Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Total Polyphenols, Flavonoids, and Phenolic Acids in Chocolates
2.2. Determination of the Antioxidant Activity of Samples
2.3. Determination of the Mineral Composition
2.4. Volatile Profile and Composition
3. Materials and Methods
3.1. Experimental Material
3.2. Sample Extracts’ Preparation
3.3. Total Phenolic Content
3.4. Total Flavonoid Content
3.5. Total Phenolic Acid Content
3.6. Antioxidant Activity
3.6.1. DPPH Method
3.6.2. ABTS Method
3.6.3. Ferric-Reducing Power Method
3.7. Mineral Composition
3.8. Volatile Profile and Composition Analysis
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, Y.; Pan, Z.J.; Liao, W.; Li, J.; Gruget, P.; Kitts, D.D.; Lu, X. Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-Fourier transformed-infrared spectroscopy. Food Chem. 2016, 202, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Vanderschueren, R.; Montalvo, D.; De Ketelaere, B.; Delcour, J.A.; Smolders, E. The elemental composition of chocolates is related to cacao content and origin: A multi-element fingerprinting analysis of single origin chocolates. J. Food Compos. Anal. 2019, 83, 103277. [Google Scholar] [CrossRef]
- Żyżelewicz, D.; Oracz, J.; Bogucki, M.; Chachuła, G.; Kaczmarska, M.; Harasimiuk, W. Properties of Origin Chocolate Available on the Polish Market. In Proceedings of the Nauka, Technologia i Innowacje w Żywności i Żywieniu, Łódź, Poland, 3–4 July 2019. [Google Scholar]
- Onomo, P.E.; Niemenak, N.; Djocgoue, P.F.; Ondobo, M.L.; Ndoumou, D.O. Heritability of polyphenols, anthocyanins and antioxidant capacity of Cameroonian cocoa (Theobroma cacao L.) beans. 11. Afr. J. Biotechnol. 2015, 14. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, N.; Whitworth, M.B.; Fowler, M.S.; Fisk, I.D. Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans. Food Chem. 2018, 258, 343–351. [Google Scholar] [CrossRef]
- Othman, A.; Ismail, A.; Abdul Ghani, N.; Adenan, I. Antioxidant capacity and phenolic content of cocoa beans. Food Chem. 2007, 100, 1523–1530. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Paterson, A.; Fowler, M. Factors influencing rheological and textural qualities in chocolate—A review. Trends Food Sci. Technol. 2007, 18, 290–298. [Google Scholar] [CrossRef]
- Steinberg, F.M.; Bearden, M.M.; Keen, C.L. Cocoa and chocolate flavonoids: Implications for cardiovascular health. J. Am. Diet. Assoc. 2003, 103, 215–223. [Google Scholar] [CrossRef]
- Stipanuk, M.H.; Caudill, M.A. Biochemical, Physiological, and Molecular Aspects of Human Nutrition; Elsevier: Milton, ON, Canada, 2019; ISBN 978-0-323-44181-0. [Google Scholar]
- Stone, M.; Martyn, L.; Weaver, C. Potassium Intake, Bioavailability, Hypertension, and Glucose Control. Nutrients 2016, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-07279-3. [Google Scholar]
- Mrmošanin, J.M.; Pavlović, A.N.; Krstić, J.N.; Mitić, S.S.; Tošić, S.B.; Stojković, M.B.; Micić, R.J.; Đorđević, M.S. Multielemental quantification in dark chocolate by ICP OES. J. Food Compos. Anal. 2018, 67, 163–171. [Google Scholar] [CrossRef]
- Kongor, J.E.; Hinneh, M.; de Walle, D.V.; Afoakwa, E.O.; Boeckx, P.; Dewettinck, K. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavour profile—A review. Food Res. Int. 2016, 82, 44–52. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Flavor Formation and Character in Cocoa and Chocolate: A Critical Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 840–857. [Google Scholar] [CrossRef] [PubMed]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor Chemistry of Cocoa and Cocoa Products-An Overview: Flavor chemistry of cocoa. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- Engeseth, N.J.; Ac Pangan, M.F. Current context on chocolate flavor development—A review. Curr. Opin. Food Sci. 2018, 21, 84–91. [Google Scholar] [CrossRef]
- Bolenz, S.; Thiessenhusen, T.; Schape, R. Fast conching for milk chocolate. Eur. Food Res. Technol. 2003, 218, 62–67. [Google Scholar] [CrossRef]
- Beckett, S.T. The Science of Chocolate, 2nd ed.; RSC Publishing: Cambridge, UK, 2008; ISBN 978-0-85404-970-7. [Google Scholar]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M.E. Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Res. Int. 2011, 44, 250–258. [Google Scholar] [CrossRef]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Contreras-Ramos, S.M.; Orozco-Avila, I.; Jaramillo-Flores, E.; Lugo-Cervantes, E. Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem. 2012, 132, 277–288. [Google Scholar] [CrossRef]
- Jumnongpon, R.; Chaiseri, S.; Hongsprabhas, P.; Healy, J.P.; Meade, S.J.; Gerrard, J.A. Cocoa protein crosslinking using Maillard chemistry. Food Chem. 2012, 134, 375–380. [Google Scholar] [CrossRef]
- Osman, H.; Nasarudin, R.; Lee, S.L. Extracts of cocoa (Theobroma cacao L.) leaves and their antioxidation potential. Food Chem. 2004, 86, 41–46. [Google Scholar] [CrossRef]
- Nazaruddin, R.; Ayub, M.Y.; Mamot, S.; Hok, H.C. HPLC determination of methylxanthines and polyphenols levels in cocoa and chocolate products. Malays. J. Anal. Sci. 2001, 7, 377–386. [Google Scholar]
- Cambrai, A.; Marchioni, E.; Julien-David, D.; Marcic, C. Discrimination of Cocoa Bean Origin by Chocolate Polyphenol Chromatographic Analysis and Chemometrics. Food Anal. Methods 2017, 10, 1991–2000. [Google Scholar] [CrossRef]
- Oberrauter, L.-M.; Januszewska, R.; Schlich, P.; Majchrzak, D. Sensory evaluation of dark origin and non-origin chocolates applying Temporal Dominance of Sensations (TDS). Food Res. Int. 2018, 111, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Belščak, A.; Komes, D.; Horžić, D.; Ganić, K.K.; Karlović, D. Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res. Int. 2009, 42, 707–716. [Google Scholar] [CrossRef]
- de RezendecMudenuti, N.V.; de Camargo, A.C.; Shahidi, F.; Madeira, T.B.; Hirooka, E.Y.; Grossmann, M.V.E. Soluble and insoluble-bound fractions of phenolics and alkaloids and their antioxidant activities in raw and traditional chocolate: A comparative study. J. Funct. Foods 2018, 50, 164–171. [Google Scholar] [CrossRef]
- Batista, N.N.; de Andrade, D.P.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Res. Int. 2016, 90, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Mareček, V.; Mikyška, A.; Hampel, D.; Čejka, P.; Neuwirthová, J.; Malachová, A.; Cerkal, R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2017, 73, 40–45. [Google Scholar] [CrossRef]
- World Health Organization. Trace Elements in Human Nutrition and Health; World Health Organization, Food and Agriculture Organization of the United Nations, International Atomic Energy Agency, Eds.; World Health Organization: Geneva, Switzerland, 1996; ISBN 978-92-4-156173-0. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; The National Academies Press: Washington, DC, USA, 2005; ISBN 978-0-309-09169-5. [Google Scholar]
- Cinquanta, L.; Di Cesare, C.; Manoni, R.; Piano, A.; Roberti, P.; Salvatori, G. Mineral essential elements for nutrition in different chocolate products. Int. J. Food Sci. Nutr. 2016, 67, 773–778. [Google Scholar] [CrossRef]
- Torres-Moreno, M.; Torrescasana, E.; Salas-Salvadó, J.; Blanch, C. Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chem. 2015, 166, 125–132. [Google Scholar] [CrossRef]
- EC–European Commission. Commission Regulation (EC) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Off. J. Eur. Unionl 2014, 138, 75. [Google Scholar]
- Food and Agriculture Organization; World Health Organization. Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA); International Life Sciences Institute Press: Washington, DC, USA, 1994. [Google Scholar]
- Barišić, V.; Kopjar, M.; Jozinović, A.; Flanjak, I.; Ačkar, Đ.; Miličević, B.; Šubarić, D.; Jokić, S.; Babić, J. The Chemistry behind Chocolate Production. Molecules 2019, 24, 3163. [Google Scholar] [CrossRef] [Green Version]
- Hinneh, M.; Van de Walle, D.; Tzompa-Sosa, D.A.; Haeck, J.; Abotsi, E.E.; De Winne, A.; Messens, K.; Van Durme, J.; Afoakwa, E.O.; De Cooman, L.; et al. Comparing flavor profiles of dark chocolates refined with melanger and conched with Stephan mixer in various alternative chocolate production techniques. Eur. Food Res. Technol. 2019, 245, 837–852. [Google Scholar] [CrossRef]
- Rottiers, H.; Tzompa Sosa, D.A.; De Winne, A.; Ruales, J.; De Clippeleer, J.; De Leersnyder, I.; De Wever, J.; Everaert, H.; Messens, K.; Dewettinck, K. Dynamics of volatile compounds and flavor precursors during spontaneous fermentation of fine flavor Trinitario cocoa beans. Eur. Food Res. Technol. 2019, 245, 1917–1937. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Flamini, G.; Tessieri, C.; Pistelli, L. From the raw seed to chocolate: Volatile profile of Blanco de Criollo in different phases of the processing chain. Microchem. J. 2017, 133, 474–479. [Google Scholar] [CrossRef]
- Mirković, M.; Seratlić, S.; Kilcawley, K.; Mannion, D.; Mirković, N.; Radulović, Z. The Sensory Quality and Volatile Profile of Dark Chocolate Enriched with Encapsulated Probiotic Lactobacillus plantarum Bacteria. Sensors 2018, 18, 2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1985, 144–158. [Google Scholar]
- Willett, W.C. Balancing Life-Style and Genomics Research for Disease Prevention. Science 2002, 296, 695–698. [Google Scholar] [CrossRef]
- The Polish Farmaceutical Society. Farmakopea Polska; PTFarm: Warsaw, Poland, 1999. [Google Scholar]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food. Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyazu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nut. 1986, 6, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Matrix effects on flavour volatiles release in dark chocolates varying in particle size distribution and fat content using GC–mass spectrometry and GC–olfactometry. Food Chem. 2009, 113, 208–215. [Google Scholar] [CrossRef]
Sample Availability: Samples of the chocolates are available from the authors. |
Sample | TPC [g/kg] | TFC [g/kg] | TPAC [g/kg] |
---|---|---|---|
blend80 | 14.12 ± 0.62 b | 0.31 ± 0.08 a | 13.06 ± 0.27 b |
blend90 | 23.58 ± 1.38 a | 0.44 ± 0.02 a | 16.64 ± 0.01 a |
blend100 | 4.83 ± 0.04 c | 0.19 ± 0.15 b | 8.46 ± 0.01 d |
Origin Madagascar | 21.76 ± 0.44 a | 0.31 ± 0.04 a | 13.48 ± 0.28 b |
Origin Vietnam | 21.00 ± 0.84 a | 0.27 ± 0.00 a | 13.84 ± 0.08 b |
Origin Honduras | 18.78 ± 1.11 a,b | 0.37 ± 0.02 a | 12.39 ± 0.31 c |
Sample | DPPH [g/kg] | ABTS [g/kg] | FRAP [g/kg] |
---|---|---|---|
blend80 | 6.09 ± 0.01 b | 47.19 ± 5.61 b,c | 31.20 ± 0.77 c |
blend90 | 6.11 ± 0.01 b | 64.43 ± 2.43 a | 37.96 ± 1.25 a |
blend100 | 6.19 ± 0.00 a | 36.98 ± 0.41 d | 19.24 ± 0.84 d |
Origin Madagascar | 6.17 ± 0.01 a | 58.21 ± 0.41 b | 31.25 ± 0.26 c |
Origin Vietnam | 6.11 ± 0.01 b | 56.66 ± 2.23 b | 35.10 ± 0.28 b |
Origin Honduras | 6.16 ± 0.00 a | 47.93 ± 0.54 c | 30.67 ± 0.69 c |
Element [mg/g] | Blend80 | Blend90 | Blend100 | Origin Vietnam | Origin Madagascar | Origin Honduras |
---|---|---|---|---|---|---|
Al | ND | 0.0119 | ND | ND | 0.0032 | ND |
As | ND | ND | ND | ND | ND | ND |
Ca | 0.6110 | 0.7025 | 0.9110 | 0.6280 | 0.5565 | 0.4523 |
Cd | ND | 0.0003 | ND | ND | 0.0002 | ND |
Cr | ND | ND | ND | ND | 0.0003 | ND |
Cu | 0.0021 | 0.0113 | 0.0084 | 0.0041 | 0.0067 | 0.0010 |
Fe | ND | 0.1090 | 0.0444 | ND | 0.0796 | ND |
K | 5.4550 | 6.5098 | 8.2400 | 5.4900 | 4.6038 | 4.7450 |
Mg | 2.1331 | 2.5327 | 3.3941 | 2.1576 | 1.8112 | 1.8446 |
Mn | 0.0210 | 0.0215 | 0.0206 | 0.0539 | 0.0156 | 0.0168 |
Mo | ND | ND | 0.0005 | ND | ND | ND |
Na | ND | ND | 0.0013 | 0.0205 | ND | ND |
Ni | ND | 0.0014 | ND | 0.0023 | 0.0030 | ND |
P | 2.4418 | 3.1926 | 3.8668 | 2.5468 | 2.3651 | 2.4208 |
Pb | ND | 0.0006 | ND | 0.0002 | 0.0003 | 0.0005 |
S | 0.8282 | 1.0812 | 1.2092 | 0.8087 | 0.7442 | 0.7987 |
Sr | 0.0081 | ND | 0.0124 | 0.0064 | ND | 0.0033 |
Zn | 0.0074 | ND | 0.0214 | 0.0078 | ND | 0.0039 |
Compound [mg/kg] | Blend80 | Blend90 | Blend100 | Madagascar | Vietnam | Honduras |
---|---|---|---|---|---|---|
Aldehydes | ||||||
Isobutyraldehyde | 0.57 | 1.96 | 3.15 | 2.95 | 1.37 | 0.43 |
3-Methylbutanal | 11.04 | 25.84 | 36.19 | 51.01 | 15.36 | 10.64 |
2-Methylbutanal | 6.50 | 13.55 | 18.87 | 32.44 | 12.29 | 8.07 |
Furfural | ND | 8.54 | 6.43 | 6.40 | ND | 2.94 |
Methional | ND | ND | ND | 8.53 | ND | 1.19 |
Benzaldehyde | 36.26 | 102.79 | 135.60 | 118.84 | 43.49 | 45.18 |
Hyacinthin | 31.79 | 56.45 | 118.66 | 118.09 | 52.15 | 40.84 |
Nonanal | 12.69 | 23.85 | ND | 28.56 | 13.14 | 13.96 |
Caprinaldehyde | ND | ND | 1.39 | ND | ND | ND |
2-Phenyl-crotonaldehyde | 0.58 | ND | 5.13 | 1.08 | 3.11 | 2.97 |
Alcanes | ||||||
n-Hexane | 14.75 | 73.26 | 44.95 | 194.00 | 17.48 | 31.50 |
2,6-Dimethylnonane | ND | ND | ND | ND | ND | 1.18 |
Undecane | ND | ND | ND | 11.16 | ND | ND |
Dodecane | 0.82 | 2.24 | ND | ND | ND | ND |
Alcohols | ||||||
Ethanol | 0.31 | 1.38 | 1.02 | 1.79 | 1.18 | 0.32 |
2-Pentanol | 2.23 | 6.48 | 5.62 | 11.92 | 12.70 | ND |
2,3-Butanediol | 26.15 | 83.94 | 116.90 | 290.34 | 54.86 | 44.47 |
2,3-Butanediol | 20.37 | 69.77 | 71.25 | 311.54 | 29.87 | 24.32 |
Furfurylalcohol | ND | 6.11 | 15.34 | ND | ND | 4.66 |
2-Heptanol | 4.19 | 5.52 | 9.14 | 4.98 | 4.17 | 2.88 |
Phenylmethanol | 5.31 | 9.90 | 11.45 | 20.73 | 7.29 | 4.18 |
2-Nonanol | ND | ND | 30.98 | ND | ND | ND |
2-Phenylethanol | 22.25 | 53.43 | 77.41 | 62.30 | 44.62 | 56.92 |
2-Buthyl-1-oktanol | 2.00 | 11.67 | 9.32 | ND | ND | ND |
Heterocycles | ||||||
Methylpyrazine | ND | ND | ND | ND | ND | 0.80 |
2,5-Dimethylpyrazine | 1.99 | 2.50 | 10.18 | 3.62 | 4.42 | 3.61 |
2,3-Dimethylpyrazine | 2.75 | 8.17 | 8.46 | 15.11 | 2.74 | 3.39 |
2-Ethyl-6-methylpyrazine | 0.47 | ND | 2.65 | ND | ND | 15.23 |
2,3,5-Trimethylpyrazine | 15.01 | 31.40 | 43.35 | 81.39 | ND | ND |
2,6-Dimethyl-3-ethylpyrazine | 0.98 | 6.77 | 6.36 | 4.32 | 2.18 | 3.10 |
Tetramethylpyrazine | 60.31 | 93.01 | 167.66 | 285.74 | 103.76 | 68.40 |
2,3,5-Trimethyl-6-ethylpyrazine | 0.80 | 1.34 | 5.07 | 4.00 | 2.44 | ND |
Toluene | 0.73 | 4.75 | ND | 7.18 | ND | 1.58 |
m-Cymene | 4.10 | 12.79 | 10.95 | 16.44 | 2.64 | 3.23 |
Esters | ||||||
Methyl vinyl ether | 0.59 | 1.86 | 2.19 | 3.11 | 0.72 | 0.70 |
Ethyl acetate | ND | ND | ND | ND | 19.12 | ND |
Isoamyl acetate | ND | ND | ND | ND | ND | 3.49 |
2-Heptyl acetate | 0.46 | ND | ND | ND | ND | 1.36 |
Benzyl acetate | 2.11 | 6.30 | 2.59 | ND | 1.23 | ND |
Ethyl octanoate | 1.65 | 5.30 | 4.36 | ND | 4.71 | 2.39 |
Octyl acetate | ND | ND | ND | 12.74 | ND | ND |
1,2,3-Propanetriyl tris(2-ethylbutanoate) | 1.78 | 5.59 | 5.52 | ND | 2.79 | ND |
Phenyl acetate | 5.84 | 13.50 | 21.10 | 29.86 | 13.21 | 23.39 |
Isoamyl benzoate | 1.83 | ND | ND | ND | 2.41 | ND |
Carboxylic acids | ||||||
Acetic acid | 147.51 | 436.32 | 585.07 | 948.75 | 251.74 | 204.17 |
Propionic acid | 1.64 | ND | ND | ND | ND | ND |
Ketones | ||||||
Acetoine | 4.05 | 6.61 | 6.79 | 11.41 | 4.65 | 4.22 |
2-Heptanone | ND | 6.88 | 7.97 | ND | ND | 2.17 |
2-Acetylfuran | ND | ND | 2.35 | ND | ND | 0.76 |
2-Acetylpyrrole | 5.47 | 13.54 | 23.65 | 20.89 | 2.54 | 5.00 |
2-Nonanone | 3.83 | ND | 10.17 | 2.48 | 2.26 | 3.42 |
Monoterpenes | ||||||
β-Pinene | 1.24 | 5.88 | 3.80 | 9.53 | 1.45 | 2.18 |
Myrcene | 2.68 | 8.06 | 7.09 | ND | ND | 3.39 |
Limonene | 66.12 | 225.11 | 184.95 | 266.34 | 46.85 | 70.20 |
γ-Terpinene | 5.92 | 15.46 | 15.17 | 24.56 | ND | 4.58 |
Linalool | 5.66 | 9.36 | 18.44 | ND | 6.99 | 5.08 |
Others | ||||||
Dimethyl disulfide | ND | ND | 6.23 | ND | ND | ND |
Dichloromethane | 1.02 | 5.07 | 5.96 | 12.88 | 2.46 | 2.66 |
Oxirane, 2-(1,1-dimethylethyl)-3-methyl | 1.46 | 4.70 | 2.98 | 2.81 | 4.16 | 1.47 |
Cycloheptatriene | ND | ND | 3.90 | ND | ND | ND |
Isobutylhydrazine | 47.14 | 143.73 | 94.58 | 605.95 | 79.46 | 46.64 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godočiková, L.; Ivanišová, E.; Zaguła, G.; Noguera-Artiaga, L.; Carbonell-Barrachina, Á.A.; Kowalczewski, P.Ł.; Kačániová, M. Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates. Molecules 2020, 25, 3648. https://doi.org/10.3390/molecules25163648
Godočiková L, Ivanišová E, Zaguła G, Noguera-Artiaga L, Carbonell-Barrachina ÁA, Kowalczewski PŁ, Kačániová M. Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates. Molecules. 2020; 25(16):3648. https://doi.org/10.3390/molecules25163648
Chicago/Turabian StyleGodočiková, Lucia, Eva Ivanišová, Grzegorz Zaguła, Luis Noguera-Artiaga, Ángel A. Carbonell-Barrachina, Przemysław Łukasz Kowalczewski, and Miroslava Kačániová. 2020. "Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates" Molecules 25, no. 16: 3648. https://doi.org/10.3390/molecules25163648
APA StyleGodočiková, L., Ivanišová, E., Zaguła, G., Noguera-Artiaga, L., Carbonell-Barrachina, Á. A., Kowalczewski, P. Ł., & Kačániová, M. (2020). Antioxidant Activities and Volatile Flavor Components of Selected Single-Origin and Blend Chocolates. Molecules, 25(16), 3648. https://doi.org/10.3390/molecules25163648