In Vitro Studies on Antioxidant and Anti-Parasitic Activities of Compounds Isolated from Rauvolfia caffra Sond
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity
2.2. Antitrypanosomal Activity
2.3. Anti-Proliferation Activity
3. Materials and Methods
3.1. General Experimental Procedure
3.1.1. High-Resolution Mass Spectrometry
3.1.2. Infrared Spectroscopy
3.1.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
3.2. Plant Collection and Preparation
3.3. Extraction of Plant Material
3.4. Isolation and Purification of Compounds
3.4.1. Lupeol (1)
3.4.2. Raucaffricine (2)
3.4.3. N-Methylsarpagine (3)
3.4.4. Spegatrine (4)
3.5. Antioxidant Activities
3.5.1. Free Radical Scavenging Assay (DPPH)
3.5.2. Reducing Power
3.6. Antitrypanosomal Activity
3.7. Anti-Proliferation Activity
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, S.; Umar, A.Z.; Asmau, M.; Deepa, S.; Milli, J.; Fatima, H. In vitro antitrypanosomal activity of Breonadia salicina on Trypanasoma brucei brucei. Inter. J. Pharm. Sci. Res. 2018, 9, 975–9492. [Google Scholar]
- Swallow, B.M. Impacts of trypanosomiasis on African agriculture. PAAT Tech. Sci. Ser. 2000, 2, 1–52. [Google Scholar]
- Patrick, M.; Epco, H.; Veerle, L.; Victor, K.; Jean-Jacques, M.; Pascal, L.; Marleen, B. Human African trypanosomiasis diagnosis in first-line health services of endemic countries, a systematic review. PLoS Negl. Trop. Dis. 2012, 6, 1919. [Google Scholar]
- Asres, K.; Bucar, F.; Knauder, E.; Yardley, V.; Kendrick, H.; Croft, S.L. In vitro Antiprotozoal Activity of Extract and compounds from the stem bark of Combretum molle. Phytother Res. 2001, 15, 613–617. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Parasites—African trypanosomiasis (also known as sleeping sickness). Available online: https://www.cdc.gov/parasites/sleepingsickness/index.html (accessed on 9 March 2020).
- World Health Organisation. World Health Statistics; World Health Organisation: Geneva, Switzerland, 2015. [Google Scholar]
- Legros, D.; Ollivier, G.; Gastellu-Etchegorry, M. Treatment of Human African trypanosomiasis- present situation and needs for research and development. Lancet Infect. Dis. 2002, 20, 437–440. [Google Scholar]
- Deeks, E.D. Fexinidazole: First global approval. Drugs 2019, 79, 215–220. [Google Scholar]
- Paliwal, R.; Sharma, V.; Pracheta, S.S.; Yadav, S.; Sharma, S. Anti-nephrotoxic effect of administration of Moringa oleifera Lam in amelioration of DMBA-induced renal carcinogenesis in Swiss albino mice. Biol. Med. 2011, 3, 27–35. [Google Scholar]
- Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [Google Scholar]
- Hamid, A.A.; Aiyelaagbe, O.; Usman, L.A.; Ameen, O.M.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. African J. Pure App. Chem. 2010, 4, 142–151. [Google Scholar]
- Gupta, D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res. 2015, 6, 546–566. [Google Scholar]
- Zengin, G.; Cakmak, Y.S.; Guler, G.O.; Aktumsek, A. Antioxidant properties of methanolic extract and fatty acid composition of Centaurea urvillei DC. subsp. hayekiana Wagenitz. Rec. Nat. Prod. 2011, 5, 123–132. [Google Scholar]
- Wang, L.; Yen, J.; Liang, H.; Wu, M. Antioxidant effect of methanol extracts from lotus plumule and blossom (Nelumbo nucifera Gertn.). J. Food Drug Anal. 2003, 11, 60–66. [Google Scholar]
- Tshikalange, T.E.; Meyer, J.J.M.; Hussein, A.A. Antimicrobial activity, toxicity and the Isolation of a bioactive compound from plants used to treat sexually transmitted diseases. J. Ethnopharmacol. 2005, 96, 515–519. [Google Scholar]
- Schmelzer, G.H.; Gumb-Fakin, A. Plant Resources of Tropical Africa: Medicinal Plants 1. Plants Resources of Tropical Africa, NO. 11(1); PROTA Foundation: Wageningen, The Netherlands, 2008. [Google Scholar]
- Campbell, J.I.A.; Mortensen, A.; Mølgaard, P. Tissue lipid lowering effect of traditional Nigerian antidiabetic infusion of Rauvolfia vomitoria foliage and Citrus aurantium fruit. J. Ethnopharm. 2006, 104, 379–386. [Google Scholar]
- Njau, E.A. An ethnobotanical study of medicinal plants used by the Maasai People of Manyara, Arusha-Tanzania. M.Sc Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2011. [Google Scholar]
- Pesewu, G.A.; Cutler, R.R.; Humber, D.P. Antibacterial activity of plants used in traditional medicines of Ghana with particular reference to MRSA. J. Ethnopharmacol. 2008, 116, 102–111. [Google Scholar]
- Oyedeji, L. Drugless Healing Secrets; Panse Press: Ibadan, Nigeria, 2007. [Google Scholar]
- Tlhapi, D.B.; Ramaite, I.D.I.; van Ree, T.; Anokwuru, C.P.; Orazio, T.-S.; Hoppe, H.C. Isolation, Chemical Profile and Antimalarial Activities of Bioactive Compounds from Rauvolfia caffra Sond. Molecules 2019, 24, 39. [Google Scholar] [CrossRef] [Green Version]
- Erasto, P.; Labuschagne, A.; Mbwambo, Z.H.; Nondo, R.S.; Lall, N. Antimycobacterial, antioxidant activity and toxicity of extracts from the roots of Rauwolfia vomitoria and Rauwolfia caffra. Spatula DD—Peer Reviewed. J. Complem. Med. Drug Dis. 2011, 1, 73–80. [Google Scholar]
- Gbonjubola, A.; Samuel, N.; Josiah, O.; Joseph, E. Preliminary in-vitro antibacterial activities of ethanolic and aqueous extracts of Rauvolifia caffra. Int. J. Pharm. Res. Dev. 2010, 2, 1–8. [Google Scholar]
- Tchimene, M.K.; Nwaehujor, C.O.; Ezenwali, M.; Okoli, C.C.; Iwu, M.M. Free Radical Scavenging Activity of Lupeol isolated from the methanol leaf extract of Crateva Adansonii Oliv. Intern. J. Pharmacog. Phytochem. Res. 2016, 28, 419–426. [Google Scholar]
- Siddique, H.F.; Saleem, M. Beneficial health effects of lupeol triterpene: A review of preclinical studies. Life Science. 2011, 88, 285–329. [Google Scholar]
- Milugo, T.K.; Omosa, L.K.; Ochanda, J.O.; Wamunyokoli, F.A.; Oyugi, J.O. Phytochemical composition, antioxidant and potential anti-cancer activity of extracts from Drumstick (Moringa oleifera) and Quinine tree (Rauwolfia caffra). MSc Thesis, University of Nairobi, Nairobi, Kenya, 2013. [Google Scholar]
- Maryadele, J.N.; Neil, P. The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals; Merck and Co. Inc.: Whitehouse Station, NJ, USA, 2006. [Google Scholar]
- Schübel, H.; Stöckigt, J. RLCC-isolation of Raucaffricine from Its Most Efficient Source—Cell Suspension Cultures of Rauwolfia Serpentina Benth. Plant. Cell Rep. 1984, 3, 72–74. [Google Scholar]
- Anokwuru, C.P.; Ramaite, I.D.I.; Bessong, P. Phenolic Content, Distribution and Antioxidant Activities of Terminalia sericea Burch. Afri. J. Tradit. Complement. Altern. Med. 2015, 12, 21–27. [Google Scholar]
- Scovill, J.; Blank, E.; Konnick, M.; Nenortas, E.; Shapiro, T. Antitrypanosomal activities of Tryptanthrins. Antimicrob. Agents. Chemother. 2002, 46, 882–883. [Google Scholar]
- Stander, A.; Marais, S.; Stivaktas, V.; Vorster, V.; Albrecht, C.; Lottering, M.-L.; Joubert, A.M. In vitro effects of Sutherlandia frutescens water extracts on cell numbers, morphology, cell cycle progression and cell death in a tumorigenic and a non-tumorigenic epithelial breast cell line. J. Ethnopharm. 2009, 124, 45–60. [Google Scholar]
Sample Availability: Not available. |
Sample | DPPH IC50 (mg/mL) | Reducing Power IC0.5 (mg/mL) |
---|---|---|
Crude extract | 0.213 ± 0.068 a | 1.226 ± 0.443 a |
F1 | 0.653 ± 0.307 a,b,c | 2.036 ± 0.266 b,c |
F2 | 0.413 ± 0.195 a | 1.282 ± 0.036 a |
F3 | 1.143 ± 0.478 b,c | 2.151 ± 0.372 b,c |
F4 | 0.022 ± 0.003 a,d,e | 0.518 ± 0.044 e |
F5 | 0.036 ± 0.007 a,d,e | 1.076 ± 0.136 a,e |
Spegatrine (4) | 0.119 ± 0.067 a | 0.715 ± 0 a,e |
Gallic acid | 0.045 ± 0.018 a | 0.115 ± 0.007 e |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tlhapi, D.B.; Ramaite, I.D.I.; Anokwuru, C.P.; van Ree, T.; Hoppe, H.C. In Vitro Studies on Antioxidant and Anti-Parasitic Activities of Compounds Isolated from Rauvolfia caffra Sond. Molecules 2020, 25, 3781. https://doi.org/10.3390/molecules25173781
Tlhapi DB, Ramaite IDI, Anokwuru CP, van Ree T, Hoppe HC. In Vitro Studies on Antioxidant and Anti-Parasitic Activities of Compounds Isolated from Rauvolfia caffra Sond. Molecules. 2020; 25(17):3781. https://doi.org/10.3390/molecules25173781
Chicago/Turabian StyleTlhapi, Dorcas B., Isaiah D. I. Ramaite, Chinedu P. Anokwuru, Teunis van Ree, and Heinrich C. Hoppe. 2020. "In Vitro Studies on Antioxidant and Anti-Parasitic Activities of Compounds Isolated from Rauvolfia caffra Sond" Molecules 25, no. 17: 3781. https://doi.org/10.3390/molecules25173781
APA StyleTlhapi, D. B., Ramaite, I. D. I., Anokwuru, C. P., van Ree, T., & Hoppe, H. C. (2020). In Vitro Studies on Antioxidant and Anti-Parasitic Activities of Compounds Isolated from Rauvolfia caffra Sond. Molecules, 25(17), 3781. https://doi.org/10.3390/molecules25173781