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Abstract: Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are two attractive targets in
the discovery of novel substances that could control multiple aspects of Alzheimer’s disease (AD).
Chalcones are the flavonoid derivatives with diverse bioactivities, including AChE and BACE-1
inhibition. In this study, a series of N-substituted-4-phenothiazine-chalcones was synthesized and
tested for AChE and BACE-1 inhibitory activities. In silico models, including two-dimensional
quantitative structure–activity relationship (2D-QSAR) for AChE and BACE-1 inhibitors, and
molecular docking investigation, were developed to elucidate the experimental process. The results
indicated that 13 chalcone derivatives were synthesized with relatively high yields (39–81%).
The bioactivities of these substances were examined with pIC50 3.73–5.96 (AChE) and 5.20–6.81
(BACE-1). Eleven of synthesized chalcones had completely new structures. Two substances AC4
and AC12 exhibited the highest biological activities on both AChE and BACE-1. These substances
could be employed for further researches. In addition to this, the present study results suggested that,
by using a combination of two types of predictive models, 2D-QSAR and molecular docking, it was
possible to estimate the biological activities of the prepared compounds with relatively high accuracy.

Keywords: in silico; QSAR; docking; chalcone; acetylcholiesterase inhibitor; BACE-1

1. Introduction

Alzheimer disease (AD) is an irreversible disorder resulting in dementia among the elderly [1].
This neurodegenerative ailment usually involves the impairment of the cerebral cortex through a
complex process leading to the progressive cognitive decline and memory loss [2,3]. Currently, about
50 million people worldwide have been affected by the disease, thus creating a heavy burden on
the health care system of many countries [4–6]. Therefore, the discovery of new drugs for AD is
urgently needed.
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The exact etiology of AD is currently not fully known which might be referred to as a neurological
disorder caused by multiple factors, such as (i) the low concentrations of acetylcholine (ACh) in
synaptic clefts; (ii) the accumulation of extracellular amyloid plaques and intracellular neurofibrillary
tangles with hyperphosphorylated Tau protein; (iii) the homeostasis dysregulation of biometals; (iv) the
oxidative stress [2,7–9]. The multifactorial nature of AD has transformed the paradigm of AD drug
development from a single target to multiple targets, either with the multitarget-directed ligands or the
cocktail therapy approach [10]. Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are the two
drug targets that attracted much attention among others. They are two critical enzymes in Alzheimer’s
pathogenesis, responsible for the defects in the cholinergic signaling pathway [11] and the formation
of beta-amyloid plaques [12].

For the last few years, chalcones, belonging to flavonoid derivatives, have attracted great
interest due to their diverse bioactivities, encompassing antimalarial [13,14], antimicrobial [15–27],
antioxidant [28], antitumor [29–31], anti-inflammatory [32–34], analgesic [34–36], to antiulcer [37,38].
Recent studies have also indicated the abilities of chalcones in inhibiting enzymes, including
alpha-glucosidase [39,40], lipoxygenase [33,41], mammalian alpha-amylase [42,43], xanthine
oxidase [44], monoamine oxidase (MAO) [45–47], especially acetylcholinesterase [48–52] and
beta-secretase (BACE-1) [53,54]. Therefore, the research of bioactivities of chalcone derivatives
on the function of human brain, especially AChE and BACE-1 provides great promise in the discovery
of new therapeutic agents for a range of neurological diseases including AD.

In the current work, a series of N-substituted-4-phenothiazine-chalcones was synthesized and
examined for AChE and BACE-1 inhibiting effects. These compounds served as an external validation
set to evaluate two-dimensional quantitative structure–activity relationship (2D-QSAR) models
developed for the AChE and BACE-1 inhibitors. Molecular docking investigation was carried out to
provide an insight into the molecular binding abilities of these compounds with the enzymes, through
which more detailed information on structure–activity relationship (SAR) were then revealed.

2. Results and Discussion

2.1. Chemistry

Claisen–Schmidt condensation reaction [55] was applied to synthesize 13 chalcones (Figure 1)
with N-substituted-4-acetophenothiazine and benzaldehyde derivatives as reactive agents, ethanol as
solvent and sodium ethanolate as catalyst. The synthetic yields were relatively high, ranging from 39%
to 81%. The structures of these substances were elucidated via IR (infrared), HR-MS (high-resolution
mass spectrometry), 1H-NMR (proton nuclear magnetic resonance), and 13C-NMR (carbon-13 nuclear
magnetic resonance) spectra as described in the experimental section, and 11 of them were found as
completely new compounds (AC2, AC4–13).
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Figure 1. Claisen–Schmidt condensation reaction in chalcones synthesis. EtONa/EtOH: Sodium 
ethanolate in ethanol, c-HCl: concentrated hydrochloric acid. 

2.2. In Vitro Assays 

The results of in vitro assays on AChE and BACE-1 inhibition are indicated in Table 1. From the 
biological investigation, the inhibitory activities of synthesized substances against the two enzymes 
were obtained with pIC50 values of 3.73–5.96 (IC50 186.21–1.10 µM) for AChE and 5.20–6.81 (IC50 6.34–
0.16 µM) for BACE-1. Two compounds AC4 and AC12 exhibited the highest bioactivities in the 
synthesized substances with pIC50 values of 5.44 ± 0.08 (IC50 3.63 ± 0.61 µM, AChE) and 6.81 ± 0.09 
(IC50 0.16 ± 0.03 µM, BACE-1), and 5.96 ± 0.10 (IC50 1.10 ± 0.24 µM, AChE) and 6.46 ± 0.05 (IC50 0.35 ± 
0.04 µM, BACE-1), respectively. In the present work, galatamine, and quercetin were used as 
reference substances. Galantamine is a well-known AChE inhibitor used for the treatment of 
cognitive decline in mild to moderate AD. Quercetin is a flavonoid reported to have an inhibitory 
activity against BACE-1. These two compounds have been used as references in many studies on 
AChE and BACE-1 inhibition. The results show that the biological activities of the positive controls 
in this study are comparative to the previously published values [56–58]. On the other hand, the 
experimental assays also specified that AC12 had a higher activity than galantamine on AChE and 
all the synthesized chalcones exhibited the higher inhibiting effects than quercetin on BACE-1. 

Table 1. Acetylcholinesterase (AChE) and beta-secretase (BACE-1) inhibitory activities of 
synthesized N-substituted-4-phenothiazine-chalcones. 

 AChE BACE-1 

Compound IC50 (µM) * 
pIC50 

IC50 (µM) * 
pIC50 

Observed * Predicted Observed * Predicted 
AC1 33.88 ± 1.45 4.47 ± 0.02 4.80 6.34 ± 0.46  5.20 ± 0.03 6.52 
AC2 30.90 ± 2.10 4.51 ± 0.03  4.74 3.00 ± 0.00  5.52 ± 0.00 7.38 
AC3 11.48 ± 1.29 4.94 ± 0.05 4.74 4.48 ± 0.40  5.35 ± 0.04 7.37 
AC4 3.63 ± 0.61 5.44 ± 0.08 4.71 0.16 ± 0.03 6.81 ± 0.09 8.49 
AC5 60.26 ± 1.84 4.22 ± 0.01 4.82 1.24 ± 0.12  5.91 ± 0.04 7.25 
AC6 19.95 ± 1.57 4.70 ± 0.03 4.83 0.50 ± 0.00  6.30 ± 0.00 7.68 
AC7 40.74 ± 2.48 4.39 ± 0.03 4.76 0.45 ± 0.04  6.35 ± 0.04 7.63 
AC8 15.85 ± 1.08 4.80 ± 0.03 4.82 2.97 ± 0.05  5.53 ± 0.01 7.15 
AC9 25.12 ± 0.83 4.60 ± 0.01 4.76 3.72 ± 0.21  5.43 ± 0.02 7.12 
AC10 24.55 ± 1.09 4.61 ± 0.02 4.81 1.99 ± 0.21  5.70 ± 0.05 7.28 
AC11 186.21 ± 4.52 3.73 ± 0.01 4.59 0.40 ± 0.00  6.40 ± 0.00 7.99 

Figure 1. Claisen–Schmidt condensation reaction in chalcones synthesis. EtONa/EtOH: Sodium
ethanolate in ethanol, c-HCl: concentrated hydrochloric acid.

2.2. In Vitro Assays

The results of in vitro assays on AChE and BACE-1 inhibition are indicated in Table 1. From
the biological investigation, the inhibitory activities of synthesized substances against the two
enzymes were obtained with pIC50 values of 3.73–5.96 (IC50 186.21–1.10 µM) for AChE and 5.20–6.81
(IC50 6.34–0.16 µM) for BACE-1. Two compounds AC4 and AC12 exhibited the highest bioactivities
in the synthesized substances with pIC50 values of 5.44 ± 0.08 (IC50 3.63 ± 0.61 µM, AChE) and
6.81 ± 0.09 (IC50 0.16 ± 0.03 µM, BACE-1), and 5.96 ± 0.10 (IC50 1.10 ± 0.24 µM, AChE) and 6.46 ± 0.05
(IC50 0.35 ± 0.04 µM, BACE-1), respectively. In the present work, galatamine, and quercetin were
used as reference substances. Galantamine is a well-known AChE inhibitor used for the treatment
of cognitive decline in mild to moderate AD. Quercetin is a flavonoid reported to have an inhibitory
activity against BACE-1. These two compounds have been used as references in many studies on AChE
and BACE-1 inhibition. The results show that the biological activities of the positive controls in this
study are comparative to the previously published values [56–58]. On the other hand, the experimental
assays also specified that AC12 had a higher activity than galantamine on AChE and all the synthesized
chalcones exhibited the higher inhibiting effects than quercetin on BACE-1.

Table 1. Acetylcholinesterase (AChE) and beta-secretase (BACE-1) inhibitory activities of synthesized
N-substituted-4-phenothiazine-chalcones.

AChE BACE-1

Compound IC50 (µM) *
pIC50

IC50 (µM) *
pIC50

Observed * Predicted Observed * Predicted

AC1 33.88 ± 1.45 4.47 ± 0.02 4.80 6.34 ± 0.46 5.20 ± 0.03 6.52
AC2 30.90 ± 2.10 4.51 ± 0.03 4.74 3.00 ± 0.00 5.52 ± 0.00 7.38
AC3 11.48 ± 1.29 4.94 ± 0.05 4.74 4.48 ± 0.40 5.35 ± 0.04 7.37
AC4 3.63 ± 0.61 5.44 ± 0.08 4.71 0.16 ± 0.03 6.81 ± 0.09 8.49
AC5 60.26 ± 1.84 4.22 ± 0.01 4.82 1.24 ± 0.12 5.91 ± 0.04 7.25
AC6 19.95 ± 1.57 4.70 ± 0.03 4.83 0.50 ± 0.00 6.30 ± 0.00 7.68
AC7 40.74 ± 2.48 4.39 ± 0.03 4.76 0.45 ± 0.04 6.35 ± 0.04 7.63
AC8 15.85 ± 1.08 4.80 ± 0.03 4.82 2.97 ± 0.05 5.53 ± 0.01 7.15
AC9 25.12 ± 0.83 4.60 ± 0.01 4.76 3.72 ± 0.21 5.43 ± 0.02 7.12

AC10 24.55 ± 1.09 4.61 ± 0.02 4.81 1.99 ± 0.21 5.70 ± 0.05 7.28
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Table 1. Cont.

AChE BACE-1

Compound IC50 (µM) *
pIC50

IC50 (µM) *
pIC50

Observed * Predicted Observed * Predicted

AC11 186.21± 4.52 3.73 ± 0.01 4.59 0.40 ± 0.00 6.40 ± 0.00 7.99
AC12 1.10 ± 0.24 5.96 ± 0.10 4.81 0.35 ± 0.04 6.46 ± 0.05 8.08
AC13 11.75 ± 0.63 4.93 ± 0.02 4.63 3.03 ± 0.21 5.52 ± 0.03 7.20

Galanthamine 1.26 ± 0.12 5.90 ± 0.04 5.14 - - -
Quercetin - - - 9.55 ± 0.37 5.02 ± 0.02 5.24

IC50: the half maximal inhibitory concentration, pIC50 = −logIC50. * Reported with standard deviation (SD).

2.3. Molecular Docking

The results of molecular docking study are expressed in Table 2 and in Supplementary Tables S1–S3
and Figures S1–S9. The interactions of 2 compounds with the highest pIC50 (AC4 and AC12) on both
enzyme AChE and BACE-1 are indicated in Figures 2 and 3. In this study, the co-crystallized complexes
employed for AChE was 1DX6 (resolution: 2.30 Å) and for BACE-1 was 5HU1 (resolution: 1.50 Å).
These were the complexes with high resolutions and the co-crystallized ligands were the drugs used
in clinical (1DX6: galantamine) or in clinical development (5HU1: verubecestat). With this selection,
the probability of docked compounds to be reached further optimization would be high. The results
indicated that all studied substances were successfully docked into the binding pockets of AChE and
BACE-1 with the docking scores of (−17.71)–(−27.80) kJ·mol−1 (AChE) and (−11.50)–(−22.51) kJ·mol−1

(BACE-1). A linear correlation between docking score and pIC50 on AChE of synthesized chalcone
derivatives were revealed (Supplementary Figure S10).

Table 2. Results of molecular docking study of the synthesized N-substituted-4-phenothiazine-chalcones
on AChE (1DX6) and BACE-1 (5HU1).

Comp.
pIC50 (AChE) pIC50 (BACE-1) Docking Score (kJ·mol−1)

(AChE: 1DX6)
Docking Score (kJ·mol−1)

(BACE-1: 5HU1 chain A, B)Obs. * Pred. Obs. * Pred.

AC1 4.47 ± 0.02 4.80 5.20 ± 0.03 6.52 −25.83 −17.82; −17.69
AC2 4.51 ± 0.03 4.74 5.52 ± 0.00 7.38 −26.03 −17.22; −17.81
AC3 4.94 ± 0.05 4.74 5.35 ± 0.04 7.37 −27.67 −16.28; −15.37
AC4 5.44 ± 0.08 4.71 6.81 ± 0.09 8.49 −24.49 −16.71; −13.92
AC5 4.22 ± 0.01 4.82 5.91 ± 0.04 7.25 −17.71 −20.77; −16.87
AC6 4.70 ± 0.03 4.83 6.30 ± 0.00 7.68 −25.45 −18.79; −16.73
AC7 4.39 ± 0.03 4.76 6.35 ± 0.04 7.63 −17.94 −19.51; −16.85
AC8 4.80 ± 0.03 4.82 5.53 ± 0.01 7.15 −26.27 −20.36; −16.81
AC9 4.60 ± 0.01 4.76 5.43 ± 0.02 7.12 −27.80 −20.97; −18.06

AC10 4.61 ± 0.02 4.81 5.70 ± 0.05 7.28 −27.30 −22.51; −20.81
AC11 3.73 ± 0.01 4.59 6.40 ± 0.00 7.99 −25.33 −19.35; −16.41
AC12 5.96 ± 0.10 4.81 6.46 ± 0.05 8.08 −22.15 −18.25; −16.18
AC13 4.93 ± 0.02 4.63 5.52 ± 0.03 7.20 −23.30 −11.50; −14.09

Galantamine 5.90 ± 0.04 5.14 - - −28.53 -
Verubecestat - - - 7.66 - −24.95; −22.43

Quercetin - - 5.02 ± 0.02 5.24 - −22.23; −23.95

Comp.: Compound, Obs.: Observed, Pred.: Predicted. * Reported with standard deviation (SD).

The docking scores of most derivatives into AChE were not significantly different (except for
AC5 and AC7). In addition, the differences in the observed pIC50 values could be partly explained by
the analysis of the interactions between chalcone derivatives with AChE. These interactions include
(i) arene–arene interactions with Trp84, Trp279, Tyr334; (ii) arene–cation interaction with Trp84;
(iii) hydrogen bonding with Asp72, Glu199. These are residues of the active site-gorge of the enzyme
where Trp84 and Tyr334 are exposed on the surface, particularly Asp72 on the top, Glu199 on the
bottom, and Trp279 is on the entrance of the active-site gorge [59]. Eleven out of thirteen chalcone
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derivatives (except for AC5 and AC11) could make a hydrogen bond to Asp72. The substituents on
the benzene rings of chalcone derivatives showed no strong interaction with the enzyme. However,
the presences of different groups on this ring in the chalcone structures could lead to the change in
scaffold’s shape as well as its interaction mode and intensity with the enzyme. There were sixsubstances
with the same interaction modes (AC3, AC4, AC6, AC9, AC10, and AC11), in which AC4 was observed
with the highest activity. This could be attributed to the strongest hydrogen bond between AC4 with
Asp72 (score: 64%, length: 1.52 Å) compared to the other compounds.

Compared to galantamine, all the chalcone derivatives exhibited lower bioactivities (except for
AC12). This could be explained by the fact that galantamine could create an arene-cation interaction
with Phe330, a strong hydrogen bond to Glu199 (score: 36%, length: 1.85 Å), and a hydrogen bond
(score: 22%, length: 3.07 Å) to Ser200 (a residue in catalytic triad). AC12 had the strongest observed
bioactivity among the studied substances. This can be partly explained that AC12 could yield a strong
hydrogen bond to Glu199. None of the rest compounds could interact with this residue. In addition,
the arene–cation interaction between AC12 and Trp84 could also lead to the increased AChE inhibitory
activity of this substance in relative to the others. The interaction with Trp84 (arene–arene interaction)
also made the pIC50 value of AC1 equivalent to AC2 although AC1 only makes very weak hydrogen
bond to Asp72 (score: 9%, length: 2.14 Å), whereas this interaction created by AC2 was very strong
(score: 67%, length: 1.5 Å). Differences in the biological activity of the remaining substances can be
explained by the strength of the interactions formed between those derivatives and the enzyme.
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Figure 3. Interactions in the binding pocket of beta-secretase (BACE-1, complex 5HU1-chain A) made
by (A) AC4 (observed pIC50: 6.81 ± 0.09), (B) AC12 (observed pIC50: 6.46 ± 0.05).

Molecular docking results on BACE-1 expressed that most compounds interacted with Asp93,
Thr293 in the two chains of enzyme. AC1 and AC10 afforded the same interaction mode in both
chains A and B of BACE-1 enzyme similar to verubecestate in this study. The others showed different
interactions in the two chains. Two substances AC4 and AC12 (the most active compounds) both
interacted with three residues: Asp93, Phe169 and Thr293. AC1 had a weak interaction with Asp93 in
both chains of BACE-1 (chain A: hydrogen bond, score: 16%, length 2.22 Å; chain B: hydrogen bond,
score: 30%, length 1.99 Å). Most of the remaining compounds formed strong hydrogen bonds with
Asp93. Thus, there could be a correlation between the ability to create strong interactions with Asp93
with high BACE-1 inhibitory activity. AC13 exhibited many interactions with amino acid residues in
both chains of the enzyme, except for the hydrogen bond with Asp93. The predicted and observed
pIC50 value of this substance was as high as the others. In this study, quercetin exhibited the least
bioactivity against BACE-1, but was the substance with the second highest docking score. Actually, it is
not obvious that the most active compounds will always show the highest interaction energy and vice
versa. Quercetin showed higher range of interaction energy due to some insignificant interactions with
other elements or amino acids in the active site which have no contribution to the biological activity.
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2.4. 2D-QSAR Models

The developed 2D-QSAR models for AChE and BACE-1 inhibitors were built upon the data
curated from CheMBL database [60], and reported literatures [61–72]. The data was processed
appropriately according to the guidelines of OECD (Organization for Economic Co-operation and
Development) for an acceptable QSAR model [73] (further details are provided in the Materials and
Methods section). The validation metrics for these models are showed in Table 3. The linear regressions
between the observed bioactivities and those predicted from the QSAR models are expressed in
Figure 4. The data sets used to build the models and the equations used for the calculations of the
validation metrics are provided in Supplementary Tables S4–S6. Selected molecular descriptors used
for building 2D-QSAR models are also described in detail in Supplementary Table S7. The values of
selected molecular descriptors using in predicting pIC50 of the synthesized chalcone derivatives are
provided in Supplementary Tables S8 and S9.

Table 3. 2D-QSAR models for AChE and BACE-1 inhibitors.

AChE

pIC50 = −0.928 + (2.348 × BCUT_SLOGP_3) − (0.150 × reactive) − (0.004 × PEOE_VSA + 1) − (0.005 ×
PEOE_VSA−3) − (0.002 × SlogP_VSA2) − (0.004 × SMR_VSA2)

Internal Validation External Validation

N RMSE R2 RMSELOO Q2
LOO N RMSE R2 R2

(PRED) r2
m r2

m ∆r2
m CCC

50 0.18 0.70 0.22 0.57 22 0.16 0.78 0.78 0.64 0.69 0.11 0.88

BACE-1

pIC50 = 1.268 + (0.870 × petitjean) + (6.370 × BCUT_PEOE_1) + (3.305 × a_ICM) − (0.478 × chiral_u)
+ (0.085 × rings) + (0.157 × a_Nn) + (0.006 × PEOE_VSA − 0) + (0.022 × PEOE_VSA − 6) − (0.260 × logS) +

(0.009 × SlogP_VSA3) + (0.009 × SlogP_VSA5)

Internal Validation External Validation

N RMSE R2 RMSELOO Q2
LOO N RMSE R2 R2

(PRED) r2
m r2

m ∆r2
m CCC

150 0.37 0.80 0.40 0.77 65 0.41 0.83 0.81 0.79 0.76 0.05 0.91

N: number of compounds; RMSE (root-mean-square error), R2 (squared correlation coefficient), RMSELOO
(cross-validated root-mean-square error), Q2

LOO (cross-validated squared correlation coefficient), CCC (concordance

correlation coefficient), and r2
m, r2

m, ∆r2
m (validation metrics suggested by Roy et al. [74]).
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expressed in Figure 4. The data sets used to build the models and the equations used for the 
calculations of the validation metrics are provided in Supplementary Tables S4–S6. Selected 
molecular descriptors used for building 2D-QSAR models are also described in detail in 
Supplementary Table S7. The values of selected molecular descriptors using in predicting pIC50 of 
the synthesized chalcone derivatives are provided in Supplementary Tables S8 and S9. 
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Figure 4. The linear regression between observed pIC50 and those predicted from the 2D-QSAR models
for inhibitors of (A) AChE and (B) BACE-1.

The results exhibited that the QSAR models meet the criteria thresholds for a good model, with
R2 = 0.70–0.83 (>0.50), Q2

LOO = 0.57–0.77 (>0.50), RMSE = 0.16–0.41 (<0.50), RMSELOO = 0.22–0.40
(<0.50), R2

PRED = 0.78–0.81(>0.50), r2
m ≥ 0.65; CCC ≥ 0.85; r2

m ≥ 0.5; and ∆r2
m ≤ 0.2 [75,76].
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A comparison of the statistical results obtained from the present QSAR models and the previously
published works is indicated in Tables 4 and 5. Based on the statistical quality in the context of
both internal and external validation criteria, theFn-sub models reported in this study is statistically
significant and sufficiently robust to predict the biological activities of new ligands.

Table 4. Comparison of this study with previous published works on 2D-QSAR model for AChE.

Source Model
Training Set Validation Set

N R2 Q2 N R2
PRED

This study PLS 55 0.70 0.57 22 0.78
Roy et al. 2018 [77] MLR 284 0.52–0.74 0.50–0.71 142 0.50–0.63
Niraj et al. 2015 [78] PLS 24 0.78 0.70 11 0.66

PLS: Partial least squares; MLR: Multiple linear regression; GFA: Genetic Function Approximation; N: number
of compounds.

Table 5. Comparison of this study with previous published works on 2D-QSAR model for BACE1.

Source Model
Training Set Validation Set

N R2 Q2 n R2
PRED

This study PLS 150 0.80 0.77 65 0.81
Ambure et al. 2016 [79] PLS 52 0.83 0.76 22 0.81
Ambure et al. 2016 [79] MLR 51 0.83 0.76 22 0.80
Hossain et al. 2013 [80] CoMFA 71 1.00 0.77 35 0.77
Hossain et al. 2013 [80] CoMSIA 71 1.00 0.73 35 0.71
Hossain et al. 2013 [80] PLS 71 0.94 0.79 35 0.71

Roy et al. 2018 [77] MLR 51 0.76–0.83 0.71–0.76 23 0.75–0.91

PLS: Partial least squares; MLR: Multiple linear regression; CoMFA: Comparative molecular field analysis; CoMSIA:
Comparative similarity indices analysis; LHM: Linear heuristic method; N: number of compounds.

2D-QSAR model for AChE inhibitors was developed with optimal molecular descriptors, including
BCUT_SLOGP_3 (the adjacency and distance matrix), reactive (physical property), PEOE_VSA+1
and PEOE_VSA–3 (partial charge), and SlogP_VSA2 and SMR_VSA2 (subdivided surface areas).
The 2D-QSAR model showed a positive correlation with BCUT_SLOGP_3, and a negative correlation
with reactive, PEOE_VSA+1, PEOE_VSA–3, SlogP_VSA2, and SMR_VSA2, indicating that new ligands
with high BCUT_SLOGP_3, and low reactive, PEOE_VSA+1, PEOE_VSA–3, SlogP_VSA2, SMR_VSA2
values should have higher acetylcholinesterase inhibitory activities. However, as indicated in Table 3,
in the developed 2D-QSAR for AChE inhibitors, BCUT_SLOGP_3 had the highest relative importance
and it played a decisive role in the predicted pIC50 value. As shown in Supplementary Table S8,
the studied compounds exhibited a common scaffold structure as N-substituted-4-phenothiazine;
therefore, the BCUT_SLOGP_3 values were very close to each other, resulting in the similarity among the
predicted pIC50 of the chalcone derivatives. When the structure changed from chalcone to galantamine,
the BCUT_SLOGP_3 value displayed a small increase whilst the predicted biological activity changed
significantly, suggesting that the developed QSAR model could provide some prediction on the
difference in bioactivity of substances with different scaffolds. It can be observed from Table 1 and
Figure 5, the 2D-QSAR for AChE in the present work could predict quite accurately the biological
activity most of synthetic chalcone derivatives, with nine out of 13 compounds displaying correlations
in the predicted and observed pIC50 values (R2 = 0.62).

Additionally, it can be seen that the 2D-QSAR model for BACE-1 inhibitors was developed with
11 molecular descriptors, namely petitjean and BCUT_PEOE_1 (adjacency and distance matrixes),
a_ICM, chiral_u, rings, and a_Nn (atom counts and bond counts), PEOE_VSA–0 and PEOE_VSA–6
(partial charges), logS (physical properties), and SlogP_VSA3 and SlogP_VSA5 (subdivided surface
areas). The 2D-QSAR model reported a positive correlation between pIC50 for BACE-1 inhibition
with the descriptors of petitjean, BCUT_PEOE_1, a_ICM, rings, a_Nn, PEOE_VSA–0, PEOE_VSA–6,
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SlogP_VSA3, SlogP_VSA5, and a negative correlation with chiral_u, logS. This thus suggested that
new ligands with high petitjean, BCUT_PEOE_1, a_ICM, rings, a_Nn, PEOE_VSA–0, PEOE_VSA–6,
SlogP_VSA3, SlogP_VSA5, and low chiral_u, or logS values should have higher BACE-1 inhibiting
effect. The descriptor BCUT_PEOE_1 was positively correlated with biological activity; it had the
highest relative importance with a decisive role to the predicted pIC50 value (Table 3). The results
shown in Table 1 indicate that the two substances, AC4 and AC12, had the highest observed and
predicted pIC50 values. This could be due to these two substances having higher BCUT_PEOE_1
values than the others (high value of BCUT_PEOE_1 was also observed in AC11, which also exhibited
a high bioactivity on BACE-1). The second factor contributing to the increased pIC50 values of AC4
and AC12 compared to other substances is the a_ICM descriptor which was the second most important
parameter in the studied model and positively correlated with the pIC50 value (Table 3). In addition,
high values at other descriptors such as PEOE_VSA–0, SlogP_VSA5 (Supplementary Table S9) also
contributed to the increase of pIC50 of AC4 and AC12, though not much. The correlation between the
QSAR predicted and observed pIC50 values for BACE-1 was obtained with R2 value of 0.83 (Figure 5).
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3. Materials and Methods

3.1. Material and Instruments

All chemicals were obtained from commercial suppliers, and used without further purification.
Melting points were determined on open capillary tubes and are uncorrected (using Gallenkamp
apparatus). IR spectra were recorded on a Bruker FTIR Tensor 27 instrument. MS spectra were recorded
on an Agilent 6200 Series TOF and 6500 Series Q-TOF LC/MS system. 1H-NMR and 13C-NMR spectra
were recorded on an AV500 Bruker (500 MHz) spectrometer. Chemical shifts were reported in parts per
million (ppm) downfield relative to tetramethylsilane as an internal standard. Peak splitting patterns
were abbreviated as m (multiplet), s (singlet), bs (broad singlet), d (doublet), bd (broad doublet),
t (triplet), and dd (doublet of doublets).

All computation processes were performed on a computer system with the processsor of Intel®CoreTM

i&-7700 CPU @ 3.60 Hz, 16.0 GB of RAM, the Visual Graphic Card of NVIDIA GeForce GT 1030 2GB, and
the operating system of 64 bit Windows 10 (Microsoft, Redmond, WA, USA).

3.2. Chemistry

The chemical synthesis of the chalcone compounds AC1–AC13 is indicated in the Figure 1 and as
follows. N-substituted-4-acetophenothiazine and benzaldehyde derivatives in equimolar amounts
were dissolved in ethanol and cooled in ice. Sodium ethanolate was then added. The resulting
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solution was stirred using an utrasonic probe. The chemical reaction was monitored by thin layer
chromatography. Final mixture was cooled and acidified by a solution of concentrated HCl to pH ≈ 5–7
and left on for 24–48 h. The crude product appeared in solid or liquid. The solid was filtered, washed
with cold water, and recrystallized from appropriate solvents to give the final product. With the liquid,
post-reaction mixture was evaporated and purified by column chromatography with appropriate
solvent systems to obtain the final product. The structures of the target compounds were elucidated by
IR, MS, 1H-NMR, and 13C-NMR spectra.

(E)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-phenylprop-2-en-1-one (AC1), Yield:
68%. Mp: Liquid at room temperature. IR (ν cm–1, KBr): 2939 (νC-H sp3), 1658 (νC=O), 1599 (νC=C Ar),
1491 (νC=C Ar), 1061 (νC-N). MS: [M + H]+ m/z = 415.1814. 1H-NMR (500 MHz, MeOD, δ ppm): 7.76 (d,
J = 16 Hz, 1H, CH=C), 7.71 (m, 2H, Ar-H), 7.66 (d, J = 16 Hz, 1H, CH=C), 7.61 (dd, J1 = 1 Hz, J2 = 8 Hz,
1H, Ar-H), 7.48 (d, 1H, Ar-H), 7.41 (m, 3H, Ar-H), 7.18 (m, 2H, Ar-H), 7.09 (dd, J1 =1 Hz, J2 = 7.5 Hz,
1H, Ar-H), 6.95 (m, 2H, Ar-H), 3.94 (t, J = 7 Hz, 2H, N-CH2), 2.51 (t, J = 7.5 Hz, 2H, N-CH2), 2.22 (s, 6H,
N-CH3), 1.91 (m, 2H, CH2).13C-NMR (125 MHz, MeOD, δ ppm): 191.1, 146.7, 146.1, 145.5, 138.4, 136.1,
133.7, 131.8, 130.1, 129.7, 128.9, 128.3, 128.2, 125.2, 124.3, 124.1, 122.8, 117.2, 115.8, 57.6, 46.1, 45.2, 25.2.

(E)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-(3-methoxyphenyl)prop-2-en-1-one (AC2),
Yield: 43%. Mp: Liquid at room temperature. IR (ν cm–1, KBr): 2970 (νC-H sp3), 1658 (νC=O), 1601
(νC=C Ar), 1462 (νC=C Ar), 1245, (νC-O), 1088 (νC-N). MS: [M + H]+ m/z = 445.1977. 1H-NMR (500 MHz,
MeOD, δ ppm): 7.78 (d, J = 16 Hz, 1H, CH=C), 7.72 (d, J = 16 Hz, 1H, CH=C), 7.72 (dd, J1 = 1.5 Hz,
J2 = 8.5 Hz, 1H, Ar-H), 7.58 (d, J = 1.5 Hz, 1H, Ar-H), 7.35 (m, 3H, Ar-H), 7.29 (d, J = 8 Hz, 1H, Ar-H),
7.24 (m, 1H, Ar-H), 7.15 (dd, J1 = 1.5 Hz, J2 = 7.5 Hz, 1H, Ar-H), 7.05 (dd, J1 = 1.5 Hz, J2 = 7.5 Hz, 1H,
Ar-H), 7.03 (m, 1H, Ar-H), 7.00 (m, 1H, Ar-H), 4.06 (t, J = 7 Hz, 2H, N-CH2), 3.88 (s, 3H, OCH3), 2.56 (t,
J = 7.5 Hz, 2H, N-CH2), 2.24 (s, 6H, N-CH3), 2.01 (m, 2H, CH2). 13C-NMR (125 MHz, MeOD, δ ppm):
191.5, 146.9, 146.1, 145.8, 138.2, 137.6, 133.9, 131.0, 129.0, 128.4, 128.2, 125.4, 124.4, 124.1, 123.2, 122.4,
117.7, 117.3, 115.9, 114.6, 57.8, 55.9, 46.2, 45.3, 25.4.

(E)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-(4-methoxyphenyl)prop-2-en-1-one
(AC3), Yield: 41%. Mp: Liquid at room temperature. IR (ν cm–1, KBr): 2968 (νC-H sp3), 1655 (νC=O),
1593 (νC=C Ar), 1462 (νC=C Ar), 1254 (νC-O), 1036 (νC-N). MS: [M + H]+ m/z = 445.1923. 1H-NMR
(500 MHz, MeOD, δ ppm): 7.76 (d, J = 15.5 Hz, 1H, CH=C), 7.69 (m, 2H, Ar-H), 7.64 (dd, J1 = 2 Hz,
J2 = 8 Hz, 1H, Ar-H), 7.56 (d, J = 15.5 Hz, 1H, CH=C), 7.52 (d, J = 1.5 Hz, 1H, Ar-H), 7.23 (m, 2H, Ar-H),
7.13 (dd, J1 = 1.5 Hz, J2 = 7.5 Hz, 1H, Ar-H), 7.02 (d, J = 7.5 Hz, 1H, Ar-H), 6.97 (m, 3H, Ar-H), 4.03 (t,
J = 7 Hz, 2H, N-CH2), 3.85 (s, 3H, OCH3), 2.70 (t, J = 7.5 Hz, 2H, N-CH2), 2.37 (s, 6H, N-CH3), 2.03 (m,
2H, CH2). 13C-NMR (125 MHz, MeOD, δ ppm): 191.4, 146.7, 146.3, 145.6, 138.9, 133.6, 131.7, 129.0,
128.8, 128.4, 128.2, 125.5, 124.3, 124.2, 120.3, 117.3, 115.8, 115.5, 57.4, 55.9, 45.9, 44.7, 24.7.

(E)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-
one (AC4), Yield: 51%. Mp: 167–168 ◦C. IR (ν cm–1, KBr): 2925 (νC-H sp3), 1657 (νC=O), 1582 (νC=C Ar),
1461 (νC=C Ar), 1280 (νC-O), 1124 (νC-N). MS: [M + H]+ m/z = 505.2132. 1H-NMR (500 MHz, MeOD, δ
ppm): 7.75 (d, J = 15.5 Hz, 1H, CH=C), 7.74 (dd, J1 = 1.5 Hz, J2 = 7.5 Hz, 1H, Ar-H), 7.67 (d, J = 15.5 Hz,
1H, CH=C), 7.58 (d, J = 1.5 Hz, 1H, Ar-H), 7.28 (d, J = 8 Hz, 1H, Ar-H), 7.24 (td, J1 = 1.5 Hz, J2 = 8 Hz,
1H, Ar-H), 7.15 (dd, J1 = 1.5 Hz, J2 = 7.5 Hz, 1H, Ar-H), 7.09 (s, 2H, Ar-H), 7.05 (d, J = 7.5 Hz, 1H,
Ar-H), 6.98 (td, J = 1Hz, J = 6.5 Hz, 1H, Ar-H), 4.06 (t, J =6.5 Hz, 2H, N-CH2), 3.92 (s, 6H, OCH3), 3.83
(s, 3H, OCH3), 2.28 (s, 6H, N-CH3), 2.02 (m, 2H, CH2). 13C-NMR (125 MHz, MeOD, δ ppm): 191.5,
154.9, 146.9, 146.4, 145.8, 141.7, 138.7, 133.9, 132.1, 129.0, 128.4, 128.2, 125.4, 124.5, 124.2, 122.3, 117.3,
115.8, 107.4, 61.2, 57.7, 56.8, 46.1, 45.2, 25.2.
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(E)-3-(4-chlorophenyl)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-phenylprop-2-en-1-
one (AC5), Yield: 78%. Mp: Liquid at room temperature. IR (ν cm–1, KBr): 2936 (νC-H sp3), 1657
(νC=O), 1590 (νC=C Ar), 1461 (νC=C Ar), 1089 (νC-N), 744 (νC-Cl). MS: [M + H]+ m/z = 449.1451. 1H-NMR
(500 MHz, MeOD, δ ppm): 7.67 (d, J = 16 Hz, 1H, CH=C), 7.61 (m, 4H, Ar-H & CH=C), 7.44 (s, 1H,
Ar-H), 7.35 (d, J = 7 Hz, 2H, Ar-H), 7.18 (t, J = 7.5 Hz, 1H, Ar-H), 7.12 (t, J = 7.5 Hz, 1H, Ar-H), 7.06 (d,
J = 7.5 Hz, 1H, Ar-H), 6.93 (m, 2H, Ar-H), 3.91 (t, J = 5.5 Hz, 2H, N-CH2), 2.48 (t, J = 7 Hz, 2H, N-CH2),
2.20 (s, 6H, N-CH3), 1.92 (m, 2H, CH2). 13C-NMR (125 MHz, MeOD, δ ppm): 190.7, 146.7, 145.5, 144.3,
138.3, 137.4, 134.9, 133.7, 131.1, 130.2, 128.8, 128.3, 128.1, 125.1, 124.3, 124.1, 123.4, 117.2, 115.6, 57.6, 46.1,
45.2, 25.2.

(E)-3-(2,4-dichlorophenyl)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-phenylprop-2-
en-1-one (AC6), Yield: 62%. Mp: Liquid at room temperature. IR (ν cm–1, KBr): 2940 (νC-H sp3), 1658
(νC=O), 1584 (νC=C Ar), 1463 (νC=C Ar), 1222 (νC-N). MS: [M + H]+ m/z = 483.1054. 1H-NMR (500 MHz,
DMSO, δ ppm): 8.26 (d, J = 8.5 Hz, 1H, CH=C), 7.98 (m, 2H, Ar-H), 7.82 (dd, J1 = 1.5 Hz, J2 = 8 Hz,
1H), 7.78 (d, J = 2 Hz, 1H, Ar-H), 7.57 (d, J = 8 Hz, 1H, Ar-H), 7.56 (d, J = 8.5 Hz, 1H, CH=C), 7.35 (d,
J = 8 Hz, 1H, Ar-H), 7.25 (td, J1 = 1.5 Hz, J2 = 8.5 Hz, 1H, Ar-H), 7.18 (dd, J = 1.5 Hz, J = 6.5 Hz, 1H,
Ar-H), 7.08 (d, J = 7.5 Hz, 1H, Ar-H), 6.98 (td, J1 = 1 Hz, J2 = 6.5 Hz, 1H, Ar-H), 4.0 (t, J = 7 Hz, 2H,
N-CH2), 2.35 (t, J = 7 Hz, 2H, N-CH2), 2.11 (s, 6H, N-(CH3)2), 1.83 (m, 2H, CH2). 13C-NMR (125 MHz,
DMSO, δ ppm): 188.1, 137.2, 136.5, 135.6, 135.1, 131.3, 131.0, 129.8, 129.5, 128.0, 127.9, 127.2, 127.1, 125.3,
123.4, 122.8, 122.3, 116.2, 114.3, 56.2, 45.2, 44.7, 24.1.

(E)-3-(2-chloro-6-fluorophenyl)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-phenylprop
-2-en-1-one (AC7), Yield: 43%. Mp: 152–155 ◦C. IR (ν cm–1, KBr): 2935 (νC-H sp3), 1660 (νC=O), 1596
(νC=C Ar), 1467 (νC=C Ar), 1062 (νC-N). MS: [M + H]+ m/z = 467.1368. 1H-NMR (500 MHz, DMSO, δ
ppm): 7.81 (d, J = 16 Hz, 1H, CH=C), 7.74 (d, J = 16 Hz, 1H, CH=C), 7.63 (dd, J1 = 1.5 Hz, J2 = 8 Hz,
1H, Ar-H), 7.51 (m, 3H, Ar-H), 7.40 (m, 1H, Ar-H), 7.33 (d, J = 7.5 Hz, 1H, Ar-H), 7.23 (td, J1 = 1.5 Hz,
J2 = 8.5 Hz, 1H, Ar-H), 7.16 (dd, J1 = 1.5 Hz, J2 = 7.5 Hz, 1H, Ar-H), 7.06 (d, J = 8 Hz, 1H, Ar-H), 6.97
(td, J1 = 1 Hz, J2 = 7.5 Hz, 1H, Ar-H), 3.97 (t, J = 7 Hz, 2H, N-CH2), 2.34 (t, J = 6.5 Hz, 2H, N-CH2), 2.10
(s, 6H, N-CH3), 1.82 (m, 2H, CH2). 13C-NMR (125 MHz, DMSO, δ ppm): 188.4, 144.8, 143.8, 136.4,
135.0, 133.1, 132.1, 130.9, 128.8, 128.0, 127.2, 126.2, 123.0, 122.8, 122.1, 121.4, 121.3, 116.1, 115.6, 114.2,
56.2, 45.2, 44.7, 24.0.

(E)-3-(2-chlorophenyl)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-phenylprop-2-en-1-
one (AC8), Yield: 81%. Mp: 224–227 ◦C. IR (ν cm–1, KBr): 2957 (νC-H sp3), 1658 (νC=O), 1598 (νC=C Ar),
1468 (νC=C Ar), 1070 (νC-N). MS: [M + H]+ m/z = 449.1475. 1H-NMR (500 MHz, MeOD, δ ppm): 8.23 (d,
J = 15.5 Hz, 1H, CH=C), 8.03 (dd, J1 = 1.5 Hz, J2 = 7 Hz, 1H, Ar-H), 7.80 (d, J = 1.5 Hz, 1H, Ar-H), 7.78
(d, J = 15.5 Hz, 1H, CH=C), 7.65 (s, 1H, Ar-H), 7.52 (dd, J1 = 1.5 Hz, J2 = 7.5 Hz, 1H, Ar-H), 7.44 (m, 2H,
Ar-H), 7.37 (d, J = 8 Hz, 1H, Ar-H), 7.30 (t, J = 7.5 Hz, 1H, Ar-H), 7.22 (d, J = 8 Hz, 1H, Ar-H), 7.12 (d,
J = 8 Hz, 1H, Ar-H), 7.04 (t, J = 7.5 Hz, 1H, Ar-H), 4.19 (t, J = 6.5 Hz, 2H, N-CH2), 3.24 (t, J = 8 Hz, 2H,
N-CH2), 2.81 (s, 6H, N-CH3), 2.24 (m, 2H, CH2). 13C-NMR (125 MHz, MeOD, δ ppm): 190.9, 146.8,
145.5, 141.3, 138.5, 136.5, 134.6, 134.2, 132.8, 131.2, 129.3, 129.2, 128.7, 128.6, 128.5, 125.9, 125.4, 124.9,
124.6, 117.5, 115.9, 56.9, 45.2, 43.8, 23.4.

(E)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-(4-fluorophenyl)prop-2-en-1-one (AC9),
Yield: 57%. Mp: 138–140 ◦C. IR (ν cm–1, KBr): 2931 (νC-H sp3), 1656 (νC=O), 1593 (νC=C Ar), 1463
(νC=C Ar), 1061 (νC-N). MS: [M + H]+ m/z = 433.1754. 1H-NMR (500 MHz, MeOD, δ ppm): 7.79 (m, 2H,
Ar-H), 7.75 (d, J = 15.5 Hz, 1H, CH=C), 7.68 (d, J = 6 Hz, 1H, Ar-H), 7.64 (d, J = 15.5 Hz, 1H, CH=C),
7.55 (s, 1H, Ar-H), 7.24 (d, J = 8.5 Hz, 1H, Ar-H), 7.22 (d, J = 8.5 Hz, 1H, Ar-H), 7.18 (d, J = 8 Hz, 1H,
Ar-H), 7.16 (d, J = 8 Hz, 1H, Ar-H), 7.14 (d, J = 8.5 Hz, 1H, Ar-H), 7.04 (m, 1H, Ar-H), 6.98 (m, 1H,
Ar-H), 4.04 (t, J = 6.5, 2H, N-CH2), 2.73 (t, J = 7.5, 2H, N-CH2), 2.39 (s, 6H, N-CH3), 2.04 (m, 2H, CH2).
13C-NMR (125 MHz, MeOD, δ ppm): 191.1, 134.0, 132.7, 132.6, 132.0, 131.9, 129.0, 128.4, 128.2, 125.5,
124.4, 124.2, 122.7, 117.3, 117.1, 116.9, 115.8, 115.4, 115.2, 56.4, 45.8, 44.7, 24.7.



Molecules 2020, 25, 3916 12 of 20

(E)-3-(3-bromophenyl)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-phenylprop-2-en-1-
one (AC10), Yield: 51%. Mp: 178–180 ◦C. IR (ν cm–1, KBr): 2932 (νC-H sp3), 1659 (νC=O), 1598 (νC=C Ar),
1462 (νC=C Ar), 1059 (νC-N)). MS: [M + H]+ m/z = 493.0949 and 495.1410. 1H-NMR (500 MHz, MeOD, δ
ppm): 7.94 (s, 1H, Ar-H), 7.70 (m, 4H, Ar-H & CH=C), 7.57 (m, 1H, Ar-H), 7.55 (d, J = 16 Hz, 1H,
CH=C), 7.35 (m, 1H, Ar-H), 7.23 (m, 2H, Ar-H), 7.12 (dd, J1 = 1 Hz, J2 = 6.5 Hz, 1H), 7.02 (d, J = 8 Hz,
1H, Ar-H), 6.97 (t, J = 7.5 Hz, 1H, Ar-H), 4.02 (t, J = 6 Hz, 2H, N-CH2), 2.52 (t, J = 7.5 Hz, 2H, N-CH2),
2.22 (s, 6H, N-CH3), 1.99 (m, 2H, CH2). 13C-NMR (125 MHz, MeOD, δ ppm): 190.9, 146.9, 145.7, 144.1,
138.6, 138.3, 134.3, 134.0, 132.2, 131.7, 129.0, 128.6, 128.4, 128.2, 125.3, 124.5, 124.4, 124.1, 124.0, 117.3,
115.8, 57.8, 46.2, 45.3, 25.4.

(E)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-(2-trifluoromethyl)phenyl)prop-2-en-1-
one (AC11), Yield: 58%. Mp: Liquid at room temperature. IR (ν cm–1, KBr): 2942 (νC-H sp3), 1662
(νC=O), 1592 (νC=C Ar), 1463 (νC=C Ar), 1123 (νC-N). MS: [M + H]+ m/z = 483.1721. 1H-NMR (500 MHz,
MeOD, δ ppm): 8.13 (d, J = 15.5 Hz, 1H, CH=C), 8.10 (m, 1H, Ar-H), 7.77 (m, 1H, Ar-H), 7.73 (d,
J = 15.5 Hz, 1H, CH=C), 7.70 (m, 2H, Ar-H), 7.59 (m, 1H, Ar-H), 7.54 (d, J = 10 Hz, 1H, Ar-H), 7.23 (m,
2H, Ar-H), 7.11 (m, 1H, Ar-H), 7.01 (t, J = 8.5 Hz, 1H, Ar-H), 6.96 (m, 1H, Ar-H), 4.00 (m, 2H, N-CH2),
2.51 (m, 2H, N-CH2), 2.22 (s, 3H, N-CH3), 2.21 (s, 3H, N-CH3), 1.96 (m, 2H, CH2). 13C-NMR (125 MHz,
MeOD, δ ppm): 190.5, 146.9, 145.6, 140.5, 138.1, 134.9, 134.2, 133.7, 131.2, 129.9, 129.5, 129.0, 128.4, 128.2,
127.1, 127.0, 126.7, 125.2, 124.4, 124.1, 117.3, 115.8, 57.7, 46.2, 45.3, 25.3.

(E)-3-(4-(dimethylamino)phenyl)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-phenylprop-
2-en-1-one (AC12), Yield: 39%. Mp: Liquid at room temperature. IR (ν cm–1, KBr): 2936 (νC-H sp3),
1647 (νC=O), 1572 (νC=C Ar), 1459 (νC=C Ar), 1168 (νC-N). MS: [M + H]+ m/z = 458.2298. 1H-NMR (500
MHz, MeOD, δ ppm): 7.76 (d, J = 15.5 Hz, 1H, CH=C), 7.60 (m, 3H, Ar-H), 7.51 (s, 1H, Ar-H), 7.43 (d,
J = 15.5 Hz, 1H, CH=C), 7.22 (d, J = 8 Hz, 1H, Ar-H), 7.20 (d, J = 8 Hz, 1H, Ar-H), 7.11 (d, J = 7 Hz, 1H,
Ar-H), 6.99 (d, J = 8 Hz, 1H, Ar-H), 6.95 (t, J = 7.5 Hz, 1H, Ar-H), 6.72 (d, J = 9 Hz, 2H, Ar-H), 3.98 (t,
J = 6.5 Hz, 2H, N-CH2), 3.01 (s, 6H, N-CH3), 2.52 (t, J = 7.5 Hz, 2H, N-CH2), 2.22 (s, 6H, N-CH3), 1.96
(m, 2H, CH2). 13C-NMR (125 MHz, MeOD, δ ppm): 191.5, 153.9, 147.8, 146.7, 145.8, 139.4, 132.9, 131.9,
128.9, 128.4, 128.1, 125.4, 124.1, 123.7, 117.3, 117.0, 115.8, 113.0, 57.7, 46.1, 45.3, 40.2, 25.3.

(E)-3-(4-(benzyloxy)phenyl)-1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)-3-phenylprop-2-
en-1-one (AC13), Yield: 40%. Mp: 183-185 oC. IR (ν cm–1, KBr): 2936 (νC-H sp3), 1655 (νC=O), 1592
(νC=C Ar), 1459 (νC=C Ar), 1247 (νC-O), 1060 (νC-N). MS: [M + H]+ m/z = 521.2243. 1H-NMR (500 MHz,
MeOD+DMSO, δ ppm): 7.80 (d, J = 15.5 Hz, 1H, CH=C), 7.79 (m, 2H, Ar-H), 7.74 (dd, J1 = 1.5 Hz,
J2 = 8 Hz, 1H, Ar-H), 7.67 (d, J = 15.5 Hz, 1H, CH=C), 7.62 (d, J = 1.5 Hz, 1H, Ar-H), 7.51 (d, J = 7 Hz,
2H, Ar-H), 7.44 (m, 2H, Ar-H), 7.38 (m, 1H, Ar-H), 7.33 (d, J = 7.5 Hz, 1H, Ar-H), 7.28 (td, J1 = 1.5 Hz,
J2 = 8.5 Hz, 1H, Ar-H), 7.20 (dd, J = 2 Hz, J = 7.5 Hz, 1H), 7.13 (m, 2H, Ar-H), 7.10 (d, J = 8 Hz, 1H,
Ar-H), 7.00 (td, J1 = 1.5 Hz, J2 = 8 Hz, 1H, Ar-H), 5.22 (s, 2H, OCH2), 4.10 (t, J = 7 Hz, 2H, N-CH2), 2.55
(t, J = 7 Hz, 2H, N-CH2), 2.24 (s, 6H, N-CH3), 2.20 (m, 2H, CH2). 13C-NMR (125 MHz, MeOD + DMSO,
δ ppm): 190.8, 162.4, 146.8, 145.9, 145.8, 138.9, 138.3, 133.1, 131.9, 129.2, 129.1, 128.8, 128.4, 128.2, 125.1,
124.3, 124.2, 120.7, 117.4, 116.6, 115.9, 71.1, 57.8, 46.2, 45.6, 25.5.

3.3. Acetylcholinesterase Inhibitory Activity Assay

AChE inhibitory activities of chalcones were determined by Ellman’s colourimetric method
using purified acetylcolinesterase from electric eel (Type VI) and acetylthiocholine iodide (ATCI) as a
substrate and galantamine as a reference. The assay was performed in 96-well microtiter plates in the
same condition for both chalcones and control substance. 25 µL of 100 mM sodium phosphate buffer
pH 8, 25 µL of sample and 25 µL acetylcholinesterase solutions containing 0.54 U/mL were mixed in
each well of the plate and allowed to incubate for 15 min at 25 ◦C. Subsequently, 25 µL of a solution
of ATCI (15 mM, dissolved in water) and 125 µL of 3 mM DTNB (5,5’-dithio-bis-nitro benzoic acid)
were added. The absorbance at 405 nm was recorded during the first 5 min of the reaction. A control
reaction, which was considered to have 100% activity, was carried out using the same volume of
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methanol/water instead of tested solutions. All samples and the positive control (galantamine) were
assayed in triplicate. Percentages (%) of AChE inhibitions of tested compounds were calculated from
the absorbance values as indicated in Equation (1):

% I = [(A0E − A0) − (Ac − A0C)]/(A0E − A0) (1)

where I is the percent inhibition of acetylcholinesterase; A0E is the absorbance value of the control
blank sample with enzyme; A0 is the absorbance value of blank sample; Ac is the absorbance value of
the tested sample; A0C is the absorbance value of blank test sample.

The content of each sample was indicated in Table 6.

Table 6. The content of each sample in AChE in vitro assay.

Samples ATCI DTNB Buffer Chalcone AChE

Control blank sample with enzyme (A0E) + + + − +
Blank sample (A0) + + + − −

Tested sample (AC) + + + + +
Blank test sample (A0C) + + + + −

+: present; −: absent.

Linear recurrent equations indicating the correlation between common logarithm of the
concentration of investigated compounds (µM) and their percentages of AChE inhibition (%) were
built, from which the IC50 values (concentration that inhibits 50% AChE activity) of studied chalcones
were extrapolated. The method was as described earlier [81].

3.4. β-secretase Inhibitory Activity Assay

β-secretase (BACE-1) Activity Detection Kit (Fluorescent) was purchased from Sigma–Aldrich and
used to determine the effect of the synthesized chalcones on β-secretase activity. The assay was carried
out according to the manufacturer’s protocol. The enzyme solution (0.3 units/uL, 2 µL) was reacted
with the 50 µM of the substrate (7-methoxycumarin- 4-acetyl-(Asn670, Lue671)-amyloid β/A4 precursor
protein 770 fragment 667–676-(2,4-dinitrophenyl))Lys-Arg-Arg amide trifluoroacetate salt and sulfated
polysaccharide samples (2–5 mg/mL) in a fluorescence assay buffer in different wells. Baseline readings
were measure immediately on a Hitachi F-7000 (excitation: 320 nm; emission: 405 nm) fluorescence
spectrophotometer and repeated after 2 h incubation at 37 ◦C. Quercetin was used as the positive
control. The method was as described earlier [82,83].

3.5. Building 2D-QSAR Model

3.5.1. Data Collection and Ligand Preparation

The dataset of AChE inhibitors was obtained from CheMBL database [60], and the BACE-1
inhibitor database was collected from reported literatures [61–72]. Initial processing of input data was
then carried out, including rejecting substances with similar structures (use Cluster codes tool in MOE
2008.10 [84]), retaining compounds with the same bioassay method, and correcting IC50 appropriately.
A total of 72 derivatives, with AChE inhibitory activities which were determined using Ellman’s
method on the enzyme of Electrophorus electricus and galantamine as a reference, were finally obtained.
The total number of BACE-1 inhibitors with the same FRET (Fluorescence Resonance Energy Transfer)
test method was 215 (Supplementary Tables S4 and S5). IC50 values were then converted into pIC50 for
convenient calculations. The structures were built directly in Sybyl X 2.0 [85]. These final datasets
were used to build 2D-QSAR models with optimal molecular descriptors.



Molecules 2020, 25, 3916 14 of 20

3.5.2. Molecular Descriptors Calculation and Processing

One hundred and eighty-four 2D molecular descriptors were calculated in MOE 2008.10, and then
processed to eliminate redundant or irrelevant features for improving model quality and reducing
computational time consumption [86]. Firstly, the molecular descriptors were filtered and removed
useless or correlated attributes using RapidMiner 5.3.008 [87]. Subsequently, they were processed
further by BestFirst search method of Weka 3.8 [88] to figure out parameters having the optimal values
with 10-fold cross validation. Selected molecular descriptors used for building 2D-QSAR models in
this study are described in detail in the Supplementary Table S7.

3.5.3. Database Division into Training Set and Validation Set

The database was divided into training set and validation set in a ratio of 70% to 30% using
randomization method. The Rand function in MOE 2008.10 was used to split randomly the database
of compounds, each of which was assigned a random number between 0 and 1.

3.5.4. Model Building and Validation

2D-QSAR model was built using the partial least square (PLS) method and then validated
by the values of RMSE (root-mean-square error), R2 (squared correlation coefficient), RMSELOO

(cross-validated root-mean-square error), Q2
LOO (cross-validated squared correlation coefficient), and

more widely used metrics r2
m, r′2m, r2

m, ∆r2
m; R2

PRED, or CCC (concordance correlation coefficient) [89].
The equation used for calculation of these metrics are provided in the Supplementary Table S6.

3.6. Molecular Docking Procedure

Docking was firstly performed on 3 conformations of co-crystallized ligand to validate the
procedure. The RMSD (Root-Mean-Square Deviation) value between re-docked conformations and the
original bound ligand in the co-crystalized complex which was ≤ 1.5 Å would indicate the reliability of
the binding ability prediction of new ligands [90]. Docking process was performed using complexes
1DX6 of AChE (resolution 2.3 Å) and 5HU1 (resolution 1.5 Å) of BACE-1 downloaded form Protein Data
Bank [91] and FlexX program in BioSolveIT LeadIt [92] with default settings. This program applied the
flexible-based docking methodology, in which the ligand was treated as a flexible component and the
protein was kept rigid during docking process. FlexX used an incremental construction algorithm for
the seach of ligand conformations. The base fragment was first placed into the active site by matching
interaction geometries between the ligand and protein. Then, the remains were gradually built-up in
conformity with a set of predefined rotatable torsion angles to account for ligand flexibility. The FlexX
utilised empirical scoring functions to score and rank the docking poses [93,94].

The interactions between chalcone molecules and their target were rendered and analyzed in
MOE 2008.10 program (hydrogen bonds, π–π interactions, cation–π interactions, ionic interactions).
Moreover, van der Waals surface interactions were detected by the contact of hydrophilic and lipophilic
surfaces of the ligands with those of binding points.

4. Conclusions

In this study, 13 N-substituted-4-phenothiazine-chalcone derivatives were synthesized and
tested for AChE and BACE-1 inhibition with the pIC50 values of 3.73–5.96 (AChE) and 5.20–6.81
(BACE-1). Two 2D-QSAR models were built from curated data and validated through evaluation
metrics. These models could be used to predict the bioactivities of chemical compounds with high
reliabilities. The synthesized substances were considered as an external validation set to evaluate
the developed 2D-QSAR model for AChE and BACE-1 inhibitors with relatively high correlations
between the observed and estimated bioactivities (R2 = 0.62 for AChE and R2 = 0.83 for BACE-1).
Eleven of the synthesized derivatives were newly discovered (AC2, AC4–13). The molecular docking
model developed in the present work could be used to explain the difference in the observed biological
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activity compared to the predicted value as the 2D-QSAR models could not clearly interpreted. Thus,
the combination of 2D and 3D models, between ligand- and structure-based drug designs, could
allow for the prediction of the biological activities of chemical substances more accurately. Among
the studied N-substituted-4-phenothiazine-chalcones, AC4 and AC12 were two derivatives with the
strongest inhibitory activities against both AChE and BACE-1. These substances could be used in
further studies. In addition, many substances need to be synthesized and tested for AChE and BACE-1
inhibitory activities to further validate the performance of the developed 2D-QSAR models.

Supplementary Materials: The following are available online. Table S1. Results of re-docking (RMSD in Å),
Table S2: Docking results and ligand interaction (Co-crystallized 1DX6), Table S3. Docking results and ligand
interaction (Co-crystallized 5HU1 chain A and B), Table S4. Dataset of 72 compounds used in the building of
2D-QSAR model for AChE inhibitors, Table S5. Dataset of 215 compounds used in the building of 2D-QSAR model
for BACE-1 inhibitors, Table S6. Equations for calculation of 2D-QSAR validation metrics, Table S7. Selected
descriptors used for building 2D-QSAR models, Table S8. Values of selected descriptors used in prediction of pIC50
of the synthesized chalcone derivatives (AChE), Table S9. Values of selected descriptors used in prediction of pIC50
of the synthesized chalcone derivatives (BACE-1, Table S10. Spectra of synthesized chalcone derivatives, Figure S1.
Interactions of co-crystallized ligand in the protein complex 1DX6 (2D), Figure S2. Interactions of co-crystallized
ligand in the protein complex 1DX6 (3D), Figure S3. Alignment of re-dock ligands with the native one in the
binding pocket of of 1DX6, Figure S4. Interactions of co-crystallized ligand in the protein complex 5HU1-chain
A (2D), Figure S5. Interactions of co-crystallized ligand in the protein complex 5HU1-chain A (3D), Figure S6.
Alignment of re-dock ligands with the native one in the binding pocket of of 5HU1-chain A, Figure S7. Interactions
of co-crystallized ligand in the protein complex 5HU1-chain B (2D), Figure S8. Interactions of co-crystallized
ligand in the protein complex 5HU1-chain B (3D), Figure S9. Alignment of re-dock ligands with the native one in
the binding pocket of of 5HU1-chain B, Figure S10. The linear regression between docking score and pIC50 on
AChE of synthesized chalcone derivatives (A. observed values from AC1–3 and AC5–10, B. predicted values from
AC1, AC4, AC6, AC8, AC10, AC13).
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