Opening up the Toolbox: Synthesis and Mechanisms of Phosphoramidates
Abstract
:1. Introduction to Phosphoramidates and their Applications
1.1. Phosphoramidates in Agriculture
1.2. Phosphoramidates in Industry
1.3. Phosphoramidates in Analytical Chemistry
1.4. Phosphoramidates in Synthetic Chemistry
1.5. Phosphoramidates in Pharmaceutical and Medicinal Chemistry
2. Synthetic Routes to Phosphoramidates
2.1. A Brief Historical Timeline of Phosphoramidate Synthesis
2.2. Salt Elimination Route
2.2.1. Modifications to the Atherton–Todd Reaction
2.2.2. Direct Conversion of Diethyl Hydrogen Phosphate
2.2.3. Inorganic Salt Elimination
2.3. Oxidative Cross-Coupling Route
2.3.1. Using Chlorinating Agents
2.3.2. Using Iodinating Agents
2.3.3. Using Transition Metal Catalysts
2.3.4. Using an Organophotocatalyst
2.3.5. Using Alkali–Metal Catalyst
2.4. Azide Route
2.4.1. Nitrene Insertion from Organic Azide
2.4.2. Via In Situ Azide Generation
2.4.3. Via Two-Step Organic Azide Generation
2.4.4. Transition Metal-Free Synthesis from Organic Azide
2.5. Reduction Route
2.5.1. Via Nitro-Group Reduction
2.5.2. Via Catalyst-Free Staudinger Reduction and Lewis-Acid Catalyzed Rearrangement
2.6. Hydrophosphinylation Route
2.7. Phosphoramidate-Aldehyde-Dienophile (PAD) Route
3. Mechanistic Considerations
3.1. Salt Elimination Route
3.1.1. Atherton–Todd Reaction
3.1.2. Direct Conversion of Diethyl Hydrogen Phosphate
3.2. Oxidative Cross-Coupling Route
3.2.1. Using Chlorinating Agents
3.2.2. Using Iodinating Agents
3.2.3. Using Transition Metal Catalyst
3.2.4. Using an Organophotocatalyst
3.2.5. Using Alkali–Metal Catalyst
3.3. Azide Route
3.3.1. Nitrene Insertion from Organic Azide
3.3.2. Organic Azide Generation Route
3.4. Reduction Route
3.4.1. Via Nitro-Group Reduction
3.4.2. Via Catalyst-Free Staudinger Reduction and Lewis-Acid Catalyzed Rearrangement
3.5. Hydrophosphinylation Route
3.6. Phosphoramidate-Aldehyde-Dienophile (PAD) Route
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Chabour, I.; Nájera, C.; Sansano, J.M. Diastereoselective multicomponent phosphoramidate-aldehyde-dienophile (PAD) process for the synthesis of polysubstituted cyclohex-2-enyl-amine derivatives. Tetrahedron 2020, 76, 130801. [Google Scholar] [CrossRef]
- Sekine, M.; Moriguchi, T.; Wada, T.; Seio, K. Total Synthesis of Agrocin 84 and Phosmidosine as Naturally Occurring Nucleotidic Antibiotics Having P-N Bond Linkages. J. Syn. Org. Chem. Jpn. 2001, 59, 1109–1120. [Google Scholar] [CrossRef] [Green Version]
- Petkowski, J.J.; Bains, W.; Seager, S. Natural Products Containing ‘Rare’ Organophosphorus Functional Groups. Molecules 2019, 24, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guijarro, J.I.; González-Pastor, J.E.; Baleux, F.; Millán, J.L.S.; Castilla, M.A.; Rico, M.; Moreno, F.; Delepierre, M. Chemical Structure and Translation Inhibition Studies of the Antibiotic Microcin C7. J. Biol. Chem. 1995, 270, 23520–23532. [Google Scholar] [CrossRef] [Green Version]
- Hatano, M.; Hashimoto, Y. Properties of a toxic phospholipid in the northern blenny roe. Toxicon 1974, 12, 231–236. [Google Scholar] [CrossRef]
- Besant, P.G.; Attwood, P.V.; Piggott, M.J. Focus on Phosphoarginine and Phospholysine. Curr. Protein Pept. Sci. 2009, 10, 536–550. [Google Scholar] [CrossRef]
- Adekoya, O.A.; Sylte, I. Thermolysin. In Encyclopedia of Metalloproteins; Kretsinger, R.H., Uversky, V.N., Permyakov, E.A., Eds.; Springer New York: New York, NY, USA, 2013; pp. 2213–2221. [Google Scholar] [CrossRef]
- Van den Burg, B.; Eijsink, V. Chapter 111-Thermolysin and Related Bacillus Metallopeptidases. In Handbook of Proteolytic Enzymes, 3rd ed.; Rawlings, N.D., Salvesen, G., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 540–553. [Google Scholar] [CrossRef]
- Moriguchi, T.; Asai, N.; Wada, T.; Sekine, M. Synthesis of nucleotide antibiotics having N-acyl phosphoramidate linkages. Nucleic Acids Symp. Ser. 1999, 42, 15–16. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.R.; Uramoto, M.; Isono, K.; McCloskey, J.A. Structure of the antifungal nucleotide antibiotic phosmidosine. J. Org. Chem. 1993, 58, 854–859. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Barbosa, L.C.A.; Ismail, F.M.D. The diverse pharmacology and medicinal chemistry of phosphoramidates—A review. RSC Adv. 2014, 4, 18998–19012. [Google Scholar] [CrossRef]
- Cao, Y.-C.; Deng, Q.-X.; Dai, S.-X. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Gao, X.; Bi, X.; Wei, J.; Peng, Z.; Liu, H.; Jiang, Y.; Wei, W.; Cai, Z. N-phosphorylation labeling for analysis of twenty natural amino acids and small peptides by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 2013, 138, 2632–2639. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-M.; Chang, S.; Condon, B.; Slopek, R.; Graves, E.; Yoshioka-Tarver, M. Structural Effect of Phosphoramidate Derivatives on the Thermal and Flame Retardant Behaviors of Treated Cotton Cellulose. Ind. Eng. Chem. Res. 2013, 52, 4715–4724. [Google Scholar] [CrossRef]
- Qader, B.; Baron, M.G.; Hussain, I.; Johnson, R.P.; Gonzalez-Rodriguez, J. Electrochemical determination of the organophosphate compound Fenamiphos and its main metabolite, Fenamiphos sulfoxide. Mon. Chem. 2019, 150, 411–417. [Google Scholar] [CrossRef]
- Rodrigues Furtado Medeiros, A.C.; Gouvêa, M.M.; Felipe, T.V.; Marques, F.F.d.C.; Bernardino, A.M.R.; López Ortiz, F.; de Souza, M.C. New o-substituted diphenylphosphinic amide ligands: Synthesis, characterization and complexation with Zn2+, Cu2+ and Y3+. New J. Chem. 2019, 43, 13881–13890. [Google Scholar] [CrossRef]
- Xie, X.; Qin, Z.; He, Y.; Xiong, P.; Huang, Z.; Mao, Y.; Wei, H.; Zhuo, L. Significant enhanced uranyl ions extraction efficiency with phosphoramidate-functionalized ionic liquids via synergistic effect of coordination and hydrogen bond. Sci. Rep. 2017, 7, 15735. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Bai, X.; Li, J.; Ren, T.; Zhao, Y. The tribochemical study of novel phosphorous-nitrogen (P-N) type phosphoramidate additives in water. Ind. Lubr. Tribol. 2014, 66, 346–352. [Google Scholar] [CrossRef]
- Kang, J.; Zettel, V.H.; Ward, N.I. The Organophosphate Pesticides. J. Nutr. Environ. Med. 1995, 5, 325–339. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Barbosa, L.C.A.; Teixeira, R.R.; Demuner, A.J.; Maltha, C.R.Á.; Picanço, M.C.; Silva, G.A.; de Paula, V.F. Synthesis and insecticidal activity of new phosphoramidates. J. Pestic. Sci. 2012, 37, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Rezg, R.; Mornagui, B.; El-Fazaa, S.; Gharbi, N. Organophosphorus pesticides as food chain contaminants and type 2 diabetes: A review. Trends Food Sci. Technol. 2010, 21, 345–357. [Google Scholar] [CrossRef]
- Costa, L.G. Current issues in organophosphate toxicology. Clin. Chim. Acta 2006, 366, 1–13. [Google Scholar] [CrossRef]
- Eto, M.; Kobayashi, K.; Kato, T.; Kojima, K.; Oshima, Y. Saligenin Cyclic Phosphoramidates and Phosphoramidothionates as Pesticides. Agric. Biol. Chem. 1965, 29, 243–248. [Google Scholar] [CrossRef]
- Paula, V.F.; Barbosa, L.C.A.; Teixeira, R.R.; Picanço, M.C.; Silva, G.A. Synthesis and insecticidal activity of new 3-benzylfuran-2-yl N,N,N′,N′-tetraethyldiamidophosphate derivatives. Pest. Manag. Sci. 2008, 64, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, Y.; Katagiri, M.; Noda, O. Negatively Correlated Cross-resistance and Synergism between Phosphoramidates and Phosphorothiolates in Their Fungicidal Actions on Rice Blast Fungi. Agric. Biol. Chem. 1974, 38, 907–912. [Google Scholar] [CrossRef]
- Modolo, L.V.; da-Silva, C.J.; Brandão, D.S.; Chaves, I.S. A minireview on what we have learned about urease inhibitors of agricultural interest since mid-2000s. J. Adv. Res. 2018, 13, 29–37. [Google Scholar] [CrossRef]
- Domínguez, M.J.; Sanmartín, C.; Font, M.; Palop, J.A.; San Francisco, S.; Urrutia, O.; Houdusse, F.; García-Mina, J.M. Design, Synthesis, and Biological Evaluation of Phosphoramide Derivatives as Urease Inhibitors. J. Agric. Food Chem. 2008, 56, 3721–3731. [Google Scholar] [CrossRef]
- Kafarski, P.; Talma, M. Recent advances in design of new urease inhibitors: A review. J. Adv. Res. 2018, 13, 101–112. [Google Scholar] [CrossRef]
- Rego, Y.F.; Queiroz, M.P.; Brito, T.O.; Carvalho, P.G.; de Queiroz, V.T.; de Fátima, Â.; Macedo, F., Jr. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J. Adv. Res. 2018, 13, 69–100. [Google Scholar] [CrossRef]
- Yan, J.; Bu, J.; Bai, X.; Li, J.; Ren, T.; Zhao, Y. The tribological study of novel phosphorous–nitrogen type phosphoramidate additives in rapeseed oil. Proc. Inst. Mech. Eng. Part J: J. Eng. 2012, 226, 377–388. [Google Scholar] [CrossRef]
- Shaw, S.; Blum, A.; Weber, R.; Rich, D.; Lucas, D.; Koshland, C.; Dobraca, D.; Hanson, S.; Birnbaum, L. Halogenated flame retardants: Do the fire safety benefits justify the risks? Rev. Environ. Health 2010, 25, 261–305. [Google Scholar] [CrossRef]
- Gaan, S.; Mauclaire, L.; Rupper, P.; Salimova, V.; Tran, T.-T.; Heuberger, M. Thermal degradation of cellulose acetate in presence of bis-phosphoramidates. J. Anal. Appl. Pyrolysis 2011, 90, 33–41. [Google Scholar] [CrossRef]
- Hirsch, C.; Striegl, B.; Mathes, S.; Adlhart, C.; Edelmann, M.; Bono, E.; Gaan, S.; Salmeia, K.A.; Hoelting, L.; Krebs, A.; et al. Multiparameter toxicity assessment of novel DOPO-derived organophosphorus flame retardants. Arch. Toxicol. 2017, 91, 407–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neisius, M.; Liang, S.; Mispreuve, H.; Gaan, S. Phosphoramidate-Containing Flame-Retardant Flexible Polyurethane Foams. Ind. Eng. Chem. Res. 2013, 52, 9752–9762. [Google Scholar] [CrossRef]
- Salmeia, K.A.; Gaan, S.; Malucelli, G. Recent Advances for Flame Retardancy of Textiles Based on Phosphorus Chemistry. Polymers 2016, 8, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SeChin, C.; Brian, C.; Jade, S. Microwave Assisted Preparation of Self-Extinguishing Cotton Fabrics by Small Molecules Containing Phosphorous and Nitrogen. Curr. Microw. Chem. 2019, 6, 3–12. [Google Scholar] [CrossRef]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angew. Chem. Int. Ed. 2018, 57, 10450–10467. [Google Scholar] [CrossRef] [Green Version]
- Edwards, B.; Rudolf, S.; Hauser, P.; El-Shafei, A. Preparation, Polymerization, and Performance Evaluation of Halogen-Free Radiation Curable Flame Retardant Monomers for Cotton Substrates. Ind. Eng. Chem. Res. 2015, 54, 577–584. [Google Scholar] [CrossRef]
- Markwart, J.C.; Battig, A.; Zimmermann, L.; Wagner, M.; Fischer, J.; Schartel, B.; Wurm, F.R. Systematically Controlled Decomposition Mechanism in Phosphorus Flame Retardants by Precise Molecular Architecture: P–O vs P–N. ACS Appl. Polym. Mater. 2019, 1, 1118–1128. [Google Scholar] [CrossRef] [Green Version]
- Rupper, P.; Gaan, S.; Salimova, V.; Heuberger, M. Characterization of chars obtained from cellulose treated with phosphoramidate flame retardants. J. Anal. Appl. Pyrolysis 2010, 87, 93–98. [Google Scholar] [CrossRef]
- Zhao, W.; Li, B.; Xu, M.; Yang, K.; Lin, L. Novel intumescent flame retardants: Synthesis and application in polycarbonate. Fire Mater. 2013, 37, 530–546. [Google Scholar] [CrossRef]
- Jurinke, C.; Oeth, P.; van den Boom, D. MALDI-TOF mass spectrometry. Mol. Biotechnol. 2004, 26, 147–163. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Q.; Zou, H.; Guo, B.; Ni, J. A Method for the Analysis of Low-Mass Molecules by MALDI-TOF Mass Spectrometry. Anal. Chem. 2002, 74, 1637–1641. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Tang, Z.; Lu, M.; Liu, H.; Jiang, Y.; Zhao, Y.; Cai, Z. Suppression of matrix ions by N-phosphorylation labeling using matrix-assisted laser desorption–ionization time-of-flight mass spectrometry. Chem. Commun. 2012, 48, 10198–10200. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Tiwari, N.; Deb, S.; Saxena, M. Selective Liquid-Liquid Extraction of Uranium by Phosphoramidate-Group Bearing Ionic Liquid. ChemistrySelect 2019, 4, 7691–7697. [Google Scholar] [CrossRef]
- Saha, A.; Sanyal, K.; Rawat, N.; Deb, S.B.; Saxena, M.K.; Tomar, B.S. Selective Micellar Extraction of Ultratrace Levels of Uranium in Aqueous Samples by Task Specific Ionic Liquid Followed by Its Detection Employing Total Reflection X-ray Fluorescence Spectrometry. Anal. Chem. 2017, 89, 10422–10430. [Google Scholar] [CrossRef]
- Drover, M.W.; Christopherson, C.J.; Schafer, L.L.; Love, J.A. C(sp3)–H Bond Activation Induced by Monohydroborane Coordination at an Iridium(III)–Phosphoramidate Complex. Eur. J. Inorg. Chem. 2017, 2017, 2639–2642. [Google Scholar] [CrossRef]
- Drover, M.W.; Love, J.A.; Schafer, L.L. Toward anti-Markovnikov 1-Alkyne O-Phosphoramidation: Exploiting Metal–Ligand Cooperativity in a 1,3-N,O-Chelated Cp*Ir(III) Complex. J. Am. Chem. Soc. 2016, 138, 8396–8399. [Google Scholar] [CrossRef]
- Drover, M.W.; Love, J.A.; Schafer, L.L. 1,3-N,O-Complexes of late transition metals. Ligands with flexible bonding modes and reaction profiles. Chem. Soc. Rev. 2017, 46, 2913–2940. [Google Scholar] [CrossRef]
- Garcia, P.; Lau, Y.Y.; Perry, M.R.; Schafer, L.L. Phosphoramidate tantalum complexes for room-temperature C-H functionalization: Hydroaminoalkylation catalysis. Angew. Chem. Int. Ed. 2013, 52, 9144–9148. [Google Scholar] [CrossRef]
- Yang, T.; Lin, C.; Fu, H.; Jiang, Y.; Zhao, Y. Copper-Catalyzed Synthesis of Medium- and Large-Sized Nitrogen Heterocycles via N-Arylation of Phosphoramidates and Carbamates. Org. Lett. 2005, 7, 4781–4784. [Google Scholar] [CrossRef]
- Chary, B.C.; Kim, S.; Park, Y.; Kim, J.; Lee, P.H. Palladium-Catalyzed C–H Arylation Using Phosphoramidate as a Directing Group at Room Temperature. Org. Lett. 2013, 15, 2692–2695. [Google Scholar] [CrossRef]
- Reddy, S.M.; Rao, D.S.; Madhu, K.; Subramanyam, C.; Kumari, P.G.; Raju, C.N. 2-(Benzo[d]thiazol-2-yl) phenyl-4-nitrophenyl alkyl/aryl substituted phosphoramidates: Synthesis, characterization and antimicrobial activity evaluation. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 136–140. [Google Scholar] [CrossRef]
- Ji, Q.; Ge, Z.; Ge, Z.; Chen, K.; Wu, H.; Liu, X.; Huang, Y.; Yuan, L.; Yang, X.; Liao, F. Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur. J. Med. Chem. 2016, 108, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Rasool, N.; Chennamsetty, S.; Janakiramudu, D.; Perikala, S.; Usha, R.; Raju, C. Convenient one-pot synthesis and biological evaluation of phosphoramidates and phosphonates containing heterocycles. Phosphorus Sulfur Silicon Relat. Elem. 2018, 193, 1–14. [Google Scholar] [CrossRef]
- Rasheed, S.; Madhava, G.; Basha, S.T.; Fareeda, G.; Raju, C.N. Synthesis, spectral characterization, and pro- and antioxidant activity of phosphorylated derivatives of cis-tramadol. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 1247–1251. [Google Scholar] [CrossRef]
- McGuigan, C.; Thiery, J.-C.; Daverio, F.; Jiang, W.G.; Davies, G.; Mason, M. Anti-cancer ProTides: Tuning the activity of BVDU phosphoramidates related to thymectacin. Bioorg. Med. Chem. 2005, 13, 3219–3227. [Google Scholar] [CrossRef]
- Mara, C.; Dempsey, E.; Bell, A.; Barlow, J.W. Synthesis and evaluation of phosphoramidate and phosphorothioamidate analogues of amiprophos methyl as potential antimalarial agents. Bioorg. Med. Chem. Lett. 2011, 21, 6180–6183. [Google Scholar] [CrossRef]
- Slusarczyk, M.; Serpi, M.; Pertusati, F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir. Chem. Chemother. 2018, 26. [Google Scholar] [CrossRef] [Green Version]
- Okon, A.; Matos de Souza, M.R.; Shah, R.; Amorim, R.; da Costa, L.J.; Wagner, C.R. Anchimerically Activatable Antiviral ProTides. ACS Med. Chem. Lett. 2017, 8, 958–962. [Google Scholar] [CrossRef]
- Li, X.; Fu, H.-H.; Jiang, Y.; Zhao, Y.; Jin, J. New and Efficient Approach to Aryl Phosphoramidate Derivatives of AZT/d4T as Anti-HIV Prodrugs. Synlett 2004, 14, 2600–2602. [Google Scholar] [CrossRef]
- Mehellou, Y.; Balzarini, J.; McGuigan, C. Aryloxy Phosphoramidate Triesters: A Technology for Delivering Monophosphorylated Nucleosides and Sugars into Cells. ChemMedChem 2009, 4, 1779–1791. [Google Scholar] [CrossRef]
- Mehellou, Y.; Rattan, H.S.; Balzarini, J. The ProTide Prodrug Technology: From the Concept to the Clinic. J. Med. Chem. 2018, 61, 2211–2226. [Google Scholar] [CrossRef] [PubMed]
- Amirian, E.S.; Levy, J.K. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health 2020, 9, 100128. [Google Scholar] [CrossRef]
- Wang, J.; Gao, S.J.; Zhang, P.C.; Wang, S.; Mao, H.Q.; Leong, K.W. Polyphosphoramidate gene carriers: Effect of charge group on gene transfer efficiency. Gene Ther. 2004, 11, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.-C.; Wang, J.; Leong, K.W.; Mao, H.-Q. Ternary Complexes Comprising Polyphosphoramidate Gene Carriers with Different Types of Charge Groups Improve Transfection Efficiency. Biomacromolecules 2005, 6, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.; Hui, H.C.; Doerffler, E.; Clarke, M.O.; Chun, K.; Zhang, L.; Neville, S.; Carra, E.; Lew, W.; Ross, B.; et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1-f][triazin-4-amino] Adenine C-Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017, 60, 1648–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benkovic, S.J.; Sampson, E.J. Structure-reactivity correlation for the hydrolysis of phosphoramidate monoanions. J. Am. Chem. Soc. 1971, 93, 4009–4016. [Google Scholar] [CrossRef]
- Oney, I.; Caplow, M. Phosphoramidate solvolysis. J. Am. Chem. Soc. 1967, 89, 6972–6980. [Google Scholar] [CrossRef]
- Choy, C.J.; Geruntho, J.J.; Davis, A.L.; Berkman, C.E. Tunable pH-Sensitive Linker for Controlled Release. Bioconjug. Chem. 2016, 27, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Choy, C.J.; Ley, C.R.; Davis, A.L.; Backer, B.S.; Geruntho, J.J.; Clowers, B.H.; Berkman, C.E. Second-Generation Tunable pH-Sensitive Phosphoramidate-Based Linkers for Controlled Release. Bioconjug. Chem. 2016, 27, 2206–2213. [Google Scholar] [CrossRef]
- Olatunji, F.P.; Kesic, B.N.; Choy, C.J.; Berkman, C.E. Phosphoramidate derivates as controlled-release prodrugs of l-Dopa. Bioorg. Med. Chem. Lett. 2019, 29, 2571–2574. [Google Scholar] [CrossRef]
- Zakirova, N.F.; Shipitsyn, A.V.; Jasko, M.V.; Prokofjeva, M.M.; Andronova, V.L.; Galegov, G.A.; Prassolov, V.S.; Kochetkov, S.N. Phosphoramidate derivatives of acyclovir: Synthesis and antiviral activity in HIV-1 and HSV-1 models in vitro. Bioorg. Med. Chem. 2012, 20, 5802–5809. [Google Scholar] [CrossRef]
- Fiske, C.H.; Subbarow, Y. The nature of the "inorganic phosphate" in voluntary muscle. Science 1927, 65, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Fiske, C.H.; Subbarow, Y. Phosphorus compounds of muscle and liver. Science 1929, 70, 381–382. [Google Scholar] [CrossRef] [PubMed]
- Audrieth, L.F.; Toy, A.D.F. The Aquo Ammono Phosphoric Acids. I. Preparation of Phenyl Esters of Amido- and Diamidophosphoric Acids. J. Am. Chem. Soc. 1941, 63, 2117–2119. [Google Scholar] [CrossRef]
- Audrieth, L.F.; Toy, A.D.F. The Aquo Ammono Phosphoric Acids. II. Preparation of N-Substituted Derivatives of the Phenyl Esters of Amido- and Diamidophosphoric Acids. J. Am. Chem. Soc. 1942, 64, 1337–1339. [Google Scholar] [CrossRef]
- Atherton, F.R.; Openshaw, H.T.; Todd, A.R. 174. Studies on phosphorylation. Part II. The reaction of dialkyl phosphites with polyhalogen compounds in presence of bases. A new method for the phosphorylation of amines. J. Chem. Soc. 1945, 660–663. [Google Scholar] [CrossRef]
- Atherton, F.R.; Todd, A.R. 129. Studies on phosphorylation. Part III. Further observations on the reaction of phosphites with polyhalogen compounds in presence of bases and its application to the phosphorylation of alcohols. J. Chem. Soc. 1947, 674–678. [Google Scholar] [CrossRef]
- Atherton, F.R.; Howard, H.T.; Todd, A.R. 220. Studies on phosphorylation. Part IV. Further studies on the use of dibenzyl chlorophosphonate and the examination of certain alternative phosphorylation methods. J. Chem. Soc. 1948, 1106–1111. [Google Scholar] [CrossRef]
- Wagner-Jauregg, T.; O’Neill, J.J.; Summerson, W.H. The Reaction of Phosphorus-containing Enzyme Inhibitors with Amines and Amino Acid Derivatives1. J. Am. Chem. Soc. 1951, 73, 5202–5206. [Google Scholar] [CrossRef]
- Nielsen, M.L. The Formation of P-N and P-N-P Bonds by Elimination of Phenol in a Basic Condensation. Inorg. Chem. 1964, 3, 1760–1767. [Google Scholar] [CrossRef]
- Sundberg, R.J. Deoxygenation of Nitro Groups by Trivalent Phosphorus. Indoles from o-Nitrostyrenes. J. Org. Chem. 1965, 30, 3604–3610. [Google Scholar] [CrossRef]
- Cadogan, J.I.G.; Mackie, R.K.; Maynard, J.A. The Reactivity of Organophosphorus Compounds. Part XX1. P=O Nucleophilicity in Phosphonates and Phosphoramidates. J. Chem. Soc. C 1967, 1356–1360. [Google Scholar] [CrossRef]
- Cadogan, J.I.G.; Sears, D.J.; Smith, D.M.; Todd, M.J. Reduction of nitro- and nitroso-compounds by tervalent phosphorus reagents. Part V. Reduction of alkyl- and methoxy-nitrobenzenes, and nitrobenzene by trialkyl phosphites. J. Chem. Soc. C 1969, 2813–2819. [Google Scholar] [CrossRef]
- Zwierzak, A. Phase-Transfer-Catalysed Phosphorylation of Amines in an Aqueous System. Synthesis 1975, 1975, 507–509. [Google Scholar] [CrossRef]
- Zwierzak, A. Selective N-Alkylation of Diethyl Phosphoramidate: Tetrabutylaminium Bromide as Catalyst for Nucleophilic Substitution in a Homogeneous Medium. Synthesis 1982, 1982, 920–922. [Google Scholar] [CrossRef]
- Zwierzak, A.; Osowska, K. A Convenient Method for the Protection of Amino Groups as Diethyl Phosphoramidates. Synthesis 1984, 1984, 223–224. [Google Scholar] [CrossRef]
- Zwierzak, A.; Osowska-Pacewicka, K. Direct conversion of diethyl hydrogen phosphate into diethyl phosphoramides. Mon. Chem. 1984, 115, 117–120. [Google Scholar] [CrossRef]
- Steinbach, J.; Herrmann, E.; Riesel, L. Zur Umsetzung des Zweikomponentensystems Trialkylphosphit/Tetrachlorkohlenstoff mit wasserstoffhaltigen Nucleophilen 2. Die Reaktion mit Ammoniak und Aminen. Z. Anorg. Aallg. Chem. 1985, 523, 180–186. [Google Scholar] [CrossRef]
- Nielsen, J.; Caruthers, M.H. Directed Arbuzov-type reactions of 2-cyano-1,1-dimethylethyl deoxynucleoside phosphites. J. Am. Chem. Soc. 1988, 110, 6275–6276. [Google Scholar] [CrossRef]
- Koziara, A. A facile one-pot transformation of alkyl bromides into Diethyl N-Alkylphosphoroamidates. J. Praktische Chem. 1988, 330, 473–475. [Google Scholar] [CrossRef]
- Talley, J.J. Preparation of sterically hindered phosphoramidates. J. Chem. Eng. Data 1988, 33, 221–222. [Google Scholar] [CrossRef]
- Ou, Y.; Huang, Y.; He, Z.; Yu, G.; Huo, Y.; Li, X.; Gao, Y.; Chen, Q. A phosphoryl radical-initiated Atherton–Todd-type reaction under open air. Chem. Commun. 2020, 56, 1357–1360. [Google Scholar] [CrossRef] [PubMed]
- Lukanov, L.K.; Venkov, A.P.; Mollov, N.M. A New Approach to the Atherton-Todd Reaction. Synthesis 1985, 1985, 971–973. [Google Scholar] [CrossRef]
- Gupta, A.K.; Acharya, J.; Dubey, D.K.; Kaushik, M.P. Efficient and Convenient One-Pot Synthesis of Phosphoramidates and Phosphates. Synth. Commun. 2007, 37, 3403–3407. [Google Scholar] [CrossRef]
- Kaboudin, B.; Donyavi, A.; Kazemi, F. Trichloroisocyanuric Acid as an Efficient Reagent for the Synthesis of Phosphoroamidates via Atherton–Todd Reaction under Base-Free Conditions. Synthesis 2018, 50, 170–174. [Google Scholar] [CrossRef]
- Jang, D.O.; Kasemsuknimit, A.; Satyender, A.; Chavasiri, W. Efficient Amidation and Esterification of Phosphoric Acid Using Cl3CCN/Ph3P. Bull. Korean Chem. Soc. 2011, 32, 3486–3488. [Google Scholar] [CrossRef] [Green Version]
- Appel, R.; Einig, H. Neues Verfahren zur Darstellung von Phosphorsäureesteramiden, Phosphinsäureamiden, Phosphinsäureestern und gemischt substituierten Phosphorsäuretriestern. Z. Anorg. Aallg. Chem. 1975, 414, 241–246. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, Z.; Chu, H.; Wang, B.; Peng, A.-Y. Reinvestigation of the iodine-mediated phosphoramidation reaction of amines and P(OR)3 and its synthetic applications. Org. Biomol. Chem. 2018, 16, 6783–6790. [Google Scholar] [CrossRef]
- Dar, B.A.; Dangroo, N.A.; Gupta, A.; Wali, A.; Khuroo, M.A.; Vishwakarma, R.A.; Singh, B. Iodine catalyzed solvent-free cross-dehydrogenative coupling of arylamines and H-phosphonates for the synthesis of N-arylphosphoramidates under atmospheric conditions. Tetrahedron Lett. 2014, 55, 1544–1548. [Google Scholar] [CrossRef]
- Dhineshkumar, J.; Prabhu, K.R. Cross-Hetero-Dehydrogenative Coupling Reaction of Phosphites: A Catalytic Metal-Free Phosphorylation of Amines and Alcohols. Org. Lett. 2013, 15, 6062–6065. [Google Scholar] [CrossRef]
- Fraser, J.; Wilson, L.J.; Blundell, R.K.; Hayes, C.J. Phosphoramidate synthesis via copper-catalysed aerobic oxidative coupling of amines and H-phosphonates. Chem. Commun. 2013, 49, 8919–8921. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yu, Q.-Y.; Chen, S.-Y.; Yu, X.-Q. Copper-catalyzed aerobic oxidative cross-coupling of arylamines and dialkylphosphites leading to N-arylphosphoramidates. Tetrahedron Lett. 2013, 54, 6230–6232. [Google Scholar] [CrossRef]
- Kaboudin, B.; Kazemi, F.; Habibi, F. Fe3O4@MgO nanoparticles as an efficient recyclable catalyst for the synthesis of phosphoroamidates via the Atherton–Todd reaction. Tetrahedron Lett. 2015, 56, 6364–6367. [Google Scholar] [CrossRef]
- Purohit, A.K.; Pardasani, D.; Kumar, A.; Goud, D.R.; Jain, R.; Dubey, D.K. A single-step one pot synthesis of O,O′-dialkyl N,N-dialkylphosphoramidates from dialkylphosphites. Tetrahedron Lett. 2016, 57, 3754–3756. [Google Scholar] [CrossRef]
- Jin, X.; Yamaguchi, K.; Mizuno, N. Copper-Catalyzed Oxidative Cross-Coupling of H-Phosphonates and Amides to N-Acylphosphoramidates. Org. Lett. 2013, 15, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, J.; Chen, T.; Yin, S.-F.; Han, D.; Han, L.-B. Stereospecific Aerobic Oxidative Dehydrocoupling of P(O)–H Bonds with Amines Catalyzed by Copper. Bull. Chem. Soc. Jpn. 2014, 87, 400–402. [Google Scholar] [CrossRef]
- Dangroo, N.A.; Ara, T.; Dar, B.A.; Khuroo, M.A. Copper catalyzed tandem Chan–Lam type C—N and Staudinger-phosphite N—P coupling for the synthesis of N-arylphosphoramidates. Catal. Commun. 2019, 118, 76–80. [Google Scholar] [CrossRef]
- Meazza, M.; Kowalczuk, A.; Shirley, L.; Yang, J.W.; Guo, H.; Rios, R. Organophotocatalytic Synthesis of Phosphoramidates. Adv. Synth. Catal. 2016, 358, 719–723. [Google Scholar] [CrossRef] [Green Version]
- Anitha, T.; Ashalu, K.C.; Sandeep, M.; Mohd, A.; Wencel-Delord, J.; Colobert, F.; Reddy, K.R. LiI/TBHP Mediated Oxidative Cross-Coupling of P(O)–H Compounds with Phenols and Various Nucleophiles: Direct Access to the Synthesis of Organophosphates. Eur. J. Org. Chem. 2019, 2019, 7463–7474. [Google Scholar] [CrossRef]
- Kim, H.; Park, J.; Kim, J.G.; Chang, S. Synthesis of Phosphoramidates: A Facile Approach Based on the C-N Bond Formation via Ir-Catalyzed Direct C–H Amidation. Org. Lett. 2014, 16, 5466–5469. [Google Scholar] [CrossRef]
- Xiao, W.; Zhou, C.-Y.; Che, C.-M. Ruthenium(iv) porphyrin catalyzed phosphoramidation of aldehydes with phosphoryl azides as a nitrene source. Chem. Commun. 2012, 48, 5871–5873. [Google Scholar] [CrossRef]
- Pan, C.; Jin, N.; Zhang, H.; Han, J.; Zhu, C. Iridium-Catalyzed Phosphoramidation of Arene C–H Bonds with Phosphoryl Azide. J. Org. Chem. 2014, 79, 9427–9432. [Google Scholar] [CrossRef]
- Dar, B.A. Catalyst free, one pot synthesis of phosphoramidates under environment friendly conditions. J. Ind. Eng. Chem. 2016, 36, 194–197. [Google Scholar] [CrossRef]
- Dangroo, N.A.; Dar, A.A.; Shankar, R.; Khuroo, M.A.; Sangwan, P.L. An efficient synthesis of phosphoramidates from halides in aqueous ethanol. Tetrahedron Lett. 2016, 57, 2717–2722. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X.; Yang, X.; Wu, M.; Sun, S.; Chen, X. Transition-metal-free amination phosphoryl azide for the synthesis of phosphoramidates. RSC Adv. 2019, 9, 16040–16043. [Google Scholar] [CrossRef] [Green Version]
- Haggam, R.; Conrad, J.; Beifuss, U. Practical and reliable synthesis of dialkyl N-arylphosphoramidates with nitroarenes as substrates. Tetrahedron Lett. 2009, 50, 6627–6630. [Google Scholar] [CrossRef]
- Wilkening, I.; del Signore, G.; Hackenberger, C.P.R. Synthesis of N,N-disubstituted phosphoramidatesvia a Lewis acid-catalyzed phosphorimidate rearrangement. Chem. Commun. 2008, 2932–2934. [Google Scholar] [CrossRef]
- Zimin, M.G.; Dvoinishnikova, T.A.; Konovalova, I.V.; Pudovik, A.N. Reaction of sodium salts of dialkylphosphorous acids with carboxylic acid nitriles. Bull. Acad. Sci. USSR Div. Chem. Sci. 1978, 27, 436–437. [Google Scholar] [CrossRef]
- Mitova, V.; Koseva, N.; Troev, K. Study on the Atherton–Todd reaction mechanism. RSC Adv. 2014, 4, 64733–64736. [Google Scholar] [CrossRef]
- Salvatore, R.N.; Nagle, A.S.; Jung, K.W. Cesium Effect: High Chemoselectivity in Direct N-Alkylation of Amines. J. Org. Chem. 2002, 67, 674–683. [Google Scholar] [CrossRef]
- Parrish, J.P.; Dueno, E.E.; Kim, S.-I.; Jung, K.W. Improved Cs2CO3 Promoted O-Alkylation of Acids. Synth. Commun. 2000, 30, 2687–2700. [Google Scholar] [CrossRef]
- Bunton, C.A.; Moffatt, J.R.; Rodenas, E. Abnormally high nucleophilicity of micellar-bound azide ion. J. Am. Chem. Soc. 1982, 104, 2653–2655. [Google Scholar] [CrossRef]
- Beckmann, H.S.G.; Wittmann, V. One-Pot Procedure for Diazo Transfer and Azide−Alkyne Cycloaddition: Triazole Linkages from Amines. Org. Lett. 2007, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
Route | Catalyst | Reaction Conditions | R | R’, R’’ | Yield Range/% | Ref. |
---|---|---|---|---|---|---|
a | 20 mol% CuI | MeCN, 55 °C | Me, Et, i-Pr | H, alkyl | 16–98 | [103] |
b | 5 mol% CuBr | EtOAc, 20 °C | Et, i-Pr, Bu | H, Ph, functional Ph | 20–94 | [104] |
c | 15 mol% Fe3O4@MgO | CCl4, 20 °C | Et, i-Pr | H, Ph, Bn, cycloalkyl | 52–85 | [105] |
d | 200 mol% CuCl2 | Acetone, Cs2CO3, 20 °C | Me, Et, Pr, i-Pr | H, alkyl | 25–93 | [106] |
e | 10 mol% Cu(OAc)2 | Toluene, K2CO3, mol. sieve, 80 °C | Me, Et, i-Pr, Bu | RCOR a | 52–99 | [107] |
f | 2 mol% CuBr | EtOAc, 25 °C | Me, Et, i-Pr, Bu, Ph | H, alkyl, cycloalkyl, R b | 86–96 | [108] |
g | 5 mol% Cu(OAc)2 | MeOH, NaN3, 20 °C | Et c | R-B(OH)2 d | 67–93 | [109] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itumoh, E.J.; Data, S.; Leitao, E.M. Opening up the Toolbox: Synthesis and Mechanisms of Phosphoramidates. Molecules 2020, 25, 3684. https://doi.org/10.3390/molecules25163684
Itumoh EJ, Data S, Leitao EM. Opening up the Toolbox: Synthesis and Mechanisms of Phosphoramidates. Molecules. 2020; 25(16):3684. https://doi.org/10.3390/molecules25163684
Chicago/Turabian StyleItumoh, Emeka J., Shailja Data, and Erin M. Leitao. 2020. "Opening up the Toolbox: Synthesis and Mechanisms of Phosphoramidates" Molecules 25, no. 16: 3684. https://doi.org/10.3390/molecules25163684
APA StyleItumoh, E. J., Data, S., & Leitao, E. M. (2020). Opening up the Toolbox: Synthesis and Mechanisms of Phosphoramidates. Molecules, 25(16), 3684. https://doi.org/10.3390/molecules25163684