Pu-erh Tea Extract Treatment Could Be an Efficient Way to Enhance the Yield and Nutritional Value of Soybean Sprout
Abstract
:1. Introduction
2. Results
2.1. Yield and Moisture and Vitamin C Contents
2.2. Color Value of Soybean Sprouts
2.3. Free Amino Acid Composition
2.4. Mineral Content
2.5. Isoflavone Content
2.6. DPPH and SOD-Like Activities and Total Polyphenol and Flavonoid Contents
3. Discussion
4. Materials and Methods
4.1. Chemicals and Experimental Materials
4.2. Cultivation of Soybean Sprouts
4.3. Measurement of Sprout Yield and Preparation of Sprout Powders
4.4. Measurement of Moisture and Vitamin C Contents
4.5. Color Measurement
4.6. Determination of Free Amino Acid
4.7. Determination of Mineral Content
4.8. Determination of Isoflavone Content
4.9. Extraction of Sample
4.10. Determination of DPPH Radical Scavenging Activity
4.11. Determination of Superoxide Dismutase (SOD)-Like Activity
4.12. Determination of Total Polyphenol
4.13. Flavonoid Content Analysis
4.14. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kumari, S.; Krishnan, V.; Sachdev, A. Impact of soaking and germination durations on antioxidants and anti-nutrients of black and yellow soybean (Glycine max. L) varieties. J. Plant Biochem. Biotechnol. 2015, 24, 355–358. [Google Scholar] [CrossRef]
- Fernandez-Orozco, R.; Frias, J.; Zielinski, H.; Piskula, M.K.; Kozlowska, H.; Vidal-Valverde, C. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. Emmerald, Glycine max cv. Jutro and Glycine max cv. Merit. Food Chem. 2008, 111, 622–630. [Google Scholar] [CrossRef]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Impact of germination on phenolic content and antioxidant activity of 13 edible seed species. Food Chem. 2010, 119, 1485–1490. [Google Scholar] [CrossRef]
- Paucar-Menacho, L.M.; Berhow, M.A.; Mandarino, J.M.G.; Chang, Y.K.; Mejia, E.G. de Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food Res. Int. 2010, 43, 1856–1865. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.R.; Pereira, M.J.; Azevedo, J.; Gonçalves, R.F.; Valentão, P.; de Pinho, P.G.; Andrade, P.B. Glycine max (L.) Merr., Vigna radiata L. and Medicago sativa L. sprouts: A natural source of bioactive compounds. Food Res. Int. 2013, 50, 167–175. [Google Scholar] [CrossRef]
- Spanier, A.M.; Shahidi, F.; Parliment, T.H.; Mussinan, C.; Ho, C.-T.; Tratras Contis, E.; Kayahara, H.; Tsukahara, K.; Tatai, T. Flavor, health and nutritional quality of pre-germinated brown rice. In Food Flavors and Chemistry: Advances of the New Millennium; Spanier, A.M., Shahidi, F., Parliment, T.H., Mussinan, C., Ho, C.-H., Contis, C.T., Eds.; Royal Society of Chemistry: London, UK, 2001; pp. 546–551. [Google Scholar]
- Wang, X.; Yang, R.; Jin, X.; Shen, C.; Zhou, Y.; Chen, Z.; Gu, Z. Effect of supplemental Ca2+ on yield and quality characteristics of soybean sprouts. Sci. Hortic. 2016, 198, 352–362. [Google Scholar] [CrossRef]
- Yang, H.; Gao, J.; Yang, A.; Chen, H. The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Res. Int. 2015, 77, 704–710. [Google Scholar] [CrossRef]
- Mody, I.; De Koninck, Y.; Otis, T.S.; Soltesz, I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 1994, 17, 517–525. [Google Scholar] [CrossRef]
- Oh, C.-H.; Oh, S.-H. Effects of ferminated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 2004, 7, 19–23. [Google Scholar] [CrossRef]
- Dhakal, R.; Bajpai, V.K.; Baek, K.-H. Production of GABA (γ-aminobutyric acid) by microorganisms: A review. Braz. J. Microbiol. 2012, 43, 1230–1241. [Google Scholar] [CrossRef] [Green Version]
- Okada, T.; Sugishita, T.; Murakami, T.; Murai, H.; Saikusa, T.; Horino, T.; Onoda, A.; Kajimoto, O.; Takahashi, R.; Takahashi, T. Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Nippon. Shokuhin. Kagaku. Kogaku. Kaishi. 2000, 47, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Reeds, P.J. Dispensable and indispensable amino acids for humans. J. Nutr. 2000, 130, 1835S–1840S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Chang, S.K.C. Macronutrients, phytochemicals, and antioxidant activity of soybean sprout germinated with or without light exposure. J. Food Sci. 2015, 80, S1391–S1398. [Google Scholar] [CrossRef]
- Yun, J.; Li, X.; Fan, X.; Li, W.; Jiang, Y. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation. Radiat. Phys. Chem. 2013, 82, 106–111. [Google Scholar] [CrossRef]
- Zou, T.; Xu, N.; Hu, G.; Pang, J.; Xu, H. Biofortification of soybean sprouts with zinc and bioaccessibility of zinc in the sprouts. J. Sci. Food Agric. 2014, 94, 3053–3060. [Google Scholar] [CrossRef]
- Lee, S.-J.; Ahn, J.-K.; Khanh, T.-D.; Chun, S.-C.; Kim, S.-L.; Ro, H.-M.; Song, H.-K.; Chung, I.-M. Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. J. Agric. Food Chem. 2007, 55, 9415–9421. [Google Scholar] [CrossRef]
- Algar, E.; Ramos-Solano, B.; García-Villaraco, A.; Saco Sierra, M.D.; Martín Gómez, M.S.; Gutiérrez-Mañero, F.J. Bacterial bioeffectors modify bioactive profile and increase isoflavone content in soybean sprouts (Glycine max var Osumi). Plant. Foods Hum. Nutr. 2013, 68, 299–305. [Google Scholar] [CrossRef]
- Choi, H.D.; Kim, S.S.; Kim, S.R.; Lee, B.Y. Effect of irrigating solutions on growth and rot of soybean sprouts. Korean J. Food Sci. Technol. 2000, 32, 1122–1127. [Google Scholar]
- Choi, S.D.; Kim, Y.H.; Nam, S.H.; Shon, M.Y.; Choi, J. Changes in major taste components of soybean sprouts germinated with extract of Korean Panax ginseng. Korean J. Life Sci. 2003, 13, 273–279. [Google Scholar]
- Kim, I.-D.; Dhungana, S.K.; Park, Y.-S.; Kim, D.; Shin, D.-H. Persimmon fruit powder may substitute Indolbi, a synthetic growth regulator, in soybean sprout cultivation. Molecules 2017, 22, 1462. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Kaneko, K.; Mitsui, T.; Ohtsubo, K. Evaluation of the palatability and biofunctionality of brown rice germinated in red onion solution. Cereal Chem. 2020, 97, 836–848. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Sun, Y.; Tang, Y.; Yang, H.; Liu, C. Effects of 6-benzylaminopurine on soybean sprouts growth and determination of its residue. J. South. Agric. 2015, 46, 255–259. [Google Scholar]
- Chaikina, E.L.; Gerasimenko, N.I.; Dega, L.A.; Vashchenko, A.P.; Anisimov, M.M. Effect of ethanol metabolites of seersucker kelp Costaria costata on growth of soybean sprouts. Russ. Agric. Sci. 2009, 35, 307–309. [Google Scholar] [CrossRef]
- Kwak, H.-S.; Dhungana, S.K.; Kim, I.-D.; Shin, D.-H. Effect of lacquer (Toxicodendron vernicifluum) extract on yield and nutritional value of soybean sprouts. Korean J. Food Sci. Technol. 2017, 49. [Google Scholar] [CrossRef]
- Lee, L.K.; Foo, K.Y. Recent advances on the beneficial use and health implications of Pu-Erh tea. Food Res. Int. 2013, 53, 619–628. [Google Scholar] [CrossRef]
- Choi, S.-H.; Kim, I.-D.; Dhungana, S.K.; Kim, D.-G. Comparison of quality characteristic and antioxidant potential of cultivated Pu-erh and Gushu Pu-erh tea extracts at two temperatures. J. Pure Appl. Microbiol. 2018, 12, 1155–1161. [Google Scholar] [CrossRef]
- Choi, S.-H.; Kim, I.-D.; Dhungana, S.K.; Park, K. Effect of extraction temperature on physicochemical constituents and antioxidant potentials of Pu-erh tea. Korean J. Food Sci. Technol. 2019, 51, 584–591. [Google Scholar] [CrossRef]
- Lintschinger, J.; Fuchs, N.; Moser, J.; Kuehnelt, D.; Goessler, W. Selenium-enriched sprouts. A raw material for fortified cereal-based diets. J. Agric. Food Chem. 2000, 48, 5362–5368. [Google Scholar] [CrossRef]
- McKenzie, J.S.; Jurado, J.M.; de Pablos, F. Characterisation of tea leaves according to their total mineral content by means of probabilistic neural networks. Food Chem. 2010, 123, 859–864. [Google Scholar] [CrossRef]
- Udomkun, P.; Ilukor, J.; Mockshell, J.; Mujawamariya, G.; Okafor, C.; Bullock, R.; Nabahungu, N.L.; Vanlauwe, B. What are the key factors influencing consumers’ preference and willingness to pay for meat products in Eastern DRC? Food Sci. Nutr. 2018, 6, 2321–2336. [Google Scholar] [CrossRef]
- Park, M.; Kim, D.; Kim, B.; Nahmgoong, B. Studies on pollution-free soybean sprout production and circulation market improvement. Korea Soybean Dig. 1995, 12, 51–67. [Google Scholar]
- Nikmaram, N.; Dar, B.; Roohinejad, S.; Koubaa, M.; Barba, F.J.; Greiner, R.; Johnson, S.K. Recent advances in γ -aminobutyric acid (GABA) properties in pulses: An overview. J. Sci. Food Agric. 2017, 97, 2681–2689. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Zou, T.; Pang, J.W.; Hu, G.L. Effects of exogenous zinc soaking on the seed germination, sprout growth of soybean and zinc accumulation in the sprouts. Soybean Sci. 2012, 31, 932–936. [Google Scholar]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Houston, M.C.; Harper, K.J. Potassium, magnesium, and calcium: Their role in both the cause and treatment of hypertension. J. Clin. Hypertens. 2008, 10, 3–11. [Google Scholar] [CrossRef]
- Ganz, T. Systemic iron homeostasis. Physiol. Rev. 2013, 93, 1721–1741. [Google Scholar] [CrossRef] [Green Version]
- MacDiarmid, C.W. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J. 2000, 19, 2845–2855. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.; Yu, O.; Lau, S.-M.C.; O’Keefe, D.P.; Odell, J.; Fader, G.; McGonigle, B. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotechnol. 2000, 18, 208–212. [Google Scholar] [CrossRef]
- Yoon, G.-A.; Park, S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr. Res. Pract. 2014, 8, 618. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.D.R.; Cassidy, A. Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. 1999, 129, 758S–767S. [Google Scholar] [CrossRef] [Green Version]
- Messina, M.; Gugger, E.T.; Alekel, D.L. Soy protein, soybean isoflavones and bone health: A review of the animal and human data. In Handbook of Nutraceuticals and Functional Food; Wildman, R.E., Ed.; CRC Press LLC: Boca Raton, FL, USA, 2001; pp. 77–98. [Google Scholar]
- Demonty, I.; Lamarche, B.; Jones, P.J.H. Role of isoflavones in the hypocholesterolemic effect of soy. Nutr. Rev. 2003, 61, 189–203. [Google Scholar] [CrossRef]
- Prakash, D.; Upadhyay, G.; Singh, B.N.; Singh, H.B. Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food Chem. 2007, 104, 783–790. [Google Scholar] [CrossRef]
- Santos, J.H.; Hunakova, L.; Chen, Y.; Bortner, C.; Van Houten, B. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J. Biol. Chem. 2003, 278, 1728–1734. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Jha, A.B.; Dubey, R.S. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma. 2011, 248, 565–577. [Google Scholar] [CrossRef]
- Srivastava, S.; Dubey, R.S. Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant. Growth Regul. 2011, 64, 1–16. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Wang, C.-F.; Shen, S.-M.; Wang, G.-L.; Liu, P.; Liu, Z.-M.; Wang, Y.-Y.; Du, S.-S.; Liu, Z.-L.; Deng, Z.-W. Antioxidant phenolic compounds from Pu-erh tea. Molecules 2012, 17, 14037–14045. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, Y.; Zhang, H.; Wang, J.; Liu, X.; Chen, Z.; Zheng, M.; Liu, B. Phenolic compounds and the biological effects of Pu-erh teas with long-term storage. Int. J. Food Prop. 2017, 20, 1715–1728. [Google Scholar] [CrossRef]
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A global benefit to health. Phytother. Res. 2002, 16, 603–615. [Google Scholar] [CrossRef]
- Gennaro, L.; Leonardi, C.; Esposito, F.; Salucci, M.; Maiani, G.; Quaglia, G.; Fogliano, V. Flavonoid and carbohydrate contents in tropea red onions: Effects of homelike peeling and storage. J. Agric. Food Chem. 2002, 50, 1904–1910. [Google Scholar] [CrossRef]
- Rice-evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 1995, 22, 375–383. [Google Scholar] [CrossRef]
- Yang, R.; Guo, L.; Zhou, Y.; Shen, C.; Gu, Z. Calcium mitigates the stress caused by ZnSO4 as a sulphur fertilizer and enhances the sulforaphane formation of broccoli sprouts. RSC Adv. 2015, 5, 12563–12570. [Google Scholar] [CrossRef]
- Park, K.Y.; Yun, H.T.; Moon, J.K.; Ku, J.H.; Hwang, J.J.; Lee, S.H.; Seung, Y.K.; Ryu, Y.H.; Chung, W.K.; Lee, Y.H.; et al. A new soybean cultivar for sprout with good storability and disease resistance, ‘Sowonkong’. Korean J. Breed. 2000, 32, 298–299. [Google Scholar]
- Tianlu, M.; Wenju, Z. The evolution and distribution of genus Camellia. Acta Bot. Yunnanica. 1996, 18, 1–13. [Google Scholar]
- AOAC Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC International: Arlington, VA, USA, 1990; Volume 15. [Google Scholar]
- Kim, I.-D.; Lee, J.-W.; Kim, S.-J.; Cho, J.-W.; Dhungana, S.K.; Lim, Y.-S.; Shin, D.-H. Exogenous application of natural extracts of persimmon (Diospyros kaki Thunb.) can help in maintaining nutritional and mineral composition of dried persimmon. Afr. J. Biotechnol. 2014, 13, 2231–2239. [Google Scholar] [CrossRef]
- Je, J.-Y.; Park, P.-J.; Jung, W.-K.; Kim, S.-K. Amino acid changes in fermented oyster (Crassostrea gigas) sauce with different fermentation periods. Food Chem. 2005, 91, 15–18. [Google Scholar] [CrossRef]
- Skujins, S. Handbook for ICP-AES (Varian-Vista). A Short Guide to Vista Series ICP-AES Operation; Varian Int. AG: Zug, Switzerland, 1998. [Google Scholar]
- Jiao, C.; Yang, R.; Zhou, Y.; Gu, Z. Nitric oxide mediates isoflavone accumulation and the antioxidant system enhancement in soybean sprouts. Food Chem. 2016, 204, 373–380. [Google Scholar] [CrossRef]
- Dhungana, S.K.; Kim, B.-R.; Son, J.-H.; Kim, H.-R.; Shin, D.-H. Comparative study of CaMsrB2 gene containing drought-tolerant transgenic rice (Oryza sativa L.) and non-transgenic counterpart. J. Agron. Crop. Sci. 2015, 201, 10–16. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Debnath, T.; Park, P.-J.; Deb Nath, N.C.; Samad, N.B.; Park, H.W.; Lim, B.O. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chem. 2011, 128, 697–703. [Google Scholar] [CrossRef]
- Adhikari, B.; Dhungana, S.K.; Kim, I.-D.; Shin, D.-H. Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. J. Saudi Soc. Agric. Sci. 2020, 19, 261–269. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology; Wilchek, M., Bayer, E.A., Eds.; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Dhungana, S.K.; Kim, I.-D.; Kwak, H.-S.; Shin, D.-H. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr.]. Pestic. Biochem. Physiol. 2016, 130. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
Sample Availability: Samples of the soybean sprouts are available from the authors. |
Sample 1 | Total Weight (g) | Moisture (%) | Vitamin C (mg/100 g Fresh Weight) |
---|---|---|---|
Control | 6843 ± 38c 2 (100.0%) | 87.11 ± 1.02a | 16.00 ± 0.11c |
PE-1 | 7492 ± 32b (109.5%) | 87.12 ± 0.08a | 16.90 ± 0.21b |
PE-2 | 7998 ± 50a (116.8%) | 87.08 ± 1.12a | 18.07 ± 0.32a |
PE-3 | 8005 ± 45a (116.9%) | 87.00 ± 0.80a | 18.09 ± 0.20a |
Sample 1 | Color Value 2 | ||
---|---|---|---|
L | a | b | |
Control | 71.90 ± 0.06c 3 | −0.81 ± 0.07a | 17.73 ± 1.12c |
PE-1 | 75.39 ± 0.85a | −1.41 ± 0.09c | 22.32 ± 0.50a |
PE-2 | 75.73 ± 0.58a | −1.12 ± 0.06b | 22.36 ± 0.22a |
PE-3 | 73.38 ± 0.41b | −1.17 ± 0.14b | 21.02 ± 0.26b |
Amino Acid | Sample 1 | |||
---|---|---|---|---|
Control | PE-1 | PE-2 | PE-3 | |
Essential Amino Acid | ||||
l-Threonine | 1.36 ± 0.02d 2 | 1.65 ± 0.01a | 1.50 ± 0.01c | 1.61 ± 0.01b |
l-Valine | 2.26 ± 0.02d | 2.86 ± 0.03a | 2.49 ± 0.02c | 2.79 ± 0.03b |
l-Methionine | 0.33 ± 0.01b | 0.36 ± 0.01a | 0.36 ± 0.01a | 0.35 ± 0.01b |
l-Isoleucine | 1.33 ± 0.01c | 1.61 ± 0.04a | 1.50 ± 0.02b | 1.57 ± 0.02a |
l-Leucine | 0.91 ± 0.02c | 1.03 ± 0.01a | 0.99 ± 0.01b | 1.01 ± 0.01ab |
l-Phenylalanine | 1.79 ± 0.03b | 1.96 ± 0.02a | 1.82 ± 0.01b | 1.95 ± 0.01a |
l-Lysine | 2.64 ± 0.03c | 2.89 ± 0.02a | 2.77 ± 0.01b | 2.74 ± 0.02b |
l-Histidine | 2.71 ± 0.02d | 3.24 ± 0.06b | 3.14 ± 0.03c | 3.31 ± 0.02a |
Subtotal | 13.33 | 15.60 | 14.57 | 15.33 |
Non-Essential Amino Acid | ||||
l-Asparitic acid | 0.88 ± 0.02c | 0.97 ± 0.03b | 1.03 ± 0.01a | 1.05 ± 0.02a |
L-Serine | 2.96 ± 0.03c | 3.41 ± 0.02a | 3.15 ± 0.01b | 3.39 ± 0.03a |
l-Glutamic acid | 5.29 ± 0.07d | 5.81 ± 0.05b | 5.57 ± 0.06c | 6.06 ± 0.02a |
Glycine | 0.30 ± 0.01b | 0.36 ± 0.02a | 0.30 ± 0.01b | 0.32 ± 0.03ab |
l-Alanine | 1.79 ± 0.01d | 2.16 ± 0.02b | 2.09 ± 0.02c | 2.20 ± 0.01a |
l-Tyrosine | 0.28 ± 0.02b | 0.31 ± 0.02b | 0.38 ± 0.01a | 0.30 ± 0.03b |
l-Arginine | 15.61 ± 0.16b | 14.78 ± 0.12d | 17.06 ± 0.07a | 15.27 ± 0.05c |
Proline | 1.05 ± 0.01b | 1.12 ± 0.02a | 0.97 ± 0.01c | 1.06 ± 0.01b |
Subtotal | 28.16 | 28.92 | 30.55 | 29.65 |
Essential to Non-Essential Ratio | 0.47 | 0.54 | 0.48 | 0.52 |
Other Amino Acid | ||||
O-Phospho-l-serine | 0.16 ± 0.02a | 0.18 ± 0.01a | 0.17 ± 0.01a | 0.17 ± 0.02a |
Taurine | ND 3 | ND | ND | ND |
O-Phospho ethanol amine | ND | ND | ND | ND |
Urea | 2.37 ± 0.03b | 2.69 ± 0.04a | 2.18 ± 0.02c | 2.33 ± 0.01b |
l-Sarcosine | ND | ND | ND | ND |
l-α-Amino asipic acid | 0.36 ± 0.02b | 0.39 ± 0.01b | 0.44 ± 0.02a | 0.44 ± 0.01a |
L-Citrulline | 0.18 ± 0.01a | 0.19 ± 0.01a | 0.21 ± 0.03a | 0.20 ± 0.02a |
l-α-Amino-n-butyric acid | 0.08 ± 0.02a | 0.09 ± 0.02a | 0.10 ± 0.01a | 0.09 ± 0.01a |
l-Cystine | ND | ND | ND | ND |
Cystathionine | ND | ND | ND | ND |
β-Alanine | 0.36 ± 0.01b | 0.48 ± 0.03a | 0.37 ± 0.02b | 0.43 ± 0.03a |
d, l-β-Amino isobutyric acid | 0.16 ± 0.02a | 0.18 ± 0.02a | 0.18 ± 0.02a | 0.19 ± 0.01a |
γ-Amino-n-butyric acid | 0.53 ± 0.01b | 0.67 ± 0.03a | 0.70 ± 0.03a | 0.66 ± 0.02a |
Ethanolamin | 0.21 ± 0.02a | 0.21 ± 0.01a | 0.20 ± 0.02a | 0.21 ± 0.01a |
Hydroxylysine | ND | ND | ND | ND |
l-Ornithine | 0.04 ± 0.01c | 0.12 ± 0.02b | 0.21 ± 0.01a | 0.19 ± 0.01a |
1-Methyl-l-histidine | ND | ND | ND | ND |
3-Methyl-l-histidine | ND | ND | ND | ND |
l-Anserine | ND | ND | ND | ND |
l-Carnosine | ND | ND | ND | ND |
Hydroxy proline | 0.19 ± 0.04a | 0.21 ± 0.03a | 0.17 ± 0.02a | 0.21 ± 0.03a |
Subtotal | 4.64 | 5.41 | 4.93 | 5.12 |
Total Free Amino Acid | 46.13 | 49.93 | 50.05 | 50.10 |
Element | Sample 1 | |||
---|---|---|---|---|
Control | PE-1 | PE-2 | PE-3 | |
Ca | 1624.86 ± 28.28c 2 | 1636.74 ± 27.94c | 1942.67 ± 26.53a | 1864.39 ± 33.02b |
Cu | 39.44 ± 0.15b | 41.66 ± 0.90a | 34.19 ± 0.22c | 29.70 ± 0.56d |
Fe | 84.08 ± 1.52c | 92.96 ± 0.67b | 99.55 ± 1.13a | 100.69 ± 1.58a |
K | 16845.74 ± 10.92d | 17557.39 ± 11.62b | 17043.15 ± 11.03c | 18180.18 ± 21.13a |
Mg | 1663.33 ± 14.04b | 1683.26 ± 13.10b | 1777.44 ± 14.40a | 1778.53 ± 16.48a |
Mn | 22.42 ± 0.31a | 20.66 ± 0.30c | 21.51 ± 0.26b | 22.24 ± 0.33a |
Na | 284.57 ± 0.33d | 330.58 ± 2.45c | 376.18 ± 0.59a | 369.00 ± 3.87b |
Zn | 55.67 ± 0.08a | 51.79 ± 0.07c | 55.91 ± 0.22a | 53.85 ± 0.30b |
Total | 20,620.11 | 21,415.04 | 21,350.6 | 22,398.58 |
Sample 1 | Isoflavone Content (mg/kg dry weight) | ||||||
---|---|---|---|---|---|---|---|
Daidzin | Daidzein | Genistin | Glycitin | Glycitein | Genistein | Total | |
Control | 321.41 ± 3.21c 2 | 19.31 ± 3.71b | 281.11 ± 3.52c | 88.91 ± 5.53c | 10.11 ± 1.72d | 36.11 ± 2.21a | 756.95 |
PE-1 | 351.23 ± 5.21b | 25.20 ± 1.21a | 299.81 ± 5.71b | 95.21 ± 3.62b | 12.91 ± 3.01c | 35.20 ± 3.00a | 819.57 |
PE-2 | 399.91 ± 6.91a | 25.32 ± 2.71a | 350.21 ± 8.12a | 99.21 ± 2.72a | 14.91 ± 1.12b | 36.51 ± 2.41a | 926.08 |
PE-3 | 401.21 ± 2.10a | 24.11 ± 1.62a | 359.44 ± 6.94a | 102.02 ± 5.43a | 15.71 ± 1.62a | 37.12 ± 2.72a | 939.59 |
Sample 1 | % Inhibition | Total Polyphenol (μg GAE 2/g dry weight) | Flavonoid (μg QE 3/g dry weight) | |
---|---|---|---|---|
DPPH | SOD-Like Activity | |||
Control | 80.44 ± 2.91c 4 | 79.73 ± 1.51c | 348.20 ± 0.36c 4 | 90.52 ± 2.37b |
PE-1 | 84.16 ± 2.72b | 85.37 ± 0.70a | 423.23 ± 3.55a | 107.50 ± 3.41a |
PE-2 | 87.34 ± 0.84a | 82.08 ± 0.29b | 406.83 ± 1.85b | 109.40 ± 5.32a |
PE-3 | 87.24 ± 1.10a | 83.76 ± 0.96b | 404.35 ± 2.06b | 105.86 ± 4.66a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Yoon, Y.-H.; Kim, I.-D.; Dhungana, S.K.; Shin, D.-H. Pu-erh Tea Extract Treatment Could Be an Efficient Way to Enhance the Yield and Nutritional Value of Soybean Sprout. Molecules 2020, 25, 3869. https://doi.org/10.3390/molecules25173869
Kim J-H, Yoon Y-H, Kim I-D, Dhungana SK, Shin D-H. Pu-erh Tea Extract Treatment Could Be an Efficient Way to Enhance the Yield and Nutritional Value of Soybean Sprout. Molecules. 2020; 25(17):3869. https://doi.org/10.3390/molecules25173869
Chicago/Turabian StyleKim, Jeong-Ho, Yong-Han Yoon, Il-Doo Kim, Sanjeev Kumar Dhungana, and Dong-Hyun Shin. 2020. "Pu-erh Tea Extract Treatment Could Be an Efficient Way to Enhance the Yield and Nutritional Value of Soybean Sprout" Molecules 25, no. 17: 3869. https://doi.org/10.3390/molecules25173869
APA StyleKim, J. -H., Yoon, Y. -H., Kim, I. -D., Dhungana, S. K., & Shin, D. -H. (2020). Pu-erh Tea Extract Treatment Could Be an Efficient Way to Enhance the Yield and Nutritional Value of Soybean Sprout. Molecules, 25(17), 3869. https://doi.org/10.3390/molecules25173869