Immunomodulatory Activity and Phytochemical Profile of Infusions from Cleavers Herb
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Screening of G. aparine Herb Aqueous Extract
2.2. Quantification of Main Groups of BAFs
2.3. Chemical Composition of Investigated Infusion and BAFs
2.4. In Vitro Reaction of Lymphocyte Blast Transformation
2.5. Antioxidant Activity of Infusion and BAFs Using Cell Free Models
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals
4.3. Preparation of the Extract and BAF Complexes
4.4. Preliminary Phytochemical Screening of G. aparine Herb Extract and PPC
4.5. Quantification Phytochemicals by Using Chemical Methods
4.6. UHPLC-DAD-MS3 Analysis of Galium Aparine Infusion and Bioactive Fractions (BAFs)
4.7. Quantification of Phenolics and Iridoids Contained in Analyzed Samples
4.8. Study of Immunomodulatory Activity
4.9. Evaluation of Antioxidant Activity of Infusion and BAFs Using Cell Free Models
4.9.1. Scavenging of the DPPH Radical
4.9.2. Scavenging of Hydrogen Peroxide
4.9.3. Scavenging of Nitrogen Oxide
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sell, P.; Murrell, G. Flora of Great Britain and Ireland: Volume 4: Campanulaceae–Asteraceae; Cambridge University Press: Cambridge, UK, 2006; Volume 4. [Google Scholar]
- Brickell, C. Encyclopedia of Plants and Flowers; DK Publishing: London, UK, 2019. [Google Scholar]
- Willoughby, M.J.; Mills, S. British Herbal Pharmacopoeia, 1996; British Herbal Medicine Association: Gloucestershire, UK, 1996. [Google Scholar]
- Newall, C.A.; Anderson, L.A.; Phillipson, J.D. Herbal Medicines: A Guide for Health-Care Professionals; Pharmaceutical Press: London, UK, 1996. [Google Scholar]
- Dei Cas, L.; Pugni, F.; Fico, G. Tradition of use on medicinal species in Valfurva (Sondrio, Italy). J. Ethnopharmacol. 2015, 163, 113–134. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.D.; Chopin, S.F.; Buck, G.; Martinez, E.; Garcia, M.; Bixby, L. Antibacterial properties of common herbal remedies of the southwest. J. Ethnopharmacol. 2005, 99, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Rahman, I.U.; Ijaz, F.; Afzal, A.; Iqbal, Z.; Ali, N.; Khan, S.M. Contributions to the phytotherapies of digestive disorders: Traditional knowledge and cultural drivers of Manoor Valley, Northern Pakistan. J. Ethnopharmacol. 2016, 192, 30–52. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Sharma, Y.P.; Manhas, R.K.; Bhatia, H. Ethnomedicinal plants of Shankaracharya Hill, Srinagar, J&K, India. J. Ethnopharmacol. 2015, 170, 255–274. [Google Scholar] [CrossRef]
- Lans, C. Possible similarities between the folk medicine historically used by First Nations and American Indians in North America and the ethnoveterinary knowledge currently used in British Columbia, Canada. J. Ethnopharmacol. 2016, 192, 53–66. [Google Scholar] [CrossRef]
- Lans, C.; Turner, N.; Khan, T.; Brauer, G.; Boepple, W. Ethnoveterinary medicines used for ruminants in British Columbia, Canada. J. Ethnobiol. Ethnomed. 2007, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Wisher, D. Martindale: The Complete Drug Reference. 37th ed. J. Med. Libr Assoc. 2012, 100, 75–76. [Google Scholar] [CrossRef]
- Serrentino, J. Homotoxicology and cancer. J. Biomed. Therap. 2005, 7513, 4–14. [Google Scholar]
- Mocan, A.; Crişan, G.; Vlase, L.; Ivanescu, B.; Bădărău, A.S.; Arsene, A. Phytochemical investigations on four Galium species (Rubiaceae) from Romania. Farmacia 2016, 64, 95–99. [Google Scholar]
- Bokhari, J.; Khan, M.R.; Shabbir, M.; Rashid, U.; Jan, S.; Zai, J.A. Evaluation of diverse antioxidant activities of Galium aparine. Spectrochim. Acta A 2013, 102, 24–29. [Google Scholar] [CrossRef]
- Ergun, F.; Sener, B. HPLC determination of iridoids found in some Galium species. Gazi Ecz. Fak. Der. 1986, 3, 59–63. [Google Scholar]
- Deliorman Orhan, D.; Calis, I.; Ergun, F. Iridoids from Galium aparine. Pharmaceut. Biol. 2008, 39, 234–235. [Google Scholar] [CrossRef] [Green Version]
- Sener, B.; Ergun, F. Isolation and structural studies on the alkaloids of Galium aparine L. Gazi. Ecz. Fak. Der. 1988, 5, 33–40. [Google Scholar]
- Ilina, T.; Kashpur, N.; Granica, S.; Bazylko, A.; Shinkovenko, I.; Kovalyova, A.; Goryacha, O.; Koshovyi, O. Phytochemical profiles and in vitro immunomodulatory activity of ethanolic extracts from Galium aparine L. Plants 2019, 8, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Feng, L.; Bao, W.R.; Ma, D.L.; Leung, C.H.; Nie, S.P.; Han, Q.B. Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale. J. Agric. Food Chem. 2016, 64, 881–889. [Google Scholar] [CrossRef]
- Boyce, D.E.; Jones, W.D.; Ruge, F.; Harding, K.G.; Moore, K. The role of lymphocytes in human dermal wound healing. Br. J. Dermatol. 2000, 143, 59–65. [Google Scholar] [CrossRef]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef]
- Clifford, M. Some Notes on the Chlorogenic Acids. 3. LC and LC–MS Version 3 January 2017; Technical Report; Available online: https://www.researchgate.net/publication/312590947_Some_Notes_on_the_Chlorogenic_Acids_3_LC_and_LC-MS_Version_3_January_2017 (accessed on 17 May 2020).
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Chakka, S.; Concha, J.S.S.; Bax, C.E.; Zeidi, M.; Werth, V.P. The effects of immunostimulatory herbal supplements on autoimmune skin diseases. J. Am. Acad. Dermatol. 2020. [Google Scholar] [CrossRef]
- Bendjeddou, D.; Lalaoui, K.; Satta, D. Immunostimulating activity of the hot water-soluble polysaccharide extracts of Anacyclus pyrethrum, Alpinia galanga and Citrullus colocynthis. J. Ethnopharmacol. 2003, 88, 155–160. [Google Scholar] [CrossRef]
- Paulsen, B. Plant polysaccharides with immunostimulatory activities. Curr. Organ. Chem. 2001, 5, 939–950. [Google Scholar] [CrossRef]
- Dobrochaeva, D.N.; Kotox, M.I.; Prokudin, Y.N.; Barbarich, A.I. Key to Higher Plants of Ukraine, 2nd ed.; Science Dumka: Kiev, Ukraine, 1999. [Google Scholar]
- Olga, M.; Kovalyov, M. Phenolic compounds of the genus Iris plants (Iridaceae). Čes. Slov. Farm. 2016, 65, 70–77. [Google Scholar]
- Europarat; European Department for the Quality of Medicines. European Pharmacopoeia, 9th ed.; Council of Europe: Strasbourg, France, 2016.
- Yezerska, O.; Kalynyuk, T.; Vronska, L. Quantitative determination of hydroxycinnamic acids in chicory root. Chem. Chem. Toxicol. 2013, 7, 247–250. [Google Scholar] [CrossRef]
- Koshovyi, O.M.; Zagayko, A.; Kolychev, I.O.; Akhmedov, E.Y.; Komissarenko, A.N. Phytochemical study of the dry extract from bilberry leaves. Azerbaijan Pharm. Pharmacother. J. 2016, 16, 18–23. [Google Scholar]
- Centre, S.A.E.P. The State Pharmacopoeia of Ukraine; Ukrainian Scientific Pharmacopoeial Center for Quality of Medicines: Kharkiv, Ukraine, 2015; Volume 1.
- Granica, S.; Lohwasser, U.; Jöhrer, K.; Zidorn, C. Qualitative and quantitative analyses of secondary metabolites in aerial and subaerial of Scorzonera hispanica L. (black salsify). Food Chem. 2015, 173, 321–331. [Google Scholar] [CrossRef]
- Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Park, S.H.; Kim, S.K. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant. Sci. 2002, 163, 1161–1168. [Google Scholar] [CrossRef]
- O’Dowd, Y.; Driss, F.; Dang, P.M.; Elbim, C.; Gougerot-Pocidalo, M.A.; Pasquier, C.; El-Benna, J. Antioxidant effect of hydroxytyrosol, a polyphenol from olive oil: Scavenging of hydrogen peroxide but not superoxide anion produced by human neutrophils. Biochem. Pharmacol. 2004, 68, 2003–2008. [Google Scholar] [CrossRef]
Sample Availability: Samples of the investigated extracts and fraction are available from the authors. |
Substances | Extraction Yield (mg/g) | Content (μg/mg) | |||
---|---|---|---|---|---|
Polysaccharides | Hydroxycinnamic Derivates | Flavonoids | Polyphenols | ||
Aqueous extract | 283.9 ± 14.1 | 96.3 ± 4.8 | 18.7 ± 0.9 a | 2.6 ± 0.1 a | 13.3 ± 0.6 a |
PPC | 187.6 ± 14.1 | - | 28.6 ± 0.6 b | 3.6 ± 0.1 b | 19.2 ± 0.5 b |
No | Identification | Retention Time (min) | UV-Vis Maxima (nm) | MS− Ions | MS2− Ions | MS3− Ions | Content in RAW Extract (µg/mg) | Content in PCC Fraction (µg/mg) |
---|---|---|---|---|---|---|---|---|
1 | monotropein t | 4.8 | 238 | 389 | 227, 209b, 191, 165, 147, 137 | 183, 165, 153b, 137 | 5.270 ± 0.160 | 8.120 ± 0.112 |
2 | desacetyloasperulosidic acid t | 11.0 | 239 | 389 | 371, 227b, 209, 191, 183, 165, 139, 119 | 183b, 165 | 1.960 ± 0.030 | 3.064 ± 0.064 |
3 | 3-O-trans-caffeoylquinic acid c | 16.3 | 300sh, 324 | 353 | 191b, 179, 173, 135 | - | 0.966 ± 0.016 | 1.384 ± 0.098 |
4 | asperulosidic acid t | 20.9 | 237 | 431 | 371, 269, 251b, 225, 165 | 225, 165b | 0.524 ± 0.006 | 0.806 ± 0.021 |
5 | 3-O-cis-caffeoylquinic acid c | 22.4 | 300sh, 324 | 353 | 191b, 179, 173 | - | 0.080 ± 0.001 | 0.121 ± 0.004 |
6 | 5-O-trans-caffeoylquinic acid c | 23.0 | 301sh, 324 | 353 | 191b, 179, 164 | 179b, 164 | 4.680 ± 0.080 | 7.124 ± 0.112 |
7 | 4-O-trans-caffeoylquinic acid c | 24.8 | 300sh, 325 | 353 | 191, 179, 173b | 179, 173b | 1.140 ± 0.020 | 1.754 ± 0.062 |
8 | 5-O-cis-caffeoylquinic acid c | 27.4 | 299sh, 324 | 353 | 191b | - | 0.191 ± 0.019 | 0.289 ± 0.011 |
9 | quercetin 3-O-rhamnoglucoside-7-O-glucoside s | 29.1 | 260, 352 | 771 | 609b, 301 | 343, 301b, 271, 255, 179 | 0.096 ± 0.003 | 0.140 ± 0.002 |
10 | kaempferol O-rhamnodihexoside t | 32.5 | 261, 342 | 755 | 593b, 285 | 533, 285b, 267, 257, 240 | n.q. | n.q. |
11 | quercetin 3-O-rhamnoglucosides (rutin) s | 41.4 | 261, 353 | 609 | 465, 343, 301b | 343, 301b, 255 | 0.064 ± 0.002 | 0.098 ± 0.007 |
12 | 3,4-O-trans-dicaffeoylquinic acid c | 46.4 | 301sh, 325 | 515 | 353b, 335, 299, 255, 203, 191, 179, 173, 135 | 191, 179, 173b, 135 | 0.095 ± 0.004 | 0.143 ± 0.009 |
13 | 3,5-O-trans-dicaffeoylquinic acid s | 47.4 | 300sh, 324 | 515 | 353b | 191b, 179, 173 | 0.092 ± 0.006 | 0.150 ± 0.011 |
Extract | Extract Concentration (μg/mL) | RLBT, % |
---|---|---|
Aqueous extract | 150 | 60.8 ± 3.2 * |
250 | 65.5 ± 3.3 * | |
500 | 61.6 ± 3.5 * | |
PPC | 150 | 37.6 ± 2.6 * |
250 | 39.8 ± 2.6 * | |
500 | 36.3 ± 2.3 * | |
PSC | 150 | 48.7 ± 3.5 # |
250 | 58.6 ± 3.2 * | |
500 | 55.7 ± 3.3 * | |
PC | 150 | 39.0 ± 3.2 * |
250 | 52.7 ± 4.1 * | |
500 | 59.3 ± 3.1 * | |
PHA | 250 | 48.1 ± 2.1 # |
Spontaneous RLBT | - | 8.5 ± 0.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilina, T.; Skowrońska, W.; Kashpur, N.; Granica, S.; Bazylko, A.; Kovalyova, A.; Goryacha, O.; Koshovyi, O. Immunomodulatory Activity and Phytochemical Profile of Infusions from Cleavers Herb. Molecules 2020, 25, 3721. https://doi.org/10.3390/molecules25163721
Ilina T, Skowrońska W, Kashpur N, Granica S, Bazylko A, Kovalyova A, Goryacha O, Koshovyi O. Immunomodulatory Activity and Phytochemical Profile of Infusions from Cleavers Herb. Molecules. 2020; 25(16):3721. https://doi.org/10.3390/molecules25163721
Chicago/Turabian StyleIlina, Tetiana, Weronika Skowrońska, Natalia Kashpur, Sebastian Granica, Agnieszka Bazylko, Alla Kovalyova, Olga Goryacha, and Oleh Koshovyi. 2020. "Immunomodulatory Activity and Phytochemical Profile of Infusions from Cleavers Herb" Molecules 25, no. 16: 3721. https://doi.org/10.3390/molecules25163721
APA StyleIlina, T., Skowrońska, W., Kashpur, N., Granica, S., Bazylko, A., Kovalyova, A., Goryacha, O., & Koshovyi, O. (2020). Immunomodulatory Activity and Phytochemical Profile of Infusions from Cleavers Herb. Molecules, 25(16), 3721. https://doi.org/10.3390/molecules25163721