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Abstract: Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are the two crucial enzymes
involved in the pathology of Alzheimer’s disease. The former is responsible for many defects
in cholinergic signaling pathway and the latter is the primary enzyme in the biosynthesis
of beta-amyloid as the main component of the amyloid plaques. These both abnormalities
are found in the brains of Alzheimer’s patients. In this study, in silico models were
developed, including 3D-pharmacophore, 2D-QSAR (two-dimensional quantitative structure-activity
relationship), and molecular docking, to screen virtually a database of compounds for AChE and
BACE-1 inhibitory activities. A combinatorial library containing more than 3 million structures of
curcumin and flavonoid derivatives was generated and screened for drug-likeness and enzymatic
inhibitory bioactivities against AChE and BACE-1 through the validated in silico models. A total of 47
substances (two curcumins and 45 flavonoids), with remarkable predicted pICsg values against AChE
and BACE-1 ranging from 4.24-5.11 (AChE) and 4.52-10.27 (BACE-1), were designed. The in vitro
assays on AChE and BACE-1 were performed and confirmed the in silico results. The study indicated
that, by using in silico methods, a series of curcumin and flavonoid structures were generated
with promising predicted bioactivities. This would be a helpful foundation for the experimental
investigations in the future. Designed compounds which were the most feasible for chemical synthesis
could be potential candidates for further research and lead optimization.

Keywords: acetylcholinesterase; beta-secretase; curcumin; flavonoid; in silico

1. Introduction

Alzheimer’s disease (AD), initially described by Alois Alzheimer in 1906 [1], is an irreversible
neurodegenerative disorder with a high prevalence in the elderly [2]. It is estimated that there were
about 50 million people suffering AD-related dementia globally in 2018, and this number will increase
nearly three times in 2050 [3]. AD is creating a heavy socio-economic burden on the health care system
of developed countries whose populations are aging [4]. The worldwide medical costs for dementia,
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including AD, were about 950 billion USD in 2015 and will be 2.5 trillion USD in 2030 and 9.1 trillion
USD in 2050 [5].

On pathophysiology, the dominant hallmarks of AD are the presence of extracellular amyloid
plaques and the intracellular neurofibrillary tangles with hyperphosphorylated Tau protein [6,7],
loss of neural circuit integrity in the brain [8], and the alterations in synaptic/neuronal activities
and neural metabolism [9]. There has been no effective treatment available for AD. The current
AD therapies, acetylcholinesterase (AChE) inhibitors (rivastigmine, galantamine, donepezil) and
n-methyl-D-aspartate receptor antagonist (memantine), solely slow down the progression of cognitive
function decline, their therapeutic effects; thus, remain largely symptomatic, supportive and targeting
late phases of the disease [6]. The expected effort is to discover disease-modifying therapies which
can arrest or reverse the progression of the disease. The multifactorial nature of AD has shifted
the paradigm of AD drug development from a single target to multiple targets, either with the
multitarget-directed ligands approach or the cocktail therapy approach [10]. The drug targets that
attracted much attention are acetylcholinesterase (AChE) and beta-secretase (BACE-1). These are
two important enzymes in Alzheimer’s pathogenesis. AChE is responsible for the defects in the
cholinergic signaling pathway [11], while BACE-1 is the main enzyme involved in biosynthesis of
the key component of beta-amyloid plaques [12]. All of these disorders are present in the brains of
Alzheimer’s patients.

Curcuminoids (curcumin and its analogs) and flavonoids are the most attractive groups of
naturally derived compounds, with varieties of biological activities, and are proved to be beneficial
against AD [13,14]. The therapeutic benefits of curcumin and flavonoid derivatives against AD occur
via many pathways, including the activities on AChE [13,15] and BACE-1 [16,17].

The computational approaches, applied widely in the field of drug discovery, have successfully led
to the development of many therapeutic agents [18-20]. With the use of these methods, the researcher
could provide many valuable suggestions guiding the experimental phases of the drug development
process. Recent studies showed that using computer-assisted drug design methods such as 2D-QSAR
(two-dimensional quantitative structure-activity relationship), 3D-pharmacophore and molecular
docking has been successful in discovering potential structures that inhibit AChE and BACE-1.
This makes the prospects for finding new drugs in AD treatment more broad and promising [21-24].

In this study, the in silico methods were employed for designing the curcumin and flavonoid
derivatives with potential inhibitory activities against both AChE and BACE-1 (Figure 1) as
an orientation for the chemical synthesis and experimental bioassays.
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Figure 1. Designed curcumin and flavonoid derivatives with potential inhibitory activities against both
acetylcholinesterase (AChE) and beta-secretase (BACE-1).
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2. Results

2.1. Combinatorial Library of Curcumin and Flavonoid Derivatives

By using a combinatorial method with the scaffold structures of curcumin and flavonoids
and substituents (R-groups) indicated in Figure 2, and Table 1, a library of 3,012,708 compounds
(715,040 curcumins and 2,297,668 flavonoids) was designed. This library was then screened to find out
compounds that are expected to have BACE-1 and AChE inhibitory activities.

79 oo TR0 GO0 o g

Figure 2. The scaffolds of curcumin and flavonoids used to design combinatorial library.

Table 1. R-groups used to design combinatorial library of curcumin and flavonoid derivatives.

-OH -OCH; -OCyH; -OCOCH;
-F -Cl -Br -1
—NOZ -NH2 -N(CH3)2 -NHCOCH3
-CH,CHH=CH, -COOH -COOCH;, -COOC,Hs
-CN -CONH, -S0,NH, -SH
-SCH; -SC,Hs C¢H5CH,O-

2.2. 3D-Pharmacophore Models

Two pharmacophore model sets were developed, including 13 models (A1-A13) for AChE and
11 models (B1-B11) for BACE-1. These models were built with four clinical in used drugs or used to be approved
substances (A1-A13), or four substances being in clinical development (B1-B11) (Figures 3 and 4). These models
were evaluated with the validation sets for their performance; from this the best models would be chosen
for further process. In the validation process, the active and decoy sets were downloaded from the
website http://dude.docking.org/. After processing the downloaded data sets, including removing
duplicate entries based on Cluster codes tool in the software Molecular Operating Environment (MOE)
2008.10 [25], and eliminating the structures used in the training sets (if any), the obtained sets (Table 2)
were used for validating built pharmacophore models. The evaluation results of two chosen models (Al
and B1) are indicated in Table 3, more detail about the validation results of developed pharmacophore
models are showed in the Supplementary Materials (Tables S1 and S2). The validation results of
developed pharmacophore models indicated that these models (Models Al and B1 in Figures 5 and 6,
respectively) had the good performance and could be used in the virtual screening process with the
high reliability.

Table 2. Databases for building and validation of the pharmacophore models.

AChE BACE-1
Validation Sets Validation Sets
Training Set Training Set
Active Decoy Active Decoy

04 655 26369 04 436 18217
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Figure 3. Structures of four compounds used for building pharmacophore models against AChE.
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Figure 4. Structures of four compounds used for building pharmacophore models against BACE-1.

Table 3. Pharmacophore model validation by goodness-of-hit (GH) score method.

No. Parameter Pharmacophore Model
Al Bl
1 Total molecules in database (D) 27024 18653
2 Total number of actives in database (A) 655 436
3 Total hits (Ht) 914 438
4 Active Hits (Ha) 524 305
5 %Yield of actives [(Ha/Ht) x 100] 57.33 69.63
6 %Ratio of actives [(Ha/A) x 100] 80 69.95
7 Enrichment factor (E), [(Ha x D)/(Ht X A)] 23.65 29.79
8 False negatives [A — Ha] 131 131
9 False positives [Ht — Ha] 390 133
10 Goodness-of-hit score (GH)* 0.62 0.69

[(Ha/4HtA)(3A + Ht) x (1 — (Ht — Ha)/(D — A))]; GH score of 0.6-0.8 indicates a very good model [26].
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F4 Acc2 Projected locations of a potential H-bond donors 1.0

Distances between features were measured in angstrom

Figure 5. Pharmacophore model Al (AChE).
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Figure 6. Pharmacophore model B1 (BACE-1).
2.3. Virtual Screening

Applying predictive models in the screening of designed combinatorial library, the results showed
that from the initial library of more than 3 million substances, after the screening process, the number
of potential substances obtained was 47 (two curcumins and 45 flavonoid). Specifically, after screened
by Lipinski’s rule of five [27], the number of substances was reduced to 1,046,722 (6077 curcumins and
1,040,645 flavonoids). This number was then reduced to 4199 (two curcumins and 4197 flavonoids) after
screening through two pharmacophore models. The data set of flavonoid derivatives was then refined
the drug-likeness, the ability of crossing blood-brain barriers; and eliminated molecules containing
substructures showing potent response in assays irrespective of the protein target, or to be putatively
toxic, chemically reactive, metabolically unstable as well as to bear properties responsible for poor
pharmacokinetics. After this refinement with the using of a free web tool SwissADME [28], the total
remaining number of flavonoids was 45. These substances were predicted as the compounds that can
cross the blood-brain barriers. They also do not violate any drug-like features, including Linpinski’s
rule of five [27], Ghose filter [29], and the rules of Veber [30], Egan [31], or Muegge [32]. They were
predicted as feasible synthetic accessibility (SA) with the scores of 2.1-3.76 (SA score ranges from 1 (very
easy) to 10 (very difficult)) [28]. Two screened curcumin derivatives were predicted by SwissADME
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as the compounds that violate the Ghoser filter (with molecular weight >480, molecular refractivity
>130, and the number of atoms >70). They were also predicted to have high GI (Gastrointestinal)
absorption but not to cross the blood-brain barriers. These properties should be optimized in the
further processes. The more detail of predicted properties of the screened compound are indicated
in the Supplementary Materials.

All 47 compounds were then checked on Scifinder database [33] for the new structures with no
record was retrieved. This could mean that all 47 designed substances are new in their structures.
The predicted pICsg values for these 47 screened derivatives (calculated using the 2D-QSAR models
described below) range from 4.24-5.11 (AChE) and 4.52-10.27 (BACE-1). These compounds should be
selected as potential candidates for synthesis and further evaluation. Virtual screening results and
predicted bioactivities with docking scores of some of the most potential compounds are presented
in Figure 7 and Table 6.

\ 3,012,708 compounds \

| Lipinki Rule of 5 :\

\j 1,046,722 Compounds

3D-Pharmacophore models

4199 compounds \

SwissADME ]

47 compounds |

pICs, Calculation
Molecular Docking

J

 HITS

Predicted pICs,:
4.24-5.11 (AChE)

4,52-10.27 (BACE-1)

AN

Figure 7. Virtual screening results.
2.4. 2D-QSAR Models

The results of building and validating 2D-QSAR models, presented in Table 4 and Figure 8,
show that these models are satisfactory in the evaluation metrics with good predictability. These models
could accurately predict the biological activity of new ligands. The datasets of compounds used
in building 2D-QSAR models are provided in the Supplementary Materials (Tables S3 and 54).
Chosen molecular descriptors used for building 2D-QSAR models are indicated in Table 5. A full list
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of descriptors calculated by the computational software is showed in the Supplementary Materials
(Table S5).

Table 4. Two-dimensional quantitative structure-activity relationship models (2D-QSAR) of the

inhibitors against acetylcholinesterase (AChE) and beta-secretase (BACE-1).

AChE
Model AT Model AF: Full data set (n = 72)
pICsp = —0.92791 pICsp = —1.00890
+2.34847xBCUT_SLOGP_3 +2.38027xBCUT_SLOGP_3
—0.14990xreactive —0.11002xreactive
—0.00355XPEOE_VSA+1 —0.00391xXPEOE_VSA+1
—0.00514xPEOE_VSA-3 —0.00480xPEOE_VSA-3
—0.00219xSlogP_VSA2 —0.00202xSlogP_VSA2
—0.00447xSMR_VSA2 —0.00387xXSMR_VSA2
Internal Validation External Validation
N RMSE R* RMSEoo R%oo n RMSE R® Rlprepy 12 12, A3, CCC Q2
50 0.18 0.70 0.22 0.57 22 0.16 0.78 0.78 0.64 0.69 011 088 0.72
BACE-1
Model BT Model BF: Full Data Set (N = 215)
pICs = 1.26826 pICsp = 1.01351
+0.87076X petitjean +0.59775x petitjean
+6.37086XBCUT_PEOE_1 +4.85517xBCUT_PEOE_1
+3.30481xa_ICM +3.13351xa_ICM
—0.47753%chiral_u —0.50839%chiral_u
+0.08513xrings +0.02540xrings
+0.15746xa_nN +0.16067xa_nN
+0.00608xPEOE_VSA-0 +0.00577xPEOE_VSA-0
+0.02183xPEOE_VSA-6 +0.01771xPEOE_VSA-6
—0.25952xlogS —0.26227xlogS
+0.00893xSlogP_VSA3 +0.00920xSlogP_VSA3
+0.00944xSlogP_VSA5 +0.01101xSlogP_VSA5
Internal Validation External Validation
N RMSE R* RMSE oo R%oo n RMSE R* Rlprepy 13 12, A, CCC Q2
150 0.37  0.80 0.40 0.77 65 0.41 0.83 0.81 079 076 0.05 091 0.76

RMSE (root-mean-square error), R? (squared correlation coefficient), RMSE[ oo (cross-validated root-mean-square
error), R?; oo (cross-validated squared correlation coefficient), CCC (concordance correlation coefficient).

Table 5. Chosen descriptors used for building 2D-QSAR models.

Code Category

Description

BCUT_SlogP_3  Adjacency and distance matrix

BCUT_PEOE_1 Adjacency and distance matrix
petitjean Adjacency and distance matrix
reactive Physical property

logS Physical property

PEOE_VSA-0,

PEOE_VSA+1, .

PEOE_VSA-3, Partial charge

PEOE_VSA-6

SlogP_VSA2,

SlogP_VSA3, Subdivided surface areas

SlogP_VSA5

SMR_VSA2 Subdivided surface areas
a_ICM Atom counts and bond counts

chiral_u Atom counts and bond counts

rings Atom counts and bond counts
a_Nn

Atom counts and bond counts

A Burden’s parameter using atomic contribution to logP (using the Wildman and Crippen
SlogP method [34]) instead of partial charge.
A descriptor relating topological shape and partial charges.
Value of (diameter-radius)/diameter.

An indicator of the presence of reactive groups. A non-zero value indicates that the molecule
contains a reactive group. The table of reactive groups is based on the Oprea set [35] and
includes metals, phospho-, N/O/S-N/O/S single bonds, thiols, acyl halides, Michael Acceptors,
azides, esters, etc.

The log of the aqueous solubility (mol/L).

Sum of the proximate accessible van der Waals surface area (A2), v;, calculation for each atom
over all the atoms i, such that partial charge of atom i is in a specified range.

Sum of the proximate accessible van der Waals surface area (A2), v;, calculated for each atom
over all the atoms, such that partition coefficient for atom i is in a specified range.

Sum of the proximate accessible van der Waals surface area (A2), v;, calculation for each atom
over all the atoms i, such that molar refractivity for atom i is in a specified range.
The entropy of the element distribution in the molecule (including implicit hydrogens but not
lone pair pseudo-atoms).
The number of unconstrained chiral centers.
The number of rings.
The number of nitrogen atoms.
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Figure 8. The correlation between experimental pICs (—logICsp) and predicted pICs from 2D-QSAR
models built for (A) AChE and (B) BACE-1.

2.5. Molecular Docking

The molecular docking models were built and validated as satisfactory, except for SHTZ with
all the RMSD (root mean square deviation) values were more than 2.0 (A) (Table S6). Therefore,
this co-crystalized complex was not used in the next docking process. The screened derivatives
were then successfully docked, with some exceptions, into the binding cavity of AChE (1AC]J, 1DX6,
1EVE, 1W6R, 4EY6, 4EY7) and BACE-1 (3VEU, 4B78, 5HTZ, 5HUO, 5HU1). The substances with high
predicted values of pICsg and good docking scores (most negative) on both enzyme targets would
be considered as the most potential candidates for chemical synthesis and biological activity testing.
The docking results of several derivatives are presented in Table 6 and Figures 9-11. The more detail of
docking results predicted pICsg of all screened compounds are shown in the Supplementary Materials
with the structures of all 47 screened substances also indicated (Tables S7-510).

SOUPeS T ¢
~ y -
SN N~ (0] = X (0}

| OH O | OH OH O OH
C1 (pIC50 AChE: 4.37, BACE-1: 10.27) C2 (pIC50 AChE: 4.24, BACE-1: 9.13)
0
? 0
”°WO ® T
7~
Br N
| N O
F2 (pIC50 AChE: 4.72, BACE-1: 6.30) F9 (plC50 AChE: 4.86, BACE-1: 6.77)
| 0
Q0 HO
N OH S N~
| o [
F24 (pIC50 AChE: 4.87, BACE-1: 6.44) F37 (pIC50 AChE: 4.84, BACE-1: 6.11)

Figure 9. Structures of potential candidates with estimated bioactivities.
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Table 6. Predicted bioactivities and docking scores of some potential candidates.

AChE
Ligand Predicted In Vitro In Vitro Docking Score (kJ.mol-1)
pICso 1Csp (M) pICso 4EY6 4EY6 4EY7 4EY7
1AC) 1DX6 1EVE AW6R  (hainA) (chainB) (chainA)  (chain B)
Not Not
C1 4.37 - - Not docked -24.13 —25.62 —25.47 docked docked —34.38 -36.23
C2 424 - - Not docked -30.97 -23.97 -25.19 -23.21 -12.72 —23.56 -31.90
F2 4.72 - - -21.38 -21.18 -23.30 -27.09 -21.95 -21.56 -28.70 -30.99
F9 4.86 30.05+1.24 4.52+0.02 -20.27 —28.46 —25.53 —25.80 -25.63 -27.26 -25.17 -27.11
F24 4.87 80.52 £3.07 4.09 +0.02 -20.19 -21.08 —20.87 -21.53 -24.10 —23.66 —25.27 —26.59
F37 4.84 - - -20.58 —22.46 -21.81 -22.98 -21.02 —22.75 -23.34 -2245
BACE-1
5HUO 5HUO 5HU1 5HU1
SVEU 4878 (chain A)  (chainB) (chain A) (chain B)

C1 10.27 - - —24.28 -10.23 -17.28 -22.09 -17.39 -14.74

C2 9.13 - - —24.04 —24.64 -27.00 -16.51 —25.78 -17.79

F2 6.30 - - -19.51 -13.11 -14.79 -14.92 -16.47 -17.20

F9 6.77 1.85+0.33 5.73 £ 0.08 -21.34 -15.98 -18.53 -17.83 -20.32 -19.49

F24 6.44 3.52+0.77 5.45+0.10 -22.39 -14.36 -18.58 -17.07 -15.09 -16.19

F37 6.11 - - -21.87 -13.66 -17.39 -15.80 -16.61 -15.09

(0 Py (m

) \=/ =
e Q0

o

Figure 10. Interactive models of studied compound C1 with the residues in the binding pocket of AChE
(code PDB 4EY7 - chain A). The residues, which have interactions with C1, include Tyr_72, Trp_86,
Gly_121, Tyr_124, Ser_203, Ser_125, Trp_286, Glu_202, Ser_203, Ser_293, Val_294, Phe_295, Phe_297,
Phe_338, Tyr_341, and His_447. In which, the hydrogen bonds with Tyr_124, Ser_293, Ph_295, and the
arene—arene interactions are the most important.

oo
&,

Figure 11. Interactive models of studied compound C1 with the residues in the binding pocket of
BACE-1 (code PDB 3VEU). The residues, which have interactions with C1, include Gly_11, Ser_33,
Val_69, Pro_70, Tyr_71, Thr_72, Lys_107, Phe_108, Ile_110, Arg_128, Gly_221, Thr_222, Thr_223,
and Asp_219. In which, the hydrogen bonds with Thr_72, Asp_219, Thr_222, Gly_221, and Thr_223 are
the most important.

2.6. AChE and B-Secretase Inhibitory Activities

The ICs( values for AChE and BACE-1 were performed for two synthesized compounds namely
F9, F24, and summarized in Table 6. In vitro ICs for AChE values of F9 and F24 were 30.05 + 1.24 and
80.52 + 3.07 uM, respectively. For BACE-1, the ICsj of 1.85 + 0.33 and 3.52 + 0.77 uM for F9 and F24,
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respectively, were determined. The results showed that the in vitro bioactivity is in consistent with
in silico modelling with the pICs residues of 0.34-0.78 for AChE and 0.99-1.04 for BACE-1.

3. Discussion

In virtual screening, a library of drug-like substances can be used. However, these are commercial
libraries, and the screening materials often do not have a new structure because they have been
previously synthesized. Existing substances may also be restricted by patents on the method of use.
In this study, QuaSAR-CombiGen tool was used to design a library of compounds for further explored.
This utility could enumerate a virtual library of all possible products that are combinatorially generated
from a set of fragment molecules. The virtual library is constructed by functionalizing central molecular
fragments called scaffolds. The built-in library has the advantage of quickly creating a huge database
of structures and avoiding data lost, as well as creating new structures. The construction of libraries
with high chemical diversity is necessary when exploring new targets with very little known ligands,
while targeted libraries based on the nature of known ligands may be also desired to identify hits with
improved biological activity. Xing et al., [36] designed combinatorial libraries to search for novel soluble
epoxide hydrolase (sEH) inhibitors based on a benzoxazole template forming conserved hydrogen
bonds with the catalytic machinery of sEH. Consequently, screening of these libraries resulted to
90% hit rate and more than 300 submicromolar sEH inhibitors were finally discovered. In this study,
a targeted library of compounds was also created based on the flavonoid and curcumin structures
in an attempt to discover novel curcumin or flavonoid derivatives with improved biological effects on
both enzyme, including AChE and BACE-1.

In this study, the predictive models of 2D-QSAR were built and validated with satisfactory in the
evaluation metrics. A comparison of the statistical results obtained from the present QSAR models
and previously published works is indicated in Tables 7 and 8. Based on the statistical quality in the
context of both internal and external validation criteria, the models reported in this study is statistically
significant and robust enough to predict the biological activities of new ligands.

Table 7. Comparison of this study with previous published works on AChE.

Training Set Validation Set
Source Model N R2 Q? n R2prep
This study PLS 55 0.70 0.57 22 0.78
Roy et al. 2018 [37] MLR 284 0.52-0.74 0.50-0.71 142 0.50-0.63
Niraj et al. 2015 [38] PLS 24 0.78 0.70 11 0.66
Abuhamdah et al. 2013 [24] GFA-MLR 68 0.94 0.92 17 0.84
Solomon et al. [39] GFA 53 0.86 0.80 26 0.86

PLS: Partial least squares; MLR: Multiple linear regression; GFA: Genetic function approximation.

Table 8. Comparison of this study with previous published works on BACE-1.

Training Set Validation Set

Source Model N R2 Q? n R2pren
This study PLS 150 0.80 0.77 65 0.81
Kumar et al. 2019 [21] PLS 76 0.83 0.80 22 0.85
Ambure et al. 2016 [40] PLS 52 0.83 0.76 22 0.81
Ambure et al. 2016 [40] MLR 51 0.83 0.76 22 0.80
Jain et al. 2013 [41] MLR 20 0.90 0.90 7 0.90
Hossain et al. 2013 [42] CoMFA 71 1.00 0.77 35 0.77
Hossain et al. 2013 [42] CoMSIA 71 1.00 0.73 35 0.71
Hossain et al. 2013 [42] PLS 71 0.94 0.79 35 0.71
Chakraborty et al. 2017 [43] LHM 20 0.94 091 10 0.86

Roy et al. 2018 [37] MLR 51 0.76-0.83  0.71-0.76 23 0.75-0.91

PLS: Partial least squares; MLR: Multiple linear regression; CoOMFA: Comparative molecular field analysis; CoMSIA:
Comparative similarity indices analysis; LHM: Linear heuristic method.
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The 2D-QSAR model for AChE inhibitors was developed with the adjacency and distance
matrix (BCUT_SlogP_3), physical property (reactive), partial charge (PEOE_VSA+1, PEOE_VSA-3),
and subdivided surface areas (SlogP_VSA2, SMR_VSA?2) descriptors. The 2D-QSAR model showed
a positive correlation with BCUT_SLOGP_3, and a negative correlation with reactive, PEOE_VSA+1,
PEOE_VSA-3, SlogP_VSA2, SMR_VSA2. It meant that new ligands with high BCUT_SLOGP_3,
and low reactive, PEOE_VSA+1, PEOE_VSA-3, SlogP_VSA2, SMR_VSA2 values should have higher
acetylcholinesterase inhibitory activities.

The 2D-QSAR model for BACE-1 inhibitors was developed with 11 molecular descriptors,
including two adjacency and distance matrixes (petitjean, BCUT_PEOE_1), four atom counts and bond
counts (a_ICM, chiral_u, rings, a_Nn), two partial charges (PEOE_VSA-0, PEOE_VSA-6), one physical
properties (logS), and two subdivided surface areas (SlogP_VSA3, SlogP_VSA5). The 2D-QSAR model
showed a positive correlation with the descriptors of petitjean, BCUT_PEOE_1, a_ICM, rings, a_Nn,
PEOE_VSA-0, PEOE_VSA-6, SlogP_VSA3, SlogP_VSAS5, and a negative correlation with chiral_u,
logS. It means that new ligands with high petitjean, BCUT_PEOE_1, a_ICM, rings, a_Nn, PEOE_VSA-(,
PEOE_VSA-6, SlogP_VSAS3, SlogP_VSA5, and low chiral_u, or logS values should have higher BACE-1
inhibitory activities.

Using ligand-based pharmacophore modeling to find novel acetylcholinesterase inhibitors and
BACE-1 inhibitors is an approach employed in several studies [44—47]. From the developed models,
novel inhibitors were discovered. In this study, the developed pharmacophore models were built
for both AChE and BACE-1 inhibitors. Model Al (AChE) had four features, including one point of
aromatic and pseudo aromatic rings or other 7m-system rings, two points of centroid hydrophobic,
and one point of projected locations for a potential H-bond donors. Model B1 (BACE-1) had also
four features, including one point of aromatic and pseudo aromatic rings or other n-system rings,
one point of centroid hydrophobic, and two points of projected locations for a potential H-bond
donors. These two models shared three of the same types of features. These models were validated
with the goodness-of-hit score (GH) of 0.62 (AChE) and 0.69 (BACE-1). With a good performance,
these models could be used in the virtual screening process to discover potential structures with
the dual activities on both enzymes. The virtual screening process was performed in a combination
way, including the using of pharmacophore models, drug-likeness filtering and molecular docking.
This combination is widely used in the search of novel biological activity substances from a database.
Molecular docking was one step in the virtual screening process. This procedure also revealed the
residues important for the functioning of AChE and BACE-1. The interactions of these residues with
designed structures would explain for the potential of these substances to be the active candidates.
From the screening process, 47 hits were obtained, in which there were 45 flavonoids and two curcumin
derivatives. They were the ligands with new structures and were predicted to have the inhibitory
activities against both AChE and BACE-1. In addition, 45 flavonoid ligands were predicted not to
violate any drug-like characteristics. They were also considered blood—brain barriers permeants as
well as easy for the synthesis. The two curcumin ligands were predicted as to not follow drug-likeness
rules in some aspects. They were considered not to cross the blood—brain barriers but to have high GI
absorption. These properties should be optimized in the further processes. Combining data from all
these experiments will improve our knowledge about the ligand—AChE or BACE-1 interaction and
enable the development of predictive classification and regression models. Although the tested set (F9
and F24) is by far too small to derive any hypothesis that validates our in silico modellings, this may be
an initial hint that the residues are of 1.04 log10 value (10x) between the in silico and experimental data.

4. Materials and Methods

In silico models were built including 3D-pharmacophore, 2D-QSAR, and molecular docking.
The models were used for virtually screening a combinatorial library of designed curcumin and
flavonoid derivatives for AChE and BACE-1 inhibitory activities. All computation processes were
performed on a computer system with the processor of Intel® Core™ i&-7700 CPU @ 3.60 Hz, 16.0 GB
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of RAM, the Visual Graphic Card of NVIDIA GeForce GT 1030 2GB, and the operating system of 64 bit
Windows 10 (Microsoft, Redmond, WA, USA). The research process is summarized in Figure 12 and is
described in detail as follows:

Scaffolds .~ R-groups
¥ {b
COMBINATORIAL LIBRARY
o

Lipinski’s Rules of Five

[ Pharmacophore model Pharmacophore model
for AChE Inhibitors for BACE-1 Inhibitors

Y

| SCREENED COMPOUNDS |

ARy S

Molecular Docking

[
Prediction of bioactivity
AD-QSAR models
[ HITS }

Figure 12. Study flowchart.
4.1. Design a Combinatorial Library of Curcumin and Flavonoid Compounds

The combinatorial library of curcumin and flavonoid compounds was designed using
QuaSAR-Combigen tool in MOE 2008.10 software with the scaffolds and R-groups indicated in Figure 2
and Table 1. QuaSAR-CombiGen enumerated a virtual library of all possible products combinatorially
generated by functionalizing the scaffolds. A combinatorial library is specified by a database of scaffold
molecules, database of functional groups (R-groups), and connection information (attachment points)
specifying where the R-groups attach on each scaffold (attachment points must be specified on both
the R-group and the scaffold molecule). In this study, the scaffolds were specified the attachment
points from one, two, to all carbon atoms of benzene rings. A single combinatorial product was
constructed by attaching R-groups to a scaffold at marked attachment points, called ports. The entire
combinatorial library was enumerated by exhaustively cycling through all combinations of R-groups
at every attachment point on every scaffold. The virtual library was written to an output database and
was then energy minimized to obtain a lower energy conformation for each molecule.

4.2. Building and Validating Pharmacophore Models

Pharmacophore models were built in MOE 2008.10 using the Pharmacophore Elucidation application.
Conformations of the compounds were generated and used to create queries with good coverage
levels in almost all molecular compounds in the training set. The Active Coverage, which specifies
the number of molecules that an obtained query must match in order for it to be considered further
and outputted, employed in this study was 0.8. Feature Limit was in the default value of 5, this is the
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maximum number of features that an output pharmacophore was permitted to contain. Query Cluster
parameter was set to default value of 1.25 A. This number specified an RMSD value used to cluster the
queries prior to overlapping and scoring. All obtained models were then validated to evaluate their
performance. Enrichment factor (EF) and goodness-of-hit score (GH) were calculated. The GH score
ranges from 0, which indicates the null model, to 1, which indicates the ideal model. When GH score is
0.6-0.8, the model is considered to have a good performance [26].

4.3. Building 2D-QSAR Models

4.3.1. Data Collection

The BACE-1 inhibitor database was collected from scientific papers [48-59], and AChE inhibitors
were curated from the CheMBL database [60]. After processing input data, including removing
substances with similar structural characteristics (based on the Cluster codes tool in MOE 2008.10),
filtering substances with the same biological test method, and ICsj values correction to get 215 BACE-1
inhibitors with the same FRET (fluorescence resonance energy transfer) test method, and 72 AChE
inhibitors with the same Ellman’s test method on AChE of the Electrophorus electricus with galantamine
as the reference substance. The ICs5; values of the substances were then converted to pICs to facilitate
the calculation. Structures of compounds in the databases were built and energy minimized in MOE
2008.10 with the default setting. The final obtained databases were then used to build 2D-QSAR
models with optimal molecular descriptors.

4.3.2. Molecular Descriptors Calculation and Processing

2D molecular descriptors were calculated using MOE 2008.10 software, and then processed to
eliminate redundant or unrelated ones to increase the quality of predictive models, while reducing
calculating time [61]. Firstly, RapidMiner 5.3.013 [62] was used to eliminate useless descriptors (ones
with fixed values for at least 80% of the total substances). The descriptors correlated with each other
(with correlation coefficient >0.9) were also deleted. The software Weka 3.8 [63] was then used to select
optimal descriptors for the predictive models. The method used in this stage was BestFirst and the
attribute selection mode was Use full training set.

4.3.3. Building and Validating of 2D-QSAR Models

Each database of BACE-1 and AChE inhibitors was divided into training set and validation set
in a ratio of 80% to 20% using Diverse Subset and Rand methods in MOE 2008.10. The Diverse Subset
utility was used to rank entries in a database based on their distance from each other. While the Rand
function was used to split randomly the database of compounds, each of which was assigned a random
number between 0 and 1. 2D-QSAR models were built using Partial Least Square (PLS) regression.
This is the most straightforward quantitative multivariate modelling method, which models the
relationship between two data matrices, X (independent variables, descriptors) and Y (target variable,
bioactivity). The developed linear regression model can predict the quantitative response values from
the linear function of molecular variables. It offers an advantages such as can be useful in the analysis
of data with strongly collinear, noisy and several X variables as well as simultaneous modelling of
several target variables Y [64].

The models then validated by the values RMSE (root-mean-square error), R? (squared correlation

coefficient), RMSE; oo (cross-validated root-mean-square error), R* oo (cross-validated squared

correlation coefficient), and more widely used metrics rﬁq, r’%ﬂ r%q, Ar,zn ; RZprep, or CCC (concordance

correlation coefficient) [65], and QIZTB'
These parameters were calculated according to the Equations (1)—-(11).

YR (9. — )
RMSE = # 1)
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In Equations (1), (2), (10), and (11), y; and §; are, respectively, the observed and predicted activity
values; while 7 and  are, respectively, the mean values of y; and ;. In Equations (3) and (4), y; and
77} are, respectively, the observed and predicted activity values in LOO cross-validation. Equations
(6) and (7) were utilized to calculate correlation coefficients between observed and predicted activity
values of the compounds of validation set with (%) or without intercept (ré) in case of using predicted
data on the y-axis and experimental data on the x-axis, while (r"?) and (r’%) are, respectively, the same
coefficients in the opposite case. The most stringent validation criteria thresholds including 72, > 0.65;

CCC > 0.85; 12, > 0.5; Ar2, < 0.2; and Q%S > 0.6 were applied to verify the external predictivity of good
models [66—69].

4.4. Molecular Docking Procedure

4.4.1. Ligand Preparation

Ligand molecules were prepared directly in Sybyl X 2.0 [70]. In the energy minimization process,
the Conj Grad method was chosen and the structures of molecules were optimized until the minimum
energy change <0.0001 kcal.mol~!. Gasteiger—Huckel charges were assigned to the structure atoms
and the maximum number of iterations to perform during minimization was set to 10,000. Molecular
dynamic process was proceeded to obtain conformations with the minimum global energy. The method
used in this step was Simulated Annealing. In this method, the molecules were heated at 700 °K in a period
of 1000 femtoseconds, then they were cooled down to 200 °K in another period of 1000 femtoseconds
to approach the stable states from which their final conformations were obtained. The process runs in
five cycles to figure out different necessary structures. Finally, the energy minimization process was
performed one more time and the steric energies of final conformations were specified.
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4.4.2. Docking and Results Evaluation

Docking protocols were validated by the method of pose selection [71]. In this method, docking
was carried out initially with co-crystallized structure to validate the protocol. The co-crystallized
ligand was re-docked within the binding pocket of BACE-1 and AChE, and the RMSD value between
the best re-docked conformation and the native one was calculated. If the RMSD is <2.0 A, the used
docking protocol could be considered as validated [72]. In this study, the co-crystallized complexes
employed for AChE were 1ACJ, 1DX6, 1EVE, 1W6R, 4EY6, 4EY7 and for BACE-1 were 3VEU, 4B78,
S5HTZ, 5HUO, 5HU1. These were the complexes with high resolution and the co-crystallized ligands
were the drugs used in clinical or in clinical development. With this selection, the probability of
docked compounds to be reached further optimization would be high. The protein complexes were
downloaded from protein data bank [73] and prepared in MOE 2008.10 using LigX tool. This tool
helped to detect and visualize the ligand in the binding site. Docking process was done using FlexX
program in BioSolvelT Leadlt 2.0.2 [74]. This program applied the flexible-based docking methodology
with an incremental construction algorithm to search the ligand conformations, and empirical scoring
functions to score and rank the docking poses [75,76]. In this study, the docking process was done with
following options: The binding sites of proteins were identified based on co-crystallized ligands and
the presence of important residues (within a default radius of 6.5 A). Unbound water molecules were
eliminated. Triangle Matching algorithm was used to place the base fragment; the maximum number
of solutions per iteration was 1000, the maximum number of solution per fragmentation was 200,
and the number of best poses of each molecular compound in binding complex to retain for analyzing
interaction was 10. These poses were scored and ranked ascending. The score was the predicted
binding free energy between the ligand and its target. Interactions between molecular compounds
with the active sites of the enzymes, such as hydrogen bonds, and van der Waals (detected by the
exposure of hydrophilic and hydrophobic surface with molecular compounds and binding points),
m—T1, cation—, ionic interactions were depicted and analyzed by MOE 2008.10.

4.5. Chemistry

Two dihydrochalcones F9 and F24 were synthesized according to the reactions indicated
in Figure 13. Firstly, substituted chalcone derivatives were prepared by a Claisen—Schmidt condensation
reaction [77] of substituted acetophenones and aldehydes in equimolar quantities with KOH at room
temperature. Chalcone derivatives then underwent hydrogenation in a Hy atmosphere with 10%
a carbene complex of palladium (Pd—C) as catalyst and ethyl acetate (EtOAc) as solvent for 2448 h [78]
to obtain F9 and F24, whose structures were elucidated by 'H-NMR and *C-NMR spectra (indicated
below and in the Supplementary Materials).

R’
R2 R4 1 KOH, MeOH R2 O R4 O
+
CHs o R, T2.cHol
Ry O H Ry O
substituted substituted substituted
acetophenones benzaldehydes chalcones
R'3
y ' R
R2 O R4 O PdIC, H2 EtOAc O ¢ O
\ R
Ry O Ry O
substituted Fo: Ry = (CH3),N
chalcones R', = CoH50
R3=Ry=H
R'4 = COOH
F24: R't =Rq = (CH3):N
Ry=R4=H
R'3 = OH

Figure 13. Chemical synthesis of two flavonoid derivatives F9 and F24.
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3-(dimethylamino)-5-ethoxy-2-(3-phenylpropanoyl)benzoic acid (F9): 'H-NMR (500 MHz, DMSO-d6) &
(ppm): 12.83 (s, 1H), 7.24 (m, 5H), 7.12 (d, 1H), 6.64 (d, 1H), 4.08 (q, ] = 7 Hz, 2H), 3.25 (t, ] = 6 Hz, 2H),
2.94 (s, 6H), 2.87 (m, 2H), 1.38 (t, ] = 7.0 Hz, 3H). 13C-NMR (125 MHz, DMSO-d6)  202.04, 169.97, 163.06,
154.09, 141.59, 130.21, 128.51, 128.49, 126.30, 117.91, 107.34, 103.17, 63.61, 43.63, 43.43, 30.66, 14.41.

1-(2-(dimethylamino)-5-hydroxyphenyl)-3-(3-(dimethylamino)phenyl)propan-1-one (F24): "H-NMR
(500 MHz, DMSO-d6) 6 (ppm): 9.05 (s, 1H), 7.11 (m, 1H), 7.08 (dd, 1H), 6.94 (dd, 1H), 6.91 (ddd, 1H),
6.81 (m, 1H), 6.74 (m, 2H), 3.26 (t, | = 7.4, 2H), 3.00 (m, 3H), 2.93 (s, 3H), 2.76 (s, 6H), 2.73 (t, ] = 7.4, 2H).
13C-NMR (125 MHz, DMSO-d6) § 203.36, 152.35, 151.78, 145.49, 140.58, 129.25, 127.62, 122.85, 119.38,
116.97,115.93, 114.96, 112.25, 44.89, 40.72, 40.42, 30.35.

4.6. AChE Inhibition Assay

AChE-inhibitory activities of F9, F24 were determined by the Ellman’s method [67],
using galantamine as a reference compound. Acetylcholinesterase (AChE, E.C. 3.1.1.7, from electric
eel), 5,5"-dithiobis-(2-nitrobenzoic acid) (DTNB), acetyl-thiocholine iodide (ATCI), galantamine were
purchased from Sigma Aldrich (St. Louis, MO, USA). Tested compounds were dissolved in a minimum
volume of 10% methanol in Tris buffer pH 8 to provide a final concentration range: 120 uM; 60 uM;
30 uM; 15 uM; 7.5 uM. All samples were assayed in triplicate, and bioactivity was reported with SEM.
The method was as described earlier [79].

4.7. B-Secretase Inhibition Assay

[3-secretase (BACE-1) Activity Detection Kit (Fluorescent) was purchased from Sigma-Aldrich
and used to determine the effect of the F9, F24 on (-secretase activity. The assay was carried out
according to the manufacturer’s protocol. The enzyme solution (0.3 units/uL, 2 uL) was reacted with
the 50 uM of the substrate (7-methoxycumarin-4-acetyl-(Asn_670, Lue_671)-amyloid 3/A4 precursor
protein 770 fragment 667-676-(2,4-dinitrophenyl))Lys-Arg-Arg amide trifluoroacetate salt and sulfated
polysaccharide samples (2-5 mg/mL) in a fluorescence assay buffer in different wells. Baseline readings
were measure immediately on a Fluorescence Spectrophotometer Hitachi F-7000 (excitation: 320 nm;
emission: 405 nm) and repeated after 2 h incubation at 37 °C. All samples were assayed in triplicate,
and bioactivity was reported with SEM. The method was as described earlier [80,81].

5. Conclusions

Computer-assisted drug design has the advantage of greatly reducing research time in search of
new biologically active compounds. This study carried out a systematic sequential research method,
including building a library of curcumin and flavonoid derivatives designed on computers with
different substituents (R-groups) on different structural scaffolds, developing models for virtual
screening and biological activity prediction. The built-in library has the advantage of quickly creating
a huge database of structures and avoiding data lost, as well as creating new structures. The models
built from this study were evaluated and met the validating criteria for each one, proving that these
were reliable models for predicting the biological activities of new structures. This study carried
out a combination of ligand-based drug design (2D-QSAR, 3D-pharmacophore) and structure-based
(docking) method. This combination helped to comprehensively assess the effects of molecular
descriptors in 2D (QSAR) and 3D (pharmacophore, docking), as well as factors that belong to both the
target and studied ligands, to biological activity. This combination could also help to gain the reliability
of predictive models. Through virtual screening and pICs, value prediction, the potential candidates,
with new structures, had good predictive activities; in which, two curcumin derivatives were the most
potent for BACE-1. All 45 designed flavonoids were also predicted to have many features of drugs
and feasible synthetic accessibilities. The in vitro assays on AChE and BACE-1 were performed for
two compounds and confirmed the in silico results with the maximum difference 10 times. Therefore,
the results of this study could be considered as valuable suggestions for further experimental researches
and directions.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/16/3644/s1,
Table S1: Pharmacophore model validation by goodness-of-hit score (GH) score method (AChE), Table S2:
Pharmacophore model validation by goodness-of-hit score (GH) score method (BACE-1), Table S3: Dataset of 72
compounds used in the building of 2D-QSAR model for AChE inhibitors, Table S4: Dataset of 215 compounds used
in the building of 2D-QSAR model for BACE-1 inhibitors, Table S5: List of 2D molecular descriptors computed

using MOE 2008.10 software, Table S6: Re-docking results (RMSD values in A), Table S7: Results of molecular
docking of curcumins, Table S8: Results of molecular docking of 45 screened flavonoids, Table S9: Predicted pICsg
of screened substances against AChE and BACE-1, Table S10: Structures of 47 screened substances, Figure S1:
TH-NMR spectrum of F9, Figure S2: 13C-NMR spectrum of F9, Figure S3: 'H-NMR spectrum of F24, Figure S4:
13C-NMR spectrum of F24.
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