax is the maximum adsorption capacity (mg/g); KL is the
Langmuir isotherm constant (L/mg); and KF and n are the Freundlich isotherm constant and adsorption
capacity parameter, respectively.

Table S2 shows the values of KL, qm, KF, and n and the correlation coefficients for Langmuir and
Freundlich. Compared with the Freundlich model (0.9580–0.9376), the Langmuir model (0.9982–0.9922)
contained much better correlation coefficients, indicating that the adsorption of BPA on N-GLPs 7506
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was inclined to monolayer adsorption on homogeneous adsorbent surfaces. Furthermore, with rising
temperature, the increase in qm demonstrated that adsorption was facilitated.

The thermodynamic parameters were next evaluated by the following equations to confirm the
conditions of the adsorption process [52,53]:

KC =
qe

ce
(3)

∆G◦ = −RT ln KC (4)

∆G◦ = ∆H◦ − T∆S◦ (5)

ln KC = −
∆H◦

RT
+

∆S◦

R
(6)

where KC is the adsorption equilibrium constant, calculated by qe and ce at initial concentration =

10 mg/L; R is the gas constant (8.314 J·mol−1 K−1); and T is the temperature in Kelvin.
As shown in Table S3, the negative values of ∆G◦ (−0.97 to −7.13 KJ/mol) suggested a spontaneous

adsorption process, and the decrease in values with increasing temperature indicated that adsorption
was promoted at high temperatures. The positive value of ∆H◦ (42.01 KJ/mol) also suggested that
the adsorption process was endothermic, which led to the increase in adsorption capacity at higher
temperatures. Moreover, the positive value of ∆S◦ (150.41 J·mol−1

·K−1) showed an increase in the
number of species and randomness at the N-GLPs 7506/water interface [54].

2.2.5. Adsorption Mechanism

The adsorption mechanism of BPA onto N-GLPs 7506 was further clarified with the structural
analyses of N-GLPs 7506 and adsorption experiment. As shown in Figure 13, with the structural
features of nitrogen-doped graphene-like plates and the adsorption isotherms, the following three
main interactions could be related to the adsorption of BPA on N-GLPs 7506: (1) The strong
electrostatic interaction between BPA and the N-GLPs 7506. Electrostatic attraction significantly
promoted the adsorption process [55]. When interacting with negatively charged BPA in aqueous
solution, the N-GLPs 7506 with positive charge possessed enhanced electrostatic attraction for
removing pollutants, resulting in higher removal efficiency. (2) The hydrogen bonding between
the oxygen-containing groups contained in both BPA and N-GLPs 7506. With the FT-IR result
(Figure 7d), some oxygen-containing groups, such as hydroxyl groups, remained in N-GLPs 7506. In
aqueous solution, the hydroxyl groups of BPA and adsorbent will form hydrogen bonds to increase
the adsorption ability. (3) The π-π interaction that might exist between the N-GLPs 7506 planes and
the benzene rings of BPA. N-GLPs 7506 possessed structural units that were similar to benzene rings
through calcination and nitrogen doping. Therefore, π-π electron coupling might exist between the π

electrons of benzene rings on BPA and N-GLPs 7506, thus forming a π-π interaction [56]. With all of
these strong interactions, N-GLPs 7506 obtained a great adsorption capacity of BPA.

2.2.6. Desorption and Regeneration of N-GLPs 7506

In practical applications of pollutant removal, high adsorption capacity and good recyclability are
requisite [57]. In this way, it is important to test the regeneration performance of N-GLPs 7506 in order
to evaluate the economic feasibility in practical BPA removal applications. The regeneration of N-GLPs
7506 was determined using a simple solvent (ethyl/water: 4/1, v/v) washing method under ultrasound
(US) irradiation [5]. The separation of N-GLPs 7506 and liquid phase was carried out by centrifuging at
9000 rpm for 15 min and then stoved in an oven at 80 ◦C for 30 min. The resulting N-GLPs 7506 sample
was used again for the next recycling experiment. Adsorption-desorption experiments were repeated
for six cycles in this study. Figure 14 shows that the removal efficiencies of BPA were decreased after
each adsorption cycle. This phenomenon might have resulted from the occupation of the adsorption
sites at the surface of N-GLPs 7506. After six adsorption-desorption cycles, the removal efficiency of
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BPA decreased from 92.0% to 80.4%, which is still an appropriate efficiency for industrial application.
Therefore, according to the regeneration study, it was concluded that N-GLPs 7506 possess great
regeneration ability and can be used in practical application for the treatment of BPA in wastewater.
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A comparison was made of other carbonaceous adsorbents previously reported in the literature
(Table 3) [58–61]. Although the removal efficiency of N-GLPs 7506 is narrowly lower than that of
activated carbon, the preparation of N-GLPs 7506 is easier and more cost-effective because its raw
material is green petroleum coke—a kind of potential pollutant and by-product. Besides, N-GLPs 7506

also contains great recyclability, which can further reduce the cost. The contact time for N-GLPs 7506 is
also smaller than that of activated carbon. Considering the zeta potential of the adsorbents, the high
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affinity of N-GLPs 7506 to BPA is even more obvious. Therefore, N-GLPs 7506 is an excellent BPA
absorbent in wastewater treatment.

Table 3. Adsorption capacity of BPA by N-GLPs 7506 in comparison to other literature values.

Adsorbent Pollutant pH Contact
Time (h)

C0
(mg/L)

Removal
Efficiency (%) Reference

Activated carbon BPA - 60 10 94.4 [58]
Porous carbon BPA - 24 5 90.0 [59]

CNTs BPA 6.0 24 10 71.8 [60]
Nitrogen-doped graphene BPA 6.0 12 10 90.5 [61]

N-GLPs 7506 BPA 6.0 48 10 92.0 This Work
N-GLPs 7506 BPA 6.0 48 5 98.3 This Work

3. Materials and Methods

3.1. Materials

Green petroleum coke with 93% carbon content was purchased from Chambroad Holding Group
Co., Ltd. (Shandong, China). H2SO4 (98%) and NaOH with high chemical purity were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Melamine was purchased from
Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). Bisphenol A was purchased from Macklin
Biochemical Co., Ltd. (Shanghai, China). Ethanol was purchased from Fuyu Fine Chemical Co., Ltd.
(Tianjin, China). The latter three chemicals were all of analytical grade. Deionized water (resistivity of
18.2 MΩ cm−1) was achieved using an ultrapure water purifier system (Millipore, Billerica, MA, USA).
All chemicals and materials were used without further purification.

3.2. Characterization

SEM (JSM-6700F, JEOL, Tokyo, Japan) was used to analyze the structural features and surface
morphologies of the green petroleum coke, petroleum coke, and nitrogen-doped graphene-like plates.
The acceleration voltage of SEM was 3.0 KV, and the mode of operation was SE. An energy-dispersive
X-ray spectroscopy (EDX) instrument was attached to the JSM-6700F to investigate chemical composition.
XRD was conducted on a diffractometer (Rigaku D-Max 2200, Tokyo, Japan) to characterize the structural
features of samples at a scanning rate of 2◦/min in 2θ range of 10–80◦. The XRD data was analyzed
by MDI Jade 6. FT-IR (Vector 22, Bruker AXS, Co., Ltd., Karlsruhe, Germany) of the samples was
performed using KBr pellets in reflectance mode from 400 to 4000 cm−1 with a resolution of 2 cm−1 to
examine the functional groups. A surface area and porosity analyzer (ASAP, 2020 HD88, Micromeritics,
Norcross, GA, USA) was conducted to analyze the pore structure of samples. The BET specific
surface area was calculated with multipoint adsorption data in relative pressure (P/P0) between 0.05
and 0.1, and the Vp was obtained at P/P0 = 0.998. XPS was performed to determine the elementary
characteristics on the X-ray photoelectron spectrometer (Thermo ESCALAB 250XI, Thermo Fisher
Scientific, Waltham, MA, USA). The source gun type was Al K alpha, and the pass energy was 100.0 eV
for the XPS survey spectra and 30.0 eV for the C (1s), O (1s), N (1s) and S (2p) spectra. The XPS data was
analyzed by XPS Peak 4.1. The zeta potential of the samples was measured by a ZetaPALS (Zetasizer
NanoZS, Malvern, UK). All the figures were drawn by Origin 9.1 and Photoshop 2018.

3.3. Preparation of Petroleum Coke

Green petroleum coke was pulverized by a high-speed pulverizer and passed through a 200-mesh
screen to prepare green petroleum coke powder within 75 µm of granularity. Green petroleum
coke powder in a porcelain boat with a lid was then placed into a corundum tube with a flow of
nitrogen atmosphere and heated to 200 ◦C at a rate of 10 ◦C/min and directly to 800 ◦C at a rate of
5 ◦C/min in a tubular furnace [32]. After the temperature was maintained for 6 h, the furnace was
slowly cooled to room temperature, and the petroleum coke was directly collected from the porcelain
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boat. Compared to green petroleum coke, obvious changes occurred in petroleum coke in terms of
morphology, microstructure, and particle size (Figure S2a,b). EDX quantitative microanalysis indicated
the presence of C, N, O, and S in the green petroleum coke (Figure S3a). After calcination, the elemental
content of N and O decreased slightly in petroleum coke, while S disappeared in the EDX spectrum of
petroleum coke (Figure S3b). Combining the XPS survey spectra and C(1s), O(1s), and S(2p) spectra of
green petroleum coke and petroleum coke (Figure S4) as well as the XPS atomic concentration report
(Table S4), the S in green petroleum coke was successfully removed.

3.4. Preparation of Nitrogen-Doped Graphene-Like Plates

Nitrogen-doped graphene-like plates were synthesized by calcining a mixture of petroleum coke
and melamine powder in a tubular furnace. Melamine powder (2.0 g) was added to 40 mL ethanol.
After 30 min of stirring at 70 rpm at 60 ◦C, petroleum coke powder (2.0 g) was continuously added into
the mixture, with stirring maintained for an additional 30 min. The mixture was then stoved in an
oven at 80 ◦C for 30 min. The obtained grey-color powder mixture was loaded on a porcelain boat
and inserted into a quartz tube of a tubular furnace for thermal annealing [32,38,62]. The N-doped
graphene-like plate samples were obtained by annealing the mixture at 350–750 ◦C for 2–6 h under
N2 flow.

3.5. Adsorption Experiments

The adsorption experiment of bisphenol A was carried out with batch techniques. The adsorbent
(7.0 g/L) was added into BPA solution (10–100 mg/L) and mixed uniformly by shaking at 150 rpm
for 48 h at different temperatures (10–60 ◦C). NaOH and HCl were utilized to adjust the pH to 4–11.
After the adsorption process, the mixture was centrifuged at 9500 rpm for 15 min to separate the
supernatants. The concentration of BPA was measured with a UV/vis spectrometer (TU-1810 PC,
Purkinje, Beijing, China) and calculated by absorbance at 276 nm. The removal efficiency (R) for BPA
was calculated as follows:

R = (c0 − ct)/c0 × 100% (7)

where c0 and ct (mg/L) are concentration of pollutants at initial and specific adsorption times,
respectively. The removal amount (Qt) of pollutants by samples was calculated as follows:

Qt = (c0 − ct)V/W (8)

where V (L) is the volume of the solution, and W (g) is the mass of the catalysts. The adsorption
isotherms were used to analyze the adsorption mechanisms of BPA onto N-doped graphene-like plates.
The desorption and regeneration of the N-GLPs were also examined to figure out the recycling ability.

4. Conclusions

In summary, N-GLP samples were successfully synthesized via nitrogen doping and thermal
annealing, which offered a potential low-cost and efficient adsorbent to treat BPA in aqueous solution.
Green petroleum coke was used as a raw material due to advantages such as its abundance as waste
in the oil-refining process and inexpensiveness. N-GLPs 7506 obtained by calcinating melamine and
petroleum coke at 750 ◦C for 6 h exhibited a graphene-like structure according to SEM images and XRD
analysis. Moreover, FT-IR analysis and XPS analysis of N-GLPs 7506 confirmed successful nitrogen
doping. BET analysis demonstrated that nitrogen doping and calcination could increase the specific
surface area and pore volume of the adsorbent in order to augment adsorption capacity. The zeta
potentials of adsorbate and adsorbent indicated strong electrostatic attraction between positive N-GLPs
7506 and negative BPA, which was the main interaction enhancing the adsorption of more BPA onto
the surface of N-GLPs 7506. Batch adsorption experiments revealed that the removal of BPA depended
on contact time, initial pH, and temperature. Furthermore, adsorption experiments showed that
N-GLPs 7506 possessed high adsorption capacity for BPA via electrostatic attraction, hydrogen bonding,
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and π-π interaction. Thermodynamic studies also revealed that the adsorption process was feasible,
spontaneous, endothermic, and controlled by a physisorption process. Therefore, it is suggested that
N-GLPs 7506 is a promising adsorbent to remove BPA in wastewater.

Supplementary Materials: The following are available online. Figure S1: Adsorption isotherms of BPA on
N-GLPs 7506 (experimental conditions: adsorbent dose = 7.0 g/L, initial concentration = 10–200 mg/L, contact
time = 48 h, pH = 6.0, T = 10–50 ◦C); Figure S2: SEM images of (a) green petroleum coke and (b) petroleum
coke; Figure S3: EDX analysis of (a) green petroleum coke and (b) petroleum coke; Figure S4: XPS survey (1) and
high-resolution C 1 s (2), O 1 s (3), S 2p (4) spectra of (a) green petroleum coke and (b) petroleum coke; Table
S1: Pseudo-first-order and pseudo-second-order kinetic parameters for the adsorption of BPA onto N-GLPs 7506
at 303 K; Table S2: Langmuir and Freundlich adsorption isotherm parameters for the adsorption of BPA onto
N-GLPs 7506; Table S3: Thermodynamic parameters for the adsorption of BPA onto N-GLPs 7506; Table S4: XPS
atomic concentration report of green petroleum coke and petroleum coke.
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