SUPPORTING INFORMATION ## Design and Synthesis of Novel Hybrid 8-Hydroxy Quinoline-Indole Derivatives as Inhibitors of A β Self-Aggregation and Metal Chelation-Induced A β Aggregation Suresh K. Bowroju ¹, Nirjal Mainali ², Srinivas Ayyadevara ³, Narsimha R. Penthala ¹, Sesha Krishnamachari ³, Samuel Kakraba ², Robert J. Shmookler Reis²⁻⁴ and Peter A. Crooks ^{1,*} - 1 Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR-72205. - 2 Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR-72205. - 3 Central Arkansas Veterans Healthcare Service, University of Arkansas for Medical Sciences, Little Rock AR-72205. - 4 Department of Geriatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR-72205. - * Correspondence: PACrooks@uams.edu. ¹H NMR spectrum of compound **7a** ¹³C NMR spectrum of compound **7a** ## HRMS spectrum of compound 7a ^{1}H NMR spectrum of compound 7b ¹³C NMR spectrum of compound **7b** HRMS spectrum of compound 7b ¹H NMR spectrum of compound **7c** ¹³C NMR spectrum of compound **7c** ## HRMS spectrum of compound 7c ¹H NMR spectrum of compound **7d** ¹³C NMR spectrum of compound **7d** HRMS spectrum of compound 7d ^{1}H NMR spectrum of compound 7e ¹³C NMR spectrum of compound **7e** HRMS spectrum of compound 7e ¹H NMR spectrum of compound **12a** ¹³C NMR spectrum of compound **12a** HRMS spectrum of compound 12a ¹H NMR spectrum of compound **12b** ¹³C NMR spectrum of compound **12b** HRMS spectrum of compound 12b ¹H NMR spectrum of compound **18a** ¹³C NMR spectrum of compound **18a** HRMS spectrum of compound 18a ¹H NMR spectrum of compound **18b** | 162.980 | 156.397
154.751 | 147.286
137.685
135.953
134.416
128.605
127.224
127.224
124.127
121.836
120.683
120.610
120.449
111.800
111.800
111.800 | 77.381
77.062
76.744 | 67.482 | 43.823 | |---------|--------------------|---|----------------------------|--------|--------| | 1 | 157 | | | Ť | 1 | 13 C NMR spectrum of compound **18b** HRMS spectrum of compound 18b ¹H NMR spectrum of compound **18c** ¹³C NMR spectrum of compound **18c** HRMS spectrum of compound 18c ¹H NMR spectrum of compound **18d** ¹³C NMR spectrum of compound **18d** HRMS spectrum of compound 18d ¹H NMR spectrum of compound **18e** ¹³C NMR spectrum of compound **18e** HRMS spectrum of compound 18e ¹H NMR spectrum of compound **18f** ¹³C NMR spectrum of compound **18f** HRMS spectrum of compound 18f ¹H NMR spectrum of compound **18g** ¹³C NMR spectrum of compound **18g** HRMS spectrum of compound 18g ¹H NMR spectrum of compound **18h** ¹³C NMR spectrum of compound **18h** HRMS spectrum of compound 18h