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Abstract: Hydrogen can penetrate reversibly a number of metals, occupy the interstitial sites and
cause large expansion of the crystal lattice. The question discussed here is whether the kinetics of the
structural response matches hydrogen absorption. We show that thin Pd and CoPd films exposed to a
relatively rich hydrogen atmosphere (4% H2) inflate irreversibly, demonstrate the controllable shape
memory, and duration of the process can be of orders of magnitude longer than hydrogen absorption.
The dynamics of the out-of-equilibrium plastic creep are well described by the Avrami-type model of
the nucleation and lateral domain wall expansion of the swelled sites.
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1. Introduction

An anticipated transition to hydrogen as the main ecologically clean mobile energy source [1,2]
requires profound knowledge and understanding of the hydrogen–solid matter interactions for the
treatment, storage and monitoring tasks. Hydrogen can penetrate reversibly a number of metals (Pd,
Nb, Ti, Mg, V, etc.), occupy the interstitial sites and cause a large expansion of the crystal lattice [3].
The question that remains surprisingly open after decades of research is whether the kinetics of
hydrogen absorption and that of the structural response match each other. Coupling between the
hydrogen migration and the lattice expansion is an important element in understanding the processes
of hydrogenation and of the theoretical modelling of hydrogen diffusivity [4,5]. Despite an obvious
importance of this assumption, there is little evidence on the time-dependent correlation between the
two processes, mainly because of an experimental challenge to monitor each of them independently.
Hydrogen atoms are invisible by the majority of lattice characterization tools, excluding neutron
scattering [6,7]. On the other hand, the techniques used to study hydrogen diffusion [8] do not provide
independent information on the structural evolution. In the absence of verification, the structural
and strain time-dependent data are frequently taken as the information source on hydrogen diffusion,
hydride phase transformations and their spatial distribution [9–11]. The assumption of the kinetics
coupling is not obvious. Multiple out-of-equilibrium processes, where relaxation from a metastable
state lags behind the state buildup, are known. Here, we demonstrate that such an out-of equilibrium
process can occur in hydrogenated materials and that the kinetics of the structural response to the
stress generated by hydrogen accommodation can differ significantly from that of hydrogen diffusion.

For the reasons clarified in the following, we studied two high-resistivity hydrogen-absorbing
systems: (1) thin films of palladium, where resistivity is enhanced by surface scattering and fractal
topology, and (2) CoPd alloys, where resistivity increases with Co concentration. Ferromagnetic CoPd
alloys and multilayers attracted attention recently as materials for high-sensitivity magnetic detection
of hydrogen using ferromagnetic resonance [12] and the extraordinary Hall effect [13,14].
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2. Experimental

Experimental disentanglement between hydride formation and the lattice response has been
achieved by a simple electric resistance measurement. Absorption of hydrogen increases the resistivity
of bulk Pd [15–18] and Pd-rich alloys [19] by a value ∆ρH that depends on the concentration of the
absorbed hydrogen and the composition and structure of the material. ∆ρH is few µΩ cm in the Pd
β-hydride state at room temperature [20]. Another contribution to the resistance change, overlooked in
previous studies, is due to the expansion of thin films thickness. Thin films grown on rigid substrates
cannot expand laterally within the film plane due to adhesion to the surface. Suppression of the
in-plane expansion is equivalent to application of the in-plane compressive stress, leading to the
out-of-plane expansion enhanced by Poisson’s effect. The out-of-plane elastic expansion of the [111]
textured Pd film is about 12.6% when the atomic ratio between Pd and the absorbed hydrogen is 1 [21].
The change in resistivity between the hydrogen-free state with resistance:

R0 =
ρ0

T0
·

l
w

(1)

and the hydrogenated state with:

R1 =
ρ1

T1
·

l
w

(2)

is:
∆ρ =

1
1 + γ

( ∆ρH − γρ0) (3)

where: ρ0 is the initial resistivity, T0 is the nominal thickness, and l and w are the length and width,
respectively, of the film, that do not change during hydrogenation because of adhesion to the substrate.
Thickness of the hydrogenated film is: T1 = T0 + ∆T = (1 + γ)T0, where γ = ∆T/T0 is the thickness
expansion coefficient (strain). For simplicity, we assume that resistivity follows Matthiessen’s rule:
ρ1 = ρ0 + ∆ρH, and the initial ρ0 is not affected by strain.

The geometrical (thickness expansion) term γρ0 depends on the initial resistivity of the material.
For thick Pd films with a resistivity of 10–15 µΩ cm, depending on the microstructure and the hydride
term ∆ρH ≈ 6 µΩ cm [20], the negative geometrical contribution is relatively small. However, in high
resistivity films, where ∆ρH � γρ0, the geometrical term is dominant, the overall resistance response
to hydrogen loading is negative, and ∆ρ ∝ −ρ0. Reversal of the resistance response polarity from
positive to negative at the critical resistivity threshold of about 50 µΩ cm in 4% H2 atmosphere has
been demonstrated in thin Pd, thick PdSiO2 granular mixtures and CoPd alloy films with variable
resistivity [22]. Earlier observations of the reduced resistance in the hydrogenated state were attributed
to the lateral swelling of disconnected Pd clusters [23–27], contribution of hydrogen electrons to the
conducting band [28], and even to the onset of room temperature superconductivity [29]. It seems,
however, that inflation of a film thickness provides a simple and consistent explanation of the observed
effects in both continuous and discontinuous hydrogenated films [22]. We adapt this interpretation
and, in the following, distinguish between hydride formation and lattice expansion by the respectively
positive and negative terms in the resistance response to hydrogen loading. The distinction among
them is clear when the reversibility and the time dependence of the two processes are different.

The samples used in this study were 3 nm to 15 nm thick polycrystalline Pd and CoxPd100-x alloy
films with lateral dimensions 5 × 5 mm grown by the radio-frequency (rf ) magnetron sputtering onto
room-temperature glass substrates. Binary CoxPd100-x films with Co atomic concentrations in the range
of 0 ≤ x ≤ 80 were co-sputtered from separate targets (1.3” diameter and 2 mm thick). Co and Pd were
soluble and form an equilibrium face-centered cubic (fcc) solid solution phase at all compositions during
the room temperature deposition. No post-deposition annealing was done. The desired composition
and thickness were controlled by the relative sputtering rates in the range of 0.01–0.1 nm/s with the
respective rf power between 0 and 85 W and tested by EDS (energy-dispersive X-ray spectroscopy)
measurements. Resistance was measured using the Van der Pauw protocol. Electrical contacts were
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attached by bonding Al/Si wires. The setup was equipped with a gas-control chamber, which enabled
performing measurements at variable hydrogen concentrations. The hydrogen-induced resistance
changes were extracted from measurements performed in dry nitrogen and in 4% H2/N2 mixture gas at
1 atm pressure at room temperature. The 15 nm thick and thinner Pd films were below the delamination
thickness threshold [30] and were stable under repeated hydrogenation cycles. No buckling was
observed in the CoPd samples at all tested thicknesses. The 15 nm thick films formed a continuous
metallic layer. The 3 nm films had inhomogeneous meandric morphology with continuous metallic
paths across the sample [22].

3. Results and Discussion

Figure 1 presents the resistivity response to a sequence of hydrogenation and dehydrogenation
cycles (sequential exposure to 1 atm 4% H2/N2 gaseous mixture followed by N2) of four 15 nm thick
samples: pure Pd (a) and three CoxPd100-x alloys with x = 15 (b), x = 30 (c) and x = 50 (d). The starting
resistivity in N2 is the lowest in Pd film (22 µΩ cm) and grows gradually in alloy samples with
increasing Co content to 108 µΩ cm in Co50Pd50. The first exposure to hydrogen varies qualitatively
with increasing Co content and initial resistivity; resistance increases sharply and saturates in the
low resistivity Pd (a), increases sharply and decreases in (b), and decreases in samples (c) and (d)
with higher resistivity (ρ0 > 50 µΩ cm). Removal of hydrogen is similar in all samples: resistance
drops and saturates in N2. Starting from the second–third cycle the resistance response becomes
reproducible and similar in all samples: resistance increases sharply when exposed to hydrogen
and drops when hydrogen is removed (it will become clear in the following that reproducibility is
achieved after a long-enough exposure to hydrogen and not due to the number of cycles). The final
resistance in N2 is lower than the starting one in all samples. The entire sequence is a composition
of reproducible rapid increase/decrease responses to the loading/unloading of hydrogen superposed
with an irreversible gradual reduction in resistivity. Following the model above, the sequence can be
interpreted as a superposition of reversible hydride formation-removal signals on the background of
irreversible thickness inflation, while the relative magnitude and time duration of the latter increases
with Co content. The overall resistance response of low resistivity Pd film (a) is dominated by the
hydrogenation scattering contribution, while that of the high resistivity Co50Pd50 sample (d) by the
irreversible thickness expansion.
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Figure 1. Resistivity response to a sequence of hydrogenation and dehydrogenation cycles (sequential 
exposure to a 1 atm 4% H2/N2 gaseous mixture followed by N2) of four 15 nm thick samples: pure Pd 
(a) and three CoxPd100-x alloys with x = 15 (b), x = 30 (c) and x = 50 (d). The initial atmosphere is N2. 

The difference in the kinetics of hydride formation and thickness inflation in pure Pd is 
demonstrated in Figure 2 for two identical 3 nm thick samples with a resistivity of 750 μΩ cm (this 
high resistivity is due to the vicinity to the conductance percolation threshold). The first sample was 
exposed continuously to hydrogen (solid line), while the second to a sequence of hydrogen loadings 
and removals (open circles). The immediate resistance increase in the hydrogen filling and drop in 
the respective removal (sample 2), interpreted as the hydride scattering term, indicate rapid 
hydrogen diffusion into and out of the metal. The sequence of the hydride terms is superposed with 
a slowly decreasing background. The irreversible reduction in resistance is equal in both samples; 
therefore, the final thickness expansions are identical. Two points are notable: (1) the lattice response 
is much slower than the hydrogen diffusion in and out of the material; (2) the lattice expansion is 
frozen when hydrogen is extracted (resistance is constant in N2), and the process of expansion is 
recovered from the same state when the hydride is recovered (resistance increases on reloading to 
the same value prior to hydrogen extraction. See Figure 2). Thus, the system demonstrates the shape 
memory. It is worth noting that partial thickness recovery is observed when films are flushed in air 
instead of nitrogen. 

(c) (d)

Figure 1. Resistivity response to a sequence of hydrogenation and dehydrogenation cycles (sequential
exposure to a 1 atm 4% H2/N2 gaseous mixture followed by N2) of four 15 nm thick samples: pure Pd
(a) and three CoxPd100-x alloys with x = 15 (b), x = 30 (c) and x = 50 (d). The initial atmosphere is N2.

The difference in the kinetics of hydride formation and thickness inflation in pure Pd is demonstrated
in Figure 2 for two identical 3 nm thick samples with a resistivity of 750 µΩ cm (this high resistivity is due
to the vicinity to the conductance percolation threshold). The first sample was exposed continuously to
hydrogen (solid line), while the second to a sequence of hydrogen loadings and removals (open circles).
The immediate resistance increase in the hydrogen filling and drop in the respective removal (sample 2),
interpreted as the hydride scattering term, indicate rapid hydrogen diffusion into and out of the metal.
The sequence of the hydride terms is superposed with a slowly decreasing background. The irreversible
reduction in resistance is equal in both samples; therefore, the final thickness expansions are identical.
Two points are notable: (1) the lattice response is much slower than the hydrogen diffusion in and out of
the material; (2) the lattice expansion is frozen when hydrogen is extracted (resistance is constant in N2),
and the process of expansion is recovered from the same state when the hydride is recovered (resistance
increases on reloading to the same value prior to hydrogen extraction. See Figure 2). Thus, the system
demonstrates the shape memory. It is worth noting that partial thickness recovery is observed when films
are flushed in air instead of nitrogen.
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The time dependence of the normalized resistance changes due to hydride formation ∆RH
∆RH,max

and

thickness expansion ∆RT
∆RT,max

are shown in Figure 3a,b, respectively, for a number of 15 nm thick CoPd
films with different Co concentrations, including a pure Pd film. ∆RH(T),max are the largest saturated
values of the respective changes for each sample. Figure 3c presents the effective time of each process
tH,50 and tT,50 defined as the time at which the respective resistance term changed by half. Hydride
formation is accomplished within a few tens to hundred seconds in all samples. In alloys, the process
of hydride formation is quicker with increasing Co content: t50 = 60 s in Co10Pd90 down to a few s
in Co40Pd60. The increase in the diffusion rate in diluted Pd alloys is consistent with that reported
for NiPd alloys [31]. The thickness expansion time scale is entirely different: from 10 s in the x = 20
sample to 105 s in the x = 80 one. tT,50 can be approximated by: tT,50 ∝ ex (solid line in Figure 3c), i.e., it
increases exponentially with the concentration of Co.

The shape of the time-dependent ∆RT(t) (Figure 3b) is informative. At low Co content, ∆RT

drops immediately with exposure to hydrogen. The creep rate dRT/dt is intuitively clear: it is at its
maximum at the beginning when stress is the highest, and decreases with time when stress is released
gradually by plastic deformations. Co-rich samples demonstrate a different behavior: an onset of
expansion occurs after a long delay and the relaxation curve has a characteristic S-shape (see Figure 1d
in a linear time scale). Such dynamics can be understood in the framework of the Avrami or the
Johnson–Mehl–Avrami–Kolmogorov (JMAK) model [32–37], which was first formulated to describe
kinetics of isothermal recrystallization of metals. The transformation proceeds by nucleation and
growth of a new phase, and can be summed up by a simple formula: V(t) = 1− e−Ve(t), where V is the
fraction of the transformed phase and Ve is the so-called extended volume of the transformed phase,
that is, the volume the transformed phase would acquire if the overlap among the growing nuclei was
disregarded. In general, the model can describe any non-coherent transition from a metastable state to
the lowest energy equilibrium state by a sequence of local transition events occurring when energy
barriers prevent an immediate global transition to the equilibrium. The phenomenology appeared
to be quite universal and the model was used, among others, in describing the kinetics of thin film
growth [38], phase transition in ferroelectrics [39,40], magnetization reversal in ferromagnets [41–43],
distribution of infections in networks [44] and evolution of religions [45]. In ferromagnets, it was used
to describe the reversal of magnetization in the magnetized films subjected to an external magnetic field
antiparallel to the magnetization vector. The equilibrium state is the one in which the magnetization is
oriented parallel to the applied field, and the metastable one is when the magnetization and field are
antiparallel. If the field value is smaller than required to overcome the magnetic anisotropy energy
barrier, the magnetization reverses not by a coherent rotation in the entire volume but rather by a
sequence of distributed non-coherent local events. The Fatuzzo–Labrune theory [39,41] describes the
process by two microscopic phenomena: nucleation of new domains with reversed magnetization, and
their expansion by domain wall propagation. In the case of the hydrogenated films, the metastable
state can be created when hydrogen atoms diffuse into the material, occupy the interstitial states, and
generate an internal pressure on the lattice, while an immediate expansion is prevented by either the
thermodynamic constrains, such as the phase transition between the α and β states, or/and by the
structural ones, such as adhesion to a substrate. In analogy with the Fatuzzo–Labrune theory [39,41],
we model the process of thickness deformation by nucleation of new “swelled” domains and their
lateral expansion due to domain wall propagation. These are described by the probability of nucleation
per unit time pn and by the effective domain wall velocity v. The entire process can be characterized by
a dimensionless parameter k defined as:

k =
v

pnrn
(4)
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in which rn is the radius of a nucleation site. Temporal variation of resistance is analytically simple in
two limiting cases: one in which the nucleation rate dominates and k� 1, and another in which the
domain wall propagation is dominant and k� 1:

∆RT

∆RT,max
=

 exp
[
−

k−2(pnt)3

3

]
− 1, k� 1

exp(−pnt) − 1, k� 1

 (5)
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The Fatuzzo–Labrune model does not account for the final stage of the process when the last
stressed regions are annihilated. This final stage can be fitted by an additional exponential term
exp(−pat) where pa is the site annihilation probability [42,43]. Dimensions of the nucleation and
annihilation sites are assumed to be similar. The entire creep process in terms of the varying effective
thickness ∆T(t) is given by:

∆T(t)
∆Tmax

= 1−
∆RT(t)
∆RT,max

=

 1−
{
Aexp

[
−

k−2(t/τn)
3

3

]
+ B exp(−t/τa)

}
, k� 1

1− [A exp(−t/τn) + B exp(−t/τa)], k� 1

 (6)

with A + B = 1,

where τn = 1/pn and τa = 1/pa are the effective relaxation and annihilation time, respectively.
Figure 4 presents a convincing fitting of Equation (6) (solid lines) to the time-dependent data

(symbols) for the 3 nm thick Pd film (a) and two 15 nm alloy samples: Co35Pd65 (b) and Co70Pd30 (c).
The first two are well fitted in the k� 1 limit (Pd: τn = 5 × 102 s and τa = 8 × 103 s; Co35Pd65: τn = 1 ×
102 s and τa = 1 × 103 s), while Co70Pd30 fits the k� 1 one (k = 95, τn = 6 × 104 s and τa = 1 × 105 s), in
which the nucleation is rare and the incubation time is long compared with lateral expansion of the
nucleated domains.

Molecules 2020, 25, x FOR PEER REVIEW 8 of 11 

with 𝐴 + 𝐵 = 1,   

where 𝜏 =  1 𝑝⁄  and 𝜏 =  1 𝑝⁄  are the effective relaxation and annihilation time, respectively.  
Figure 4 presents a convincing fitting of Equation 6) (solid lines) to the time-dependent data 

(symbols) for the 3 nm thick Pd film (a) and two 15 nm alloy samples: Co35Pd65 (b) and Co70Pd30 (c). 
The first two are well fitted in the 𝑘 ≪ 1 limit (Pd: 𝜏 = 5 × 102 s and 𝜏 = 8 × 103 s; Co35Pd65: 𝜏 = 1 × 
102 s and 𝜏 = 1 × 103 s), while Co70Pd30 fits the 𝑘 ≫ 1 one (𝑘 = 95, 𝜏 = 6 × 104 s and 𝜏 = 1 × 105 s), in 
which the nucleation is rare and the incubation time is long compared with lateral expansion of the 
nucleated domains.  

101 102 103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0 (a)  Pd (3nm)
(b)  Co35Pd65

(c)  Co70Pd30

ΔT
/Δ

T m
ax

Time (sec)

k<<1 k<<1 k>>1

(b) (a) (c)

 
Figure 4. Normalized change of thickness as a function of the hydrogen exposure time of 3 nm thick 
Pd (a), 15 nm thick Co35Pd65 (b) and 15 nm thick Co70Pd30 (c) films. Symbols represent the experimental 
data and lines are fitted by Equation (3). Samples (a) and (b) were fitted in the 𝑘 ≪ 1 limit and sample 
(c) in the 𝑘 ≫ 1 one. 

The conclusions of this work are based on a given interpretation of the resistance data. 
Credibility of the interpretation is supported by the results obtained by other techniques reported in 
the literature. Irreversible changes in the crystalline structure and evidence of plastic out-of-plane 
expansion in thin Pd films during the β-phase formation were found by XRD [21,46,47] and 
microcantilever [48] measurements. Similar irreversible expansion of thickness was also observed in 
other hydrogenated metals: Nb films [49], Mg-Y, Mg-Ni [50] and PdAg [51] alloys. Exponential time-
dependent thickness swelling was found in Nb films exposed to hydrogen by the scanning tunneling 
microscopy (STM) measurements, while the time scale exceeded by far the values expected for the 
hydrogen diffusion time [49]. The divergence of the plastic deformation time in Co-rich samples is 
consistent with the superior creep stability of fcc Co-based superalloys [52]. 

To summarize, the kinetics of hydrogen penetration into metals can differ significantly from the 
respective lattice response. Hydrogenation of Pd and CoPd films in 4% H2/N2 atmosphere creates an 
out-of-equilibrium state in which stress is built up rapidly with hydrogen absorption and is released 
by a slow plastic thickness growth. Expansion of thickness is irreversible. The creep can be frozen by 
removal of hydrogen and restarted from the frozen state by hydrogen reloading. Thus, the material 
demonstrates the shape memory. The dynamics of the creep can be described by the Avrami-type 
model with the nucleation of isolated swelled sites and lateral domain wall expansion. The nucleation 
rate slows down in Co-rich alloys, such that an effective thickness inflation can occur 30 h after the 
exposure to hydrogen and five orders of magnitude slower than the gas diffusion time.  
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Figure 4. Normalized change of thickness as a function of the hydrogen exposure time of 3 nm thick Pd
(a), 15 nm thick Co35Pd65 (b) and 15 nm thick Co70Pd30 (c) films. Symbols represent the experimental
data and lines are fitted by Equation (3). Samples (a) and (b) were fitted in the k� 1 limit and sample
(c) in the k� 1 one.

The conclusions of this work are based on a given interpretation of the resistance data. Credibility
of the interpretation is supported by the results obtained by other techniques reported in the literature.
Irreversible changes in the crystalline structure and evidence of plastic out-of-plane expansion in
thin Pd films during the β-phase formation were found by XRD [21,46,47] and microcantilever [48]
measurements. Similar irreversible expansion of thickness was also observed in other hydrogenated
metals: Nb films [49], Mg-Y, Mg-Ni [50] and PdAg [51] alloys. Exponential time-dependent thickness
swelling was found in Nb films exposed to hydrogen by the scanning tunneling microscopy (STM)
measurements, while the time scale exceeded by far the values expected for the hydrogen diffusion
time [49]. The divergence of the plastic deformation time in Co-rich samples is consistent with the
superior creep stability of fcc Co-based superalloys [52].
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To summarize, the kinetics of hydrogen penetration into metals can differ significantly from the
respective lattice response. Hydrogenation of Pd and CoPd films in 4% H2/N2 atmosphere creates an
out-of-equilibrium state in which stress is built up rapidly with hydrogen absorption and is released
by a slow plastic thickness growth. Expansion of thickness is irreversible. The creep can be frozen by
removal of hydrogen and restarted from the frozen state by hydrogen reloading. Thus, the material
demonstrates the shape memory. The dynamics of the creep can be described by the Avrami-type
model with the nucleation of isolated swelled sites and lateral domain wall expansion. The nucleation
rate slows down in Co-rich alloys, such that an effective thickness inflation can occur 30 h after the
exposure to hydrogen and five orders of magnitude slower than the gas diffusion time.
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