Larvicidal Enzyme Inhibition and Repellent Activity of Red Mangrove Rhizophora mucronata (Lam.) Leaf Extracts and Their Biomolecules against Three Medically Challenging Arthropod Vectors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Larvicidal Activity of R. mucronata Crude Extract
2.2. Mortality Bioassays of Acetone Extract Fractions
2.3. Chemical Characterization of R. mucronata Extract
2.4. Enzyme Assay
2.5. Repellent Activity
3. Materials and Methods
3.1. Plant Harvesting
3.2. Crude Extract Preparation
3.3. Mosquitoes
3.4. Larval Mortality Assay
3.5. Preparation of Whole-Body Homogenates for Enzyme Assay
3.6. Carboxyl Esterase Assays
3.7. Superoxide Dismutase Activity
3.8. Glutathione-S-Transferase Activity
3.9. Cytochrome P450 Activity
3.10. Phytochemical Analysis
3.10.1. Phenols: Ferric Chloride Test
3.10.2. Flavonoids Test
3.10.3. Alkaloids: Wagner Reagent
3.10.4. Saponin
3.10.5. Tannin Test: Gelatin Test
3.10.6. Glycosides Test
3.10.7. Ninhydrin Test
3.10.8. Benedict Test
3.10.9. Starch Test
3.10.10. Flavonoids Test
3.11. Repellent Assay
3.12. GC–MS Analysis and Compound Identification
3.13. FT-IR Analysis
3.14. High Performance Liquid Chromatography (HPLC) Analysis
3.15. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Narendhiran, S.; Mohanasundaram, S.; Arun, J.; Saravanan, L.; Catherine, L.; Subathra, M.; Rannjith, R. Comparative study in larvicidal efficacy of medicinal plant extracts against Culex quinquefasciatus. Int. J. Res. Plant Sci. 2014, 4, 22–25. [Google Scholar]
- Chellappandian, M.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Edwin, E.; Ponsankar, A.; Selin-Rani, S.; Kalaivani, K.; Senthil-Nathan, S.; Benelli, G. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn. and impacts on a beneficial mosquito predator. Environ. Sci. Pollut. Res. Int. 2017, 1110, 294–10306. [Google Scholar] [CrossRef]
- Chellappandian, M.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Karthi, S.; Thanigaivel, A.; Ponsankar, A.; Kalaivani, K.; Hunter, W.B. Botanical essential oils and uses as mosquitocides and repellents against dengue. Environ. Int. 2018, 113, 214–230. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pac. J. Trop. Med. 2018, 3, 74–877. [Google Scholar] [CrossRef] [Green Version]
- Panneerselvam, C.; Murugan, K.; Kovendan, K.; Kumar, P.M.; Ponarulselvam, S.; Amerasan, D. Larvicidal efficacy of Catharanthus roseus Linn. (Family: Apocynaceae) leaf extract and bacterial insecticide Bacillus thuringiensis against Anopheles stephensi Liston. Asian Pac. J. Trop. Biomed. 2013, 6, 847–853. [Google Scholar] [CrossRef]
- Edwin, E.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Thanigaivel, A.; Ponsankar, A.; Pradeepa, V.; Selin-Rani, S.; Kalaivani, K.; Hunter, W.B.; Abdel-Megeed, A.; et al. Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop. 2016, 163, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Maggi, F.; Iannarelli, R.; Benelli, G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019, 193, 236–271. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, D.; Hemalatha, P.; Kaleena, P. Larvicidal activity and GC–MS analysis of Leucas aspera against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. J. Saudi Soc. Agric. Sci. 2017, 16, 306–313. [Google Scholar] [CrossRef] [Green Version]
- Kalaivani, K.; Senthil-Nathan, S.; Murugesan, A.G. Biological activity of selected Lamiaceae and Zingiberaceae plant essential oils against the dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasitol. Res. 2012, 110, 1261–1268. [Google Scholar] [CrossRef]
- Sakulku, U.; Nuchuchua, O.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 2009, 372, 105–111. [Google Scholar] [CrossRef]
- Senthilkumar, A.; Venkatesalu, V. Larvicidal potential of Acorus calamus L. essential oil against filarial vector mosquito Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2012, 2, 324–326. [Google Scholar] [CrossRef]
- Skenderidis, P.; Mitsagga, C.; Giavasis, I.; Petrotos, K.; Lampakis, D.; Leontopoulos, S.; Hadjichristodoulou, C.; Tsakalof, A. The in vitro antimicrobial activity assessment of ultrasound assisted Lycium barbarum fruit extracts and pomegranate fruit peels. J. Food Measur. Charact. 2019, 13, 2017–2031. [Google Scholar] [CrossRef]
- Senthil-Nathan, S. Physiological and biochemical effect of Neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front. Physiol. 2013, 4, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senthil-Nathan, S. A review of bio pesticides and their mode of action against insect pests. In Environmental Sustainability-Role of Green Technologies; Springer: Berlin, Germany, 2015; pp. 49–63. [Google Scholar]
- Mathew, N.; Anitha, M.; Bala, T.; Sivakumar, S.; Narmadha, R.; Kalyanasundaram, M. Larvicidal activity of Saraca indica, Nyctanthes arbortristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol. Res. 2009, 104, 1017–1025. [Google Scholar] [CrossRef]
- Manjari, S.; Karthi, S.; Ramkumar, G.; Muthusamy, R.; Natarajan, D.; Shivakumar, M.S. Chemical composition and larvicidal activity of plant extracts from Clausena dentata (Willd) (Rutaceae) against dengue, malaria, and filariasis vectors. Parasitol. Res. 2014, 113, 2475–2481. [Google Scholar] [CrossRef]
- Senthil-Nathan, S.; Kalaivani, K. Efficacy of nucleopolyhedrovirus and azadirachtin on Spodoptera litura fabricius (Lepidoptera: Noctuidae). Biol. Control. 2005, 34, 93–98. [Google Scholar] [CrossRef]
- Senthil-Nathan, S.; Kalaivani, K.; Murugan, K. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop. 2005, 96, 47–55. [Google Scholar] [CrossRef]
- Sadek, M.M. Antifeedant and toxic activity of Adhatoda vasica leaf extract against Spodoptera littoralis (Lepidoptera: Noctuidae). J. Appl. Entomol. 2003, 127, 396–404. [Google Scholar] [CrossRef]
- Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Ponsankar, A.; Thanigaivel, A.; Edwin, E.; Selin-Rani, S.; Chellappandian, M.; Pradeepa, V.; Lija-Escaline, J.; Kalaivani, K. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Ecotoxicol. Environ. Saf. 2017, 139, 439–446. [Google Scholar] [CrossRef]
- Vasantha-Srinivasan, P.; Thanigaivel, A.; Edwin, E.; Ponsankar, A.; Senthil-Nathan, S.; Selin-Rani, S.; Kalaivani, K.; Hunter, W.B.; Duraipandiyan, V.; Al-Dhabi, N.A. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. Ecotoxicol. Environ. Saf. 2018, 25, 10434–10446. [Google Scholar] [CrossRef]
- Rajkumar, S.; Jebanesan, A. Mosquitocidal activities of octacosane from Moschosma polystachyum Linn. (lamiaceae). J. Ethnopharmacol. 2004, 90, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.A.; Ibrahim, R.M.; El-Gengaihi, S.E. Insecticidal activity of chicory (Cichorium intybus L.) extracts against two dipterous insect-disease vectors: Mosquito and housefly. Ind. Crops Prod. 2014, 54, 192–202. [Google Scholar] [CrossRef]
- Soule, S.; Guntner, C.; Vazquez, A.; Argandona, V.; Moyna, P.; Ferreira, F. An aphid repellent glycoside from Solanum laxum. Phytochemistry 2000, 55, 217–222. [Google Scholar] [CrossRef]
- Murungi, L.; Kirwa, H.; Torto, B. Differences in essential Oil Content of berries and Leaves of Solanum sarrachoides (Solanaceae) and the effects on oviposition of the tomato spider mite (Tetranychus evansi). Ind. Crops Prod. 2013, 46, 73–79. [Google Scholar] [CrossRef]
- Lucia, A.; Licastro, S.; Zerba, E.; Audino, P.G.; Masuh, H. Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils. Bioresour. Technol. 2009, 100, 6083–6087. [Google Scholar] [CrossRef]
- Bossou, D.A.; Mangelinckx, S.; Yedomonhan, H.; Boko, P.M.; Akogbeto, M.C.; Kimpe, N. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles). Parasit. Vectors. 2013, 6, 337. [Google Scholar] [CrossRef] [Green Version]
- Nivsarkar, M.; Kumar, G.P.; Laloraya, M.; Laloraya, M.M. Superoxide dismutase in the anal gills of the mosquito larvae of Aedes aegypti: Its inhibition by alpha-terthienyl. Arch. Insect Biochem. Physiol. 1991, 16, 249–255. [Google Scholar] [CrossRef]
- Thanigaivel, A.; Vasantha-Srinivasan, P.; Senthil-Nathan, S.; Edwin, E.; Ponsankar, A. Chellappandian, M.; Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects. Ecotoxicol. Environ. Saf. 2017, 137, 210–217. [Google Scholar] [CrossRef]
- Perumalsamy, H.; Jang, M.J.; Kim, J.R.; Kadarkarai, M.; Ahn, Y.J. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit. Vectors. 2015, 8, 237. [Google Scholar] [CrossRef] [Green Version]
- Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Harborne, J. Phenolic compounds. In Phytochemical Methods; Springer: Berlin, Germany, 1973; pp. 33–88. ISBN1 978-0-412-23050-9. (Print); ISBN2 978-94-009-5921-7. (Online). [Google Scholar]
- Al-Tameme, H.J.; Hameed, I.H.; Idan, S.A.; Hadi, M.Y. Biochemical analysis of Origanum vulgare seeds by fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). J. Pharmacogn. Phytother. 2015, 7, 221–237. [Google Scholar]
- Hussein, A.O.; Mohammed, G.J.; Hadi, M.Y.; Hameed, I.H. Phytochemical screening of methanolic dried galls extract of Quercus infectoria using gas chromatography-mass spectrometry (GC-MS) and Fourier transform-infrared (FT-IR). J. Pharmacogn. Phytother. 2016, 8, 49–59. [Google Scholar]
Sample Availability: Samples of the compounds are not available. |
Species | Solvents | LC50 mg/mL (95% Confidence Limit) | LC90 mg/mL (95% Confidence Limit) | χ2 | df | p-Value |
---|---|---|---|---|---|---|
Aedes aegypti | Acetone | 0.113 | 1.334 | 1.274 | 3 | 0.763 |
(0.1935–1.147) | (0.886–2.9626) | |||||
Ethyl Acetate | 0.305 | 1.037 | 3.078 | 3 | 0.486 | |
(0.125–0.556) | (1.413–8.009) | |||||
Methanol | 0.154 | 1.1453 | 4.524 | 3 | 0.527 | |
(0.210–0.307) | (1.258–11.809) | |||||
Petroleum benzene | 0.502 | 1.3725 | 5.164 | 3 | 0.498 | |
(0.271–1.026) | (1.803–8.368) | |||||
Anopheles stephensi | Acetone | 0.378 | 6.035 | 3.500 | 3 | 0.003 |
(0.119–0.481) | (1.1045–11.930) | |||||
Ethyl Acetate | 0.427 | 4.418 | 2.410 | 3 | 0.395 | |
(0.389–2.358) | (2.902–5.972) | |||||
Methanol | 0.415 | 2.088 | 4.319 | 3 | 0.375 | |
(0.269–1.243) | (1.202–7.169) | |||||
Petroleum benzene | 0.504 | 5.8592 | 2.311 | 3 | 0.269 | |
(0.304–0.895) | (1.2245–3.2839) | |||||
Culex quinquefasciatus | Acetone | 0.129 | 2.8417 | 1.346 | 3 | 0.865 |
(0.030–0.239) | (2.700–6.302) | |||||
Ethyl Acetate | 0.378 | 1.7374 | 2.746 | 3 | 0.468 | |
(0.165–0.751) | (1.861–5.499) | |||||
Methanol | 0.295 | 1.0615 | 3.092 | 3 | 0.037 | |
(0.116–0.539) | (1.4216–9.4711) | |||||
Petroleum benzene | 0.584 | 1.6477 | 2.275 | 3 | 0.284 | |
(0.324–1.302) | (2.0227–13.219) |
Species | Column Fraction | LC50 mg/mL (95% Confidence Limit) | LC90 mg/mL (95% Confidence Limit) | χ2 | df | p-Value |
---|---|---|---|---|---|---|
Culex quinquefasciatus | F1 | 0.245333 | 2.322 | 1.77430 | 3 | 0.187 |
(0.159992–2.886752) | (5.002817–7.2119) | |||||
F2 | 0.341783 | 12.58869 | 3.647 | 3 | 0.476 | |
(0.212881–0.493197) | (4.985508–86.38909) | |||||
F3 | 0.174348 * | 16.73929 | 3.919 | 3 | 0.528 | |
(0.061645–0.291515) | (5.101697–366.6364) | |||||
F4 | 0.217996 | 8.073846 | 1.82923 | 3 | 0.098 | |
(0.115948–0.323425) | (3.511051–45.48615) | |||||
Aedes aegypti | F1 | 0.314289 | 39.94815 | 3.41649 | 3 | 0.461 |
(0.148417–0.511897) | (9.04682–2474.55) | |||||
F2 | 0.130 | 1.1158 | 65.1 | 3 | 0.782 | |
(0.119–0.1561) | (0.9422–2.2120) | |||||
F3 | 0.1037 * | 1.0025 | 4.84 | 3 | 0.521 | |
(0.069–0.112) | (0.8871–2.1147) | |||||
F4 | 0.20831 | 22.581621 | 3.082 | 3 | 0.391 | |
(0.48172–1.19820) | (20.1682–24.8216) | |||||
Anopheles stephensi | F1 | 0.266881967 | 3.1525 | 1.938 | 3 | 0.207 |
(0.0021–0.469229) | (2.9900–3.1211) | |||||
F2 | 0.31175 | 3.3851 | 0.992 | 3 | 0.034 | |
(0.01451–0.22655) | (2.44364–7.5935) | |||||
F3 | 0.1480 * | 4.6480 | 3.147 | 3 | 0.218 | |
(0.2957–0.767397) | (3.2585–9.4680) | |||||
F4 | 1.358 | 5.8546 | 0.678 | 3 | 0.004 | |
(0.0198–3.2210) | (4.3215–7.5842) |
S.No. | Name of the Compounds | RI Polar Column Exp | Lit | RI Polar Column Exp | Lit | Peak Area % | Formula | Structure |
---|---|---|---|---|---|---|---|---|
1 | Phytol | 925 | 919 | 2622 | 2617 | 9.704 | C20H40O | |
2 | 3,7,11,15-Tetramethyl-2-Hexadecen-1-ol | 957 | 900 | 2114 | 2116 | 3.738 | C20H40O | |
3 | 1-Hexyl-2-Nitrocyclohexane | 817 | 814 | 1054 | 1060 | 1.338 | C12H23O2N | |
4 | Eicosanoic Acid | 913 | 912 | 2442 | 2445 | 38.246 | C20H40O2 | |
5 | Estra-1,3,5(10)-Trien-17-Beta-ol | 871 | 869 | 1145 | 1152 | 15.447 | C18H24O | |
6 | Sulfurous acid, Octadecyl 2-Propyl Ester | 915 | 911 | 1231 | 1237 | 3.108 | C21H44O3S | |
7 | 2-Heptadecenal | 918 | 909 | 1174 | 1183 | 3.406 | C17H32O | |
8 | 1-Hexyl-2-Nitrocyclohexane | 923 | 916 | 1214 | 1217 | 5.675 | C12H23O2N | |
9 | 17-Pentatriacontene | 929 | 921 | 1063 | 1066 | 2.450 | C35H70 | |
10 | Sulfurous acid, Octadecyl 2-Propyl Ester | 952 | 947 | 1118 | 1120 | 1.310 | C21H44O3S | |
11 | Tritetracontane | 943 | 939 | 4297 | 4300 | 1.433 | C43H88 | |
12 | 2,6,10,14,18,22-tetracosahexaene, 2,6,10,15,19,23-Hexamethyl-, (all-e)- | 983 | 975 | 2814 | 2819 | 12.222 | C30H50 | |
13 | Urs-12-En-28-ol | 749 | 748 | 987 | 992 | 1.923 | C30H50O |
S. No. | Phytochemical Test | Petroleum Benzene | Ethyl Acetate Extract | Acetone Extract | Methanol Extract |
---|---|---|---|---|---|
1 | Phenols | + | + | + | + |
2 | Flavonoids | + | + | + | + |
3 | Alkaloids | - | + | + | + |
4 | Saponins | + | + | + | + |
5 | Tannins | + | + | + | + |
6 | Glycosides | + | + | + | + |
7 | Proteins | - | - | - | - |
8 | Amino Acid | - | + | + | - |
9 | Quinones | + | + | + | + |
10 | Carbohydrates | - | - | - | + |
S.No. | Peak (Wave Number cm−1) | Intensity | Bond | Functional Group Assignment |
---|---|---|---|---|
1 | 3411.62 | 39.09 | N-H Stretch | Amine |
2 | 2926.40 | 23.06 | C-H Stretch | Alkyl |
3 | 2855.38 | 36.55 | C-H Stretch | Alkyl |
4 | 1710.59 | 42.02 | C=O Stretch | Aldehyde |
5 | 1610.19 | 50.93 | C=O Stretch | Amide |
6 | 1516.62 | 59.60 | C=C Bending | Aromatic |
7 | 1458.22 | 49.94 | C-H Bending | Alkane |
8 | 1371.66 | 53.83 | C-H Bending | Alkane |
9 | 1266.13 | 47.76 | C-N Stretch | Amine |
10 | 1168.88 | 49.26 | C-N Stretch | Amine |
11 | 1115.63 | 53.74 | C-N Stretch | Amine |
12 | 830.48 | 80.77 | C-H Bending | Aromatic |
13 | 721.46 | 85.12 | C-Cl Stretch | Alkyl Halide |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthi, S.; Uthirarajan, K.; Manohar, V.; Venkatesan, M.; Chinnaperumal, K.; Vasantha-Srinivasan, P.; Krutmuang, P. Larvicidal Enzyme Inhibition and Repellent Activity of Red Mangrove Rhizophora mucronata (Lam.) Leaf Extracts and Their Biomolecules against Three Medically Challenging Arthropod Vectors. Molecules 2020, 25, 3844. https://doi.org/10.3390/molecules25173844
Karthi S, Uthirarajan K, Manohar V, Venkatesan M, Chinnaperumal K, Vasantha-Srinivasan P, Krutmuang P. Larvicidal Enzyme Inhibition and Repellent Activity of Red Mangrove Rhizophora mucronata (Lam.) Leaf Extracts and Their Biomolecules against Three Medically Challenging Arthropod Vectors. Molecules. 2020; 25(17):3844. https://doi.org/10.3390/molecules25173844
Chicago/Turabian StyleKarthi, Sengodan, Karthic Uthirarajan, Vinothkumar Manohar, Manigandan Venkatesan, Kamaraj Chinnaperumal, Prabhakaran Vasantha-Srinivasan, and Patcharin Krutmuang. 2020. "Larvicidal Enzyme Inhibition and Repellent Activity of Red Mangrove Rhizophora mucronata (Lam.) Leaf Extracts and Their Biomolecules against Three Medically Challenging Arthropod Vectors" Molecules 25, no. 17: 3844. https://doi.org/10.3390/molecules25173844
APA StyleKarthi, S., Uthirarajan, K., Manohar, V., Venkatesan, M., Chinnaperumal, K., Vasantha-Srinivasan, P., & Krutmuang, P. (2020). Larvicidal Enzyme Inhibition and Repellent Activity of Red Mangrove Rhizophora mucronata (Lam.) Leaf Extracts and Their Biomolecules against Three Medically Challenging Arthropod Vectors. Molecules, 25(17), 3844. https://doi.org/10.3390/molecules25173844