Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties
2.2. Sugar Content
2.3. FOS Chemical Stability
2.4. Beta-Ecdysone Stability
3. Materials and Methods
3.1. Obtaining Pfaffia Glomerata Root Aqueous Extract
3.2. Functional Beverage Formulation
3.3. Supercritical CO2 Processing
3.4. Conventional Thermal Treatment
3.5. pH and Soluble Solids Content Analysis
3.6. HPAEC-PAD Sugars and FOS Analysis
3.7. HPLC-DAD Beta-Ecdysone Analysis
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G.; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A.; et al. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol. 2016, 37, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, K.; Zhao, Q. Fructooligosaccharide enhanced absorption and anti-dyslipidemia capacity of tea flavonoids in high sucrose-fed mice. Int. J. Food Sci. Nutr. 2019, 70, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Licht, T.R.; Ebersbach, T.; Frøkiær, H. Prebiotics for prevention of gut infections. Trends Food Sci. Technol. 2012, 23, 70–82. [Google Scholar] [CrossRef]
- Neri-Numa, I.A.; Arruda, H.S.; Geraldi, M.V.; Maróstica Júnior, M.R.; Pastore, G.M. Natural prebiotic carbohydrates, carotenoids and flavonoids as ingredients in food systems. Curr. Opin. Food Sci. 2020, 33, 98–107. [Google Scholar] [CrossRef]
- Gargari, G.; Taverniti, V.; Koirala, R.; Gardana, C.; Guglielmetti, S. Impact of a multistrain probiotic formulation with high bifidobacterial content on the fecal bacterial community and short-chain fatty acid levels of healthy adults. Microorganisms 2020, 8, 492. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Teng, H.; An, F.; Huang, Q.; Chen, L.; Song, H. The beneficial effects of purple yam (Dioscorea alata L.) resistant starch on hyperlipidemia in high-fat-fed hamsters. Food Funct. 2019, 10, 2642–2650. [Google Scholar] [CrossRef]
- Arruda, H.S.; Pereira, G.A.; Almeida, M.E.F.; Neri-Numa, I.A.; Sancho, R.A.S.; Molina, G.; Pastore, G.M. Current knowledge and future perspectives of oligosaccharides research. In Frontiers in Natural Product Chemistry; Atta-ur-Rahman, Ed.; Bentham Science: Sharjah, UAE, 2017; Volume 3, pp. 91–175. [Google Scholar]
- De la Rosa, O.; Flores-Gallegos, A.C.; Muñíz-Marquez, D.; Nobre, C.; Contreras-Esquivel, J.C.; Aguilar, C.N. Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends Food Sci. Technol. 2019, 91, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Langa, S.; van den Bulck, E.; Peirotén, A.; Gaya, P.; Schols, H.A.; Arqués, J.L. Application of lactobacilli and prebiotic oligosaccharides for the development of a synbiotic semi-hard cheese. LWT 2019, 114, 108361. [Google Scholar] [CrossRef]
- Bis-Souza, C.V.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Penna, A.L.B.; da Silva Barretto, A.C. Volatile profile of fermented sausages with commercial probiotic strains and fructooligosaccharides. J. Food Sci. Technol. 2019, 56, 5465–5473. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.F.; Pimentel, T.C.; Guimaraes, J.T.; Balthazar, C.F.; Rocha, R.S.; Cavalcanti, R.N.; Esmerino, E.A.; Freitas, M.Q.; Raices, R.S.L.; Silva, M.C.; et al. Impact of prebiotics on the rheological characteristics and volatile compounds of Greek yogurt. LWT 2019, 105, 371–376. [Google Scholar] [CrossRef]
- Almeida, F.D.L.; Gomes, W.F.; Cavalcante, R.S.; Tiwari, B.K.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Fernandes, F.A.N.; Rodrigues, S. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice. Food Res. Int. 2017, 102, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Borewicz, K.; Suarez-Diez, M.; Hechler, C.; Beijers, R.; de Weerth, C.; Arts, I.; Penders, J.; Thijs, C.; Nauta, A.; Lindner, C.; et al. The effect of prebiotic fortified infant formulas on microbiota composition and dynamics in early life. Sci. Rep. 2019, 9, 2434. [Google Scholar] [CrossRef] [Green Version]
- Vardanega, R.; Carvalho, P.I.N.; Santos, D.T.; Meireles, M.A.A. Obtaining prebiotic carbohydrates and beta-ecdysone from Brazilian ginseng by subcritical water extraction. Innov. Food Sci. Emerg. Technol. 2017, 42, 73–82. [Google Scholar] [CrossRef]
- Vardanega, R.; Muzio, A.F.V.; Silva, E.K.; Prata, A.S.; Meireles, M.A.A. Obtaining functional powder tea from Brazilian ginseng roots: Effects of freeze and spray drying processes on chemical and nutritional quality, morphological and redispersion properties. Food Res. Int. 2019, 116, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Matusek, A.; Merész, P.; Le, T.K.D.; Örsi, F. Effect of temperature and pH on the degradation of fructo-oligosaccharides. Eur. Food Res. Technol. 2009, 228, 355–365. [Google Scholar] [CrossRef]
- Vega, R.; Zuniga-Hansen, M.E. The effect of processing conditions on the stability of fructooligosaccharides in acidic food products. Food Chem. 2015, 173, 784–789. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Novel thermal and non-thermal processing of watermelon juice. Trends Food Sci. Technol. 2019, 93, 234–243. [Google Scholar] [CrossRef]
- Wibowo, S.; Essel, E.A.; De Man, S.; Bernaert, N.; Van Droogenbroeck, B.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innov. Food Sci. Emerg. Technol. 2019, 54, 64–77. [Google Scholar] [CrossRef]
- Silva, E.K.; Arruda, H.S.; Pastore, G.M.; Meireles, M.A.A.; Saldaña, M.D.A. Xylooligosaccharides chemical stability after high-intensity ultrasound processing of prebiotic orange juice. Ultrason. Sonochem. 2020, 63, 104942. [Google Scholar] [CrossRef]
- Stinco, C.M.; Szczepańska, J.; Marszałek, K.; Pinto, C.A.; Inácio, R.S.; Mapelli-Brahm, P.; Barba, F.J.; Lorenzo, J.M.; Saraiva, J.A.; Meléndez-Martínez, A.J. Effect of high-pressure processing on carotenoids profile, colour, microbial and enzymatic stability of cloudy carrot juice. Food Chem. 2019, 299, 125112. [Google Scholar] [CrossRef]
- Souza, V.R.; Popović, V.; Bissonnette, S.; Ros, I.; Mats, L.; Duizer, L.; Warriner, K.; Koutchma, T. Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innov. Food Sci. Emerg. Technol. 2020, 64, 102398. [Google Scholar] [CrossRef]
- Murtaza, A.; Iqbal, A.; Linhu, Z.; Liu, Y.; Xu, X.; Pan, S.; Hu, W. Effect of high-pressure carbon dioxide on the aggregation and conformational changes of polyphenol oxidase from apple (Malus domestica) juice. Innov. Food Sci. Emerg. Technol. 2019, 54, 43–50. [Google Scholar] [CrossRef]
- Silva, E.K.; Meireles, M.A.A.; Saldaña, M.D.A. Supercritical carbon dioxide technology: A promising technique for the non-thermal processing of freshly fruit and vegetable juices. Trends Food Sci. Technol. 2020, 97, 381–390. [Google Scholar] [CrossRef]
- Bertolini, F.M.; Morbiato, G.; Facco, P.; Marszałek, K.; Pérez-Esteve, É.; Benedito, J.; Zambon, A.; Spilimbergo, S. Optimization of the supercritical CO2 pasteurization process for the preservation of high nutritional value of pomegranate juice. J. Supercrit. Fluids 2020, 164, 104914. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Yao, Y.; Wei, X.; Yue, T.; Meng, J. Formation of 5-hydroxymethylfurfural in industrial-scale apple juice concentrate processing. Food Control 2019, 102, 56–68. [Google Scholar] [CrossRef]
- Amanina, A.K.Z.; Rosnah, S.; Noranizan, M.A.; Alifdalino, S. Comparison of UV-C and thermal pasteurisation for the quality preservation of pineapple-mango juice blend. Food Res. 2019, 3, 362–372. [Google Scholar] [CrossRef]
- Ferrentino, G.; Barletta, D.; Donsì, F.; Ferrari, G.; Poletto, M. Experimental measurements and thermodynamic modeling of CO2 solubility at high pressure in model apple juices. Ind. Eng. Chem. Res. 2010, 49, 2992–3000. [Google Scholar] [CrossRef]
- Arruda, H.S.; Silva, E.K.; Pereira, G.A.; Meireles, M.A.A.; Pastore, G.M. Inulin thermal stability in prebiotic carbohydrate-enriched araticum whey beverage. LWT 2020, 128, 109418. [Google Scholar] [CrossRef]
- Wang, L.; Deng, W.; Wang, P.; Huang, W.; Wu, J.; Zheng, T.; Chen, J. Degradations of aroma characteristics and changes of aroma related compounds, PPO activity, and antioxidant capacity in sugarcane juice during thermal process. J. Food Sci. 2020, 85, 1140–1150. [Google Scholar] [CrossRef]
- Gasperi, F.; Aprea, E.; Biasioli, F.; Carlin, S.; Endrizzi, I.; Pirretti, G.; Spilimbergo, S. Effects of supercritical CO2 and N2O pasteurisation on the quality of fresh apple juice. Food Chem. 2009, 115, 129–136. [Google Scholar] [CrossRef]
- Marszałek, K.; Skąpska, S.; Woźniak, Ł.; Sokołowska, B. Application of supercritical carbon dioxide for the preservation of strawberry juice: Microbial and physicochemical quality, enzymatic activity and the degradation kinetics of anthocyanins during storage. Innov. Food Sci. Emerg. Technol. 2015, 32, 101–109. [Google Scholar] [CrossRef]
- Cappelletti, M.; Ferrentino, G.; Endrizzi, I.; Aprea, E.; Betta, E.; Corollaro, M.L.; Charles, M.; Gasperi, F.; Spilimbergo, S. High Pressure Carbon Dioxide pasteurization of coconut water: A sport drink with high nutritional and sensory quality. J. Food Eng. 2015, 145, 73–81. [Google Scholar] [CrossRef]
- Pei, L.; Hou, S.; Wang, L.; Chen, J. Effects of high hydrostatic pressure, dense phase carbon dioxide, and thermal processing on the quality of Hami melon juice. J. Food Process Eng. 2018, 41, e12828. [Google Scholar] [CrossRef]
- Poeker, S.A.; Geirnaert, A.; Berchtold, L.; Greppi, A.; Krych, L.; Steinert, R.E.; de Wouters, T.; Lacroix, C. Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci. Rep. 2018, 8, 4318. [Google Scholar] [CrossRef]
- Klewicki, R. The stability of gal-polyols and oligosaccharides during pasteurization at a low pH. LWT Food Sci. Technol. 2007, 40, 1259–1265. [Google Scholar] [CrossRef]
- Chi, L.; Chen, L.; Zhang, J.; Zhao, J.; Li, S.; Zheng, Y. Development and application of bio-sample quantification to evaluate stability and pharmacokinetics of inulin-type fructo-oligosaccharides from Morinda Officinalis. J. Pharm. Biomed. Anal. 2018, 156, 125–132. [Google Scholar] [CrossRef]
- Silva, E.K.; Arruda, H.S.; Eberlin, M.N.; Pastore, G.M.; Meireles, M.A.A. Effects of supercritical carbon dioxide and thermal treatment on the inulin chemical stability and functional properties of prebiotic-enriched apple juice. Food Res. Int. 2019, 125, 108561. [Google Scholar] [CrossRef]
- Vardanega, R.; Santos, D.T.; Meireles, M.A.A. Production of biosurfactant from Brazilian ginseng roots by low-pressure solvent extraction with and without the assistance of ultrasound. Recent Pat. Eng. 2014, 8, 69–81. [Google Scholar] [CrossRef]
- Vardanega, R.; Santos, D.T.; Meireles, M.A.A. Proposal for fractionating Brazilian ginseng extracts: Process intensification approach. J. Food Eng. 2017, 196, 73–80. [Google Scholar] [CrossRef]
- Silva, E.K.; Alvarenga, V.O.; Bargas, M.A.; Sant’Ana, A.S.; Meireles, M.A.A. Non-thermal microbial inactivation by using supercritical carbon dioxide: Synergic effect of process parameters. J. Supercrit. Fluids 2018, 139, 97–104. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Debien, I.C.N.; Vardanega, R.; Nogueira, G.C.; Barbero, G.F.; Meireles, M.A.A. Fast analysis of β-ecdysone in Brazilian ginseng (Pfaffia glomerata) extracts by high-performance liquid chromatography using a fused-core column. Anal. Methods 2014, 6, 2452–2459. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
Treatment | Pressure (MPa) | CO2 Volume Ratio (%) | pH (-) | Soluble Solids Content (%) |
---|---|---|---|---|
Non-thermal | 8 | 20 | 4.12 ± 0.02 | 14.9 ± 0.1 |
(40 °C) | 50 | 4.10 ± 0.01 | 14.7 ± 0.1 | |
21 | 20 | 4.12 ± 0.01 | 14.9 ± 0.1 | |
50 | 4.12 ± 0.01 | 14.7 ± 0.1 | ||
Thermal | 8 | 20 | 4.02 ± 0.01 | 14.6 ± 0.1 |
(60 °C) | 50 | 4.02 ± 0.01 | 14.9 ± 0.1 | |
21 | 20 | 4.0 ± 0.1 | 14.9 ± 0.1 | |
50 | 4.0 ± 0.1 | 14.9 ± 0.1 | ||
105 °C/10 min | - | - | 4.1 ± 0.1 | 14.6 ± 0.3 |
Untreated | - | - | 4.1 ± 0.1 | 14.8 ± 0.1 |
Treatment | Pressure (MPa) | CO2 Volume Ratio (%) | Glucose (mg/mL) | Fructose (mg/mL) | Sucrose (mg/mL) | Total Sugars (mg/mL) |
---|---|---|---|---|---|---|
Non-thermal | 8 | 20 | 29 ± 1 | 96 ± 2 | 24 ± 1 | 149 ± 1 |
(40 °C) | 50 | 28 ± 2 | 91 ± 11 | 23 ± 2 | 141 ± 14 | |
21 | 20 | 27 ± 3 | 89 ± 9 | 22 ± 3 | 139 ± 15 | |
50 | 27 ± 1 | 88 ± 5 | 21 ±1 | 135 ± 7 | ||
Thermal | 8 | 20 | 28 ± 1 | 92 ± 2 | 23 ±1 | 143 ± 4 |
(60 °C) | 50 | 30 ± 1 | 99 ± 3 | 24 ± 1 | 153 ± 3 | |
21 | 20 | 29 ± 1 | 93 ± 1 | 24 ± 1 | 146 ± 1 | |
50 | 30 ± 2 | 96 ± 7 | 24 ± 1 | 150 ± 11 | ||
105 °C/10 min | - | - | 27 ± 2 | 88 ± 6 | 19 ± 1 | 134 ± 9 |
Untreated | - | - | 29 ± 1 | 94 ± 1 | 23 ± 1 | 146 ± 1 |
Treatment | Pressure (MPa) | CO2 Volume Ratio (%) | GF2 (µg/mL) | GF3 (µg/mL) | GF4 (µg/mL) | Total FOS (µg/mL) |
---|---|---|---|---|---|---|
Non-thermal | 8 | 20 | 324 ± 11 | 236 ± 4 | 269 ± 3 | 828 ± 4 |
(40 °C) | 50 | 309 ± 21 | 221 ± 8 | 252 ± 15 | 782 ± 44 | |
21 | 20 | 322 ± 5 | 237 ± 9 | 255 ± 13 | 815 ± 9 | |
50 | 308 ± 22 | 225 ± 15 | 255 ± 21 | 788 ± 58 | ||
Thermal | 8 | 20 | 296 ± 11 | 236 ± 5 | 264 ± 4 | 797 ± 20 |
(60 °C) | 50 | 313 ± 8 | 241 ± 2 | 272 ± 4 | 827 ± 13 | |
21 | 20 | 292 ± 27 | 242 ± 7 | 270 ± 2 | 804 ± 19 | |
50 | 294 ± 23 | 248 ± 3 | 274 ± 2 | 816 ± 22 | ||
105 °C/10 min | - | - | 268 ± 1 | 234 ± 13 | 251 ± 14 | 753 ± 28 |
Untreated | - | - | 306 ± 8 | 228 ± 6 | 259 ± 7 | 794 ± 5 |
Compound | Retention Time (min) | Untreated | Thermal Processing (105 °C/10 min) | SC-CO2 Treatment | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Non-Thermal (40 °C) | Thermal (60 °C) | ||||||||||
8 MPa 20%CO2 | 8 MPa 50%CO2 | 21 MPa 20%CO2 | 21 MPa 50%CO2 | 8 MPa 20%CO2 | 8 MPa 50%CO2 | 21 MPa 20%CO2 | 21 MPa 50%CO2 | ||||
Unknown 1 | 6.91 | 3.33 | 2.86 | 3.49 | 3.05 | 2.98 | 3.06 | 3.14 | 3.03 | 3.08 | 3.02 |
GF2 | 7.97 | 7.43 | 6.17 | 7.52 | 6.66 | 7.36 | 6.65 | 7.17 | 6.86 | 7.02 | 6.69 |
Unknown 2 | 8.46 | 2.82 | 2.08 | 2.87 | 2.61 | 2.87 | 2.61 | 2.85 | 2.84 | 2.78 | 2.88 |
Unknown 3 | 8.78 | 2.64 | 2.61 | 2.82 | 2.44 | 2.33 | 2.50 | 2.64 | 2.71 | 2.58 | 2.59 |
Unknown 4 | 8.99 | 0.71 | 0.48 | 0.63 | 0.64 | 0.67 | 0.63 | 0.73 | 0.82 | 0.75 | 0.73 |
Unknown 5 | 9.59 | 3.92 | 5.30 | 2.55 | 2.45 | 2.36 | 2.61 | 2.97 | 3.24 | 3.58 | 3.13 |
Unknown 6 | 9.71 | 2.54 | 1.55 | 2.63 | 2.18 | 2.33 | 2.09 | 2.29 | 2.10 | 2.30 | 2.48 |
GF3 | 9.96 | 5.06 | 4.97 | 5.34 | 4.73 | 5.59 | 4.71 | 5.39 | 5.42 | 5.45 | 5.39 |
Unknown 7 | 10.33 | 0.58 | 0.83 | 0.59 | 0.36 | 0.40 | 0.56 | 0.63 | 0.65 | 0.63 | 0.75 |
Unknown 8 | 10.99 | 0.54 | 1.76 | 0.65 | 0.74 | 0.71 | 0.74 | 1.02 | 1.03 | 1.02 | 1.04 |
GF4 | 11.75 | 5.02 | 5.21 | 5.36 | 4.76 | 4.89 | 4.75 | 5.35 | 5.45 | 5.41 | 5.44 |
Unknown 9 | 13.04 | 0.03 | 0.94 | 0.04 | 0.03 | 0.04 | 0.03 | 0.06 | 0.08 | 0.07 | 0.07 |
GF5 | 13.33 | 5.37 | 4.69 | 5.63 | 5.02 | 4.99 | 5.00 | 5.65 | 5.73 | 5.72 | 5.73 |
GF6 | 14.76 | 4.75 | 5.17 | 5.11 | 4.30 | 4.62 | 4.45 | 5.14 | 5.03 | 5.29 | 5.61 |
Unknown 10 | 15.00 | 8.34 | 7.30 | 8.84 | 7.71 | 7.72 | 7.97 | 9.60 | 9.71 | 9.83 | 10.13 |
GF7 | 16.07 | 4.36 | 3.56 | 4.58 | 4.06 | 4.02 | 4.02 | 4.49 | 4.54 | 4.52 | 4.53 |
Unknown 11 | 16.25 | n.d. | 0.70 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
GF8 | 17.40 | 3.77 | 2.96 | 3.92 | 3.51 | 3.49 | 3.49 | 3.91 | 3.98 | 3.97 | 3.98 |
Unknown 12 | 17.76 | 0.39 | 1.09 | 0.36 | 0.33 | 0.33 | 0.32 | 0.37 | 0.41 | 0.39 | 0.41 |
GF9 | 18.56 | 3.34 | 2.60 | 3.51 | 3.11 | 3.08 | 3.10 | 3.47 | 3.52 | 3.52 | 3.52 |
Unknown 13 | 18.98 | 0.40 | 1.04 | 0.39 | 0.35 | 0.36 | 0.33 | 0.42 | 0.46 | 0.45 | 0.44 |
GF10 | 19.60 | 2.99 | 2.20 | 3.13 | 2.77 | 2.74 | 2.77 | 3.09 | 3.14 | 3.11 | 3.13 |
Unknown 14 | 20.18 | n.d. | 0.67 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
GF11 | 20.56 | 2.61 | 1.82 | 2.78 | 2.47 | 2.41 | 2.46 | 2.77 | 2.79 | 2.76 | 2.79 |
Unknown 15 | 21.25 | n.d. | 0.50 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
GF12 | 21.43 | 2.52 | 1.51 | 2.77 | 2.46 | 2.49 | 2.47 | 2.76 | 2.83 | 2.83 | 2.81 |
GF13 | 22.24 | 1.90 | 1.64 | 1.99 | 1.77 | 1.74 | 1.76 | 1.96 | 2.00 | 1.98 | 1.98 |
GF14 | 22.98 | 1.63 | 1.34 | 1.71 | 1.51 | 1.49 | 1.51 | 1.69 | 1.72 | 1.71 | 1.71 |
GF15 | 23.69 | 1.28 | 1.10 | 1.32 | 1.17 | 1.15 | 1.18 | 1.32 | 1.32 | 1.31 | 1.33 |
GF16 | 24.35 | 1.08 | 0.50 | 1.15 | 0.99 | 1.01 | 1.01 | 1.14 | 1.13 | 1.13 | 1.11 |
Unknown 16 | 24.61 | 0.05 | 0.14 | 0.05 | 0.05 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.06 |
GF17 | 24.97 | 0.96 | 0.54 | 1.02 | 0.89 | 0.89 | 0.89 | 0.99 | 1.00 | 1.01 | 1.01 |
Unknown 17 | 25.24 | 0.05 | 0.18 | 0.06 | 0.05 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.06 |
GF18 | 25.55 | 0.84 | 0.46 | 0.89 | 0.79 | 0.78 | 0.80 | 0.89 | 0.89 | 0.89 | 0.90 |
Unknown 18 | 25.83 | 0.04 | 0.14 | 0.04 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
GF19 | 26.10 | 0.73 | 0.35 | 0.76 | 0.67 | 0.66 | 0.67 | 0.75 | 0.74 | 0.74 | 0.75 |
Unknown 19 | 26.43 | n.d. | 0.12 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
GF20 | 26.61 | 0.63 | 0.35 | 0.66 | 0.57 | 0.57 | 0.58 | 0.66 | 0.73 | 0.65 | 0.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, E.K.; Bargas, M.A.; Arruda, H.S.; Vardanega, R.; Pastore, G.M.; Meireles, M.A.A. Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments. Molecules 2020, 25, 3911. https://doi.org/10.3390/molecules25173911
Silva EK, Bargas MA, Arruda HS, Vardanega R, Pastore GM, Meireles MAA. Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments. Molecules. 2020; 25(17):3911. https://doi.org/10.3390/molecules25173911
Chicago/Turabian StyleSilva, Eric Keven, Matheus A. Bargas, Henrique S. Arruda, Renata Vardanega, Glaucia M. Pastore, and M. Angela A. Meireles. 2020. "Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments" Molecules 25, no. 17: 3911. https://doi.org/10.3390/molecules25173911
APA StyleSilva, E. K., Bargas, M. A., Arruda, H. S., Vardanega, R., Pastore, G. M., & Meireles, M. A. A. (2020). Supercritical CO2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments. Molecules, 25(17), 3911. https://doi.org/10.3390/molecules25173911