Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE
Abstract
:1. Introduction
2. Material Preparation and Testing
2.1. Material Preparations
2.2. Material Characterization and Property Test
3. Results and Discussion
3.1. Material Characterization
3.2. Crosslinking Degree of UV-XLPE Nanocomposites
3.3. Morphology Characteristics of XLPE Nanocomposites
3.4. Dielectric Breakdown Strength
3.5. Space Charge Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benhong, O.; Ming, H.; Xianbo, D. A review about development of HV XLPE cable materials and processes. Insul. Mater. 2016, 49, 1–6. [Google Scholar]
- Ye, G.D.; Zhou, H.; Yang, J.W.; Zeng, Z.H.; Chen, Y.L. Photoinitiating behavior of macrophotoinitiator containing aminoalkylphenone group. J. Therm. Analy. Calor. 2006, 85, 771–777. [Google Scholar] [CrossRef]
- Wu, Q.H.; Qu, B.J. Photoinitiating characteristics of benzophenone derivatives as new initiators in the photocrosslinking of polyethylene. Polym. Eng. Sci. 2001, 41, 1220–1226. [Google Scholar] [CrossRef]
- Wu, Q.H.; Qu, B.J. Synthesis of di(4-hydroxyl benzophenone) sebacate and its usage as initiator in the photocrosslinking of polyethylene. J. Appl. Poly. Sci. 2002, 85, 1581–1586. [Google Scholar] [CrossRef]
- Chen, J.Q.; Zhao, H.; Zheng, H.F.; Chen, C.M.; Li, Y.; Sun, K. Research and design of electrodeless UV curing lamp with elliptic concentrator. Electr. Mach. Contr. 2017, 21, 109–113. [Google Scholar]
- Lu, Y.; Tang, J.; Zhao, H.; Hao, G.; Huang, B. Study of ventilation cooling for an irradiation box of low-voltage cable ultraviolet cross-linking. J. Harbin. Univ. Sci. Technol. 2013, 18, 45–50. [Google Scholar]
- Fu, Y.W.; Wang, X.; Wu, Q.H.; Zhao, H. Study of crosslinked and electrical characteristics for cable insulating material of new UV XLPE. Trans. Chin. Electrotech. Soc. 2018, 33, 178–186. [Google Scholar]
- Sun, K.; Chen, J.Q.; Zhao, H.; Sun, W.F.; Chen, Y.S.; Luo, Z.M. Dynamic Thermomechanical analysis on water tree resistance of crosslinked polyethylene. Materials 2019, 12, 746. [Google Scholar] [CrossRef] [Green Version]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Poly. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Wu, S.; Kang, E.T.; Neoh, K.G.; Tan, K.L. Surface modification of poly(tetrafluoroethylene) films by double graft copolymerization for adhesion improvement with evaporated copper. Polymer 1999, 40, 6955–6964. [Google Scholar] [CrossRef]
- Tian, M.; Liang, W.L.; Rao, G.Y.; Zhang, L.Q.; Guo, C.X. Surface modification of fibrillar silicate and its reinforcing mechanism on FS/rubber composites. Compos. Sci. Technol. 2005, 65, 1129–1138. [Google Scholar] [CrossRef]
- Cai, L.F.; Huang, X.B.; Rong, M.Z.; Ruan, W.H.; Zhang, M.Q. Effect of grafted polymeric foaming agent on the structure and properties of nano-silica/polypropylene composites. Polymer 2006, 47, 7043–7050. [Google Scholar] [CrossRef]
- Wang, W.W.; Li, S.T.; Liu, W.F. Dielectric Breakdown of Polymer Nanocomposites. Trans. Chin. Electrotech. Soc. 2017, 32, 25–36. [Google Scholar]
- Hoyos, M.; Garcia, N.; Navarro, R.; Dardano, A.; Ratto, A.; Guastavino, F.; Tiemblo, P. Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous and laminar silicates. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1301–1311. [Google Scholar] [CrossRef]
- Wang, Y.N.; Wang, Y.L.; Wu, J.D.; Yin, Y. Research progress on space charge measurement and space charge characteristics of nanodielectrics. IET Nanodielectr. 2018, 3, 114–121. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.X.; Huang, M.; Sha, Y.C.; Tian, J.H.; Ye, Q. Effect of nanoparticle surface modification on charge transport characteristics in XLPE/SiO2 nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 424–433. [Google Scholar] [CrossRef]
- Danikas, M.G.; Tanaka, T. Nanocomposites-a review of electrical treeing and breakdown. IEEE Electr. Insul. Mag. 2009, 25, 19–25. [Google Scholar] [CrossRef]
- Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Ghasemi, F.A.; Ghorbani, A.; Ghasemi, I. Mechanical, thermal and dynamic mechanical properties of PP/GF/xGnP nanocomposites. Mechan. Compos. Mater. 2017, 53, 131–138. [Google Scholar] [CrossRef]
- Decker, C.; Zahouily, K.; Keller, L.; Benfarhi, S.; Bendaikha, T.; Baron, J. Ultrafast synthesis of bentonite- acrylate nanocomposite materials by UV-radiation curing. J. Mater. Sci. 2002, 37, 4831–4838. [Google Scholar] [CrossRef]
- Xu, J.W.; Pang, W.M.; Shi, W.F. Synthesis of UV-curable organic–inorganic hybrid urethane acrylates and properties of cured films. Thin Solid Films 2006, 514, 69–75. [Google Scholar] [CrossRef]
- Sangermano, M.; Malucelli, G.; Amerio, E.; Priola, A.; Billi, E.; Rizza, G. Photopolymerization of epoxy coatings containing silica nanoparticles. Prog. Org. Coat. 2005, 54, 134–138. [Google Scholar] [CrossRef]
- Medda, S.K.; Kundu, D.; De, G. Inorganic–organic hybrid coatings on polycarbonate.: Spectroscopic studies on the simultaneous polymerizations of methacrylate and silica networks. J. Non-Cryst. Solids 2003, 318, 149–156. [Google Scholar] [CrossRef]
- Crucho, C.I.C.; Baleizão, C.; Farinha, J.P.S. Functional group coverage and conversion quantification in nanostructured silica by 1H NMR. Analyt. Chem. 2016, 89, 681–687. [Google Scholar] [CrossRef]
- Sangermano, M.; Colucci, G.; Fragale, M.; Rizza, G. Hybrid organic–inorganic coatings based on thiol-ene systems. React. Funct. Poly. 2009, 69, 719–723. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, X.; Nie, J. Photopolymerization nanocomposite initiated by montmorillonite intercalated initiator. Polym. Bull. 2012, 68, 1–13. [Google Scholar] [CrossRef]
- Killops, K.L.; Campos, L.M.; Hawker, C.J. Robust, Efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. J. Am. Chem. Soc. 2008, 130, 5062–5064. [Google Scholar] [CrossRef]
- Wu, J.; Ling, L.; Xie, J.; Ma, G.; Wang, G. Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chem. Phys. Lett. 2014, 591, 227–232. [Google Scholar] [CrossRef]
- Zhao, X.D.; Zhao, H.; Sun, W.F. Significantly improved electrical properties of crosslinked polyethylene modified by UV-initiated grafting MAH. Polymers 2020, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.; Chen, J.Q.; Sun, W.F.; Zhao, H. Improved DC dielectric performance of photon-initiated crosslinking polyethylene with TMPTMA auxiliary agent. Materials 2019, 12, 3540. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.Y.; Zhang, Z.Q.; Wong, C.P. Study on mono-dispersed nano-size silica by surface modification for underfill applications. J. Colloid Interface Sci. 2005, 292, 436–444. [Google Scholar] [CrossRef]
- Chauvet, M.; Mazzanti, G.; Montanari, G.C. Weibull statistics in short-term dielectric breakdown of thin polyethylene films. IEEE Trans. Dielectr. Electr. Insul. 1993, 1, 153–159. [Google Scholar] [CrossRef]
- Qian, K.Y.; Su, P.F.; Wu, J.D.; Yin, Y. The effect of thickness on breakdown strength in high voltage direct current cable insulation at different temperatures. Proc. CSEE 2018, 38, 7121–7130. [Google Scholar]
- Zhao, X.D.; Sun, W.F.; Zhao, H. Enhanced insulation performances of crosslinked polyethylene modified by chemically grafting chloroacetic acid allyl ester. Polymers 2019, 11, 592. [Google Scholar] [CrossRef] [Green Version]
- Mazzanti, G.; Montanari, G.C.; Alison, J.M. A space-charge based method for the estimation of apparent mobility and trap depth as markers for insulation degradation-theoretical basis and experimental validation. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 187–197. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Q.; Liao, R.; Xing, L.; Wu, N.; Jiang, Q. The impact of cross-linking effect on the space charge characteristics of cross-linking polyethylene with different degrees of cross-linking under strong direct current electric field. Polymers 2019, 11, 1149. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.H.; Wang, Y.L.; Peng, Q.J.; Wu, J.D.; Yin, Y. Effect of temperature on charge accumulation and migration in cross-linked polyethylene. Proc. CSEE 2017, 39, 5796–5803. [Google Scholar]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S.; Reed, C.W.; Keefe, R. Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 629–643. [Google Scholar] [CrossRef]
- Raetzke, S.; Kindersberger, J. The effect of interphase structures in nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2006, 126, 1044–1049. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds and composite materials are available from the authors. |
Sample | LLDPE/wt% | BPL/wt% | TAIC/wt% | TAIC-s-SiO2/wt% | Irganox1010/wt% |
---|---|---|---|---|---|
XLPE | 96.7 | 2 | 1 | 0 | 0.3 |
0.5 wt%TAIC-s-SiO2/XLPE | 97.2 | 2 | 0 | 0.5 | 0.3 |
1.5 wt%TAIC-s-SiO2/XLPE | 96.7 | 2 | 0 | 1 | 0.3 |
2.0 wt%TAIC-s-SiO2/XLPE | 95.7 | 2 | 0 | 2 | 0.3 |
Materials | 2-Parameter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Eb/(kV/mm) | β | |||||||||
25 °C | 40 °C | 60 °C | 80 °C | 100 °C | 25 °C | 40 °C | 60 °C | 80 °C | 100 °C | |
XLPE | 334.4 | 307.8 | 252.9 | 229.2 | 170.7 | 6.27 | 10.59 | 11.77 | 13.30 | 14.13 |
0.5wt%TAIC-s-SiO2/XLPE | 352.2 | 307.7 | 254.5 | 214.4 | 162.0 | 5.46 | 7.99 | 12.03 | 14.71 | 15.75 |
1.5wt%TAIC-s-SiO2/XLPE | 366.4 | 328.6 | 260.1 | 235.1 | 170.5 | 5.92 | 7.24 | 13.78 | 13.00 | 14.29 |
2.0wt%TAIC-s-SiO2/XLPE | 359.1 | 295.2 | 249.4 | 222.9 | 159.6 | 5.81 | 9.45 | 10.25 | 15.71 | 16.76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.-W.; Zhang, Y.-Q.; Sun, W.-F.; Wang, X. Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE. Molecules 2020, 25, 3794. https://doi.org/10.3390/molecules25173794
Fu Y-W, Zhang Y-Q, Sun W-F, Wang X. Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE. Molecules. 2020; 25(17):3794. https://doi.org/10.3390/molecules25173794
Chicago/Turabian StyleFu, Yu-Wei, Yong-Qi Zhang, Wei-Feng Sun, and Xuan Wang. 2020. "Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE" Molecules 25, no. 17: 3794. https://doi.org/10.3390/molecules25173794
APA StyleFu, Y. -W., Zhang, Y. -Q., Sun, W. -F., & Wang, X. (2020). Functionalization of Silica Nanoparticles to Improve Crosslinking Degree, Insulation Performance and Space Charge Characteristics of UV-initiated XLPE. Molecules, 25(17), 3794. https://doi.org/10.3390/molecules25173794