Surface Interactions between Bacterial Nanocellulose and B-Complex Vitamins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption of Vitamins on Cellulose
2.2. Desorption of Vitamins from Cellulose
2.3. Surface Morphological Analysis (AFM)
3. Materials and Methods
3.1. Materials
3.2. Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D)
3.2.1. Adsorption of Vitamin B Complex to BNC
3.2.2. Desorption of Vitamin B Complex from BNC
3.3. Cellulose Morphological Characterization by Atomic Force Microscopy (AFM)
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, A.J. Brown on acetic ferment. J. Chem. Soc. Trans. 1886, 49, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Klemm, D.; Schumann, D.; Kramer, F.; Heßler, N.; Hornung, M.; Schmauder, H.P.; Marsch, S. Nanocelluloses as innovative polymers in research and application. Adv. Polym. Sci. 2006, 205, 49–96. [Google Scholar] [CrossRef]
- Castro, C.; Zuluaga, R.; Álvarez, C.; Putaux, J.-L.L.; Caro, G.; Rojas, O.J.; Mondragon, I.; Gañán, P. Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr. Polym. 2012, 89, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, N.A. Isroi Potensi in-vivo selulosa bakterial sebagai nano-filler karet elastomer thermoplastics (ETPS). Perspektif 2015, 14, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Fink, H.; Purz, H.J.; Bohn, A.; Kunze, J. Investigation of the Supramolecular Structure of Never Dried Bacterial Cellulose. Macromol. Symp. 1997, 120, 207–217. [Google Scholar] [CrossRef]
- Yano, H. Optically transparent composites reinforced with networks of bacterial nanofibers. Sustain. Humanosph. 2005, 11. [Google Scholar] [CrossRef]
- Nakagaito, A.N.; Yano, H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl. Phys. A Mater. Sci. Process. 2004, 78, 547–552. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, J.; Yang, G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 2013, 92, 1432–1442. [Google Scholar] [CrossRef]
- Shah, N.; Ul-Islam, M.; Khattak, W.A.; Park, J.K. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr. Polym. 2013, 98, 1585–1598. [Google Scholar] [CrossRef]
- Hu, W.; Chen, S.; Yang, J.; Li, Z.; Wang, H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 2014, 101, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Cockbill. SME evaluation in-vivo and in-vitro of the performance of interactive dressings in the management of animal soft-tissue injuries. Vet. Dermatol. 1998, 9, 87–98. [Google Scholar] [CrossRef]
- Hornung, M.; Ludwig, M.; Schmauder, H.P. Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3). Eng. Life Sci. 2007, 7, 35–41. [Google Scholar] [CrossRef]
- Kobayashi, S.; Hobson, L.J.; Sakamoto, J.; Kimura, S.; Sugiyama, J.; Imai, T.; Itoh, T. Formation and structure of artificial cellulose spherulites via enzymatic polymerization. Biomacromolecules 2000, 1, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Santos, H.A.; Khan, T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 2016, 23, 2291–2314. [Google Scholar] [CrossRef]
- Ashjaran, A.; Yazdanshenas, M.E.; Rashidi, A.; Khajavi, R.; Rezaee, A. Overview of Bio-Nanofabric from Bacterial Cellulose. J. Text. Inst. 2013, 104, 121–131. [Google Scholar] [CrossRef]
- Basta, A.H.; El-Saied, H. Performance of improved bacterial cellulose application in the production of functional paper. J. Appl. Microbiol. 2009, 107, 2098–2107. [Google Scholar] [CrossRef]
- Chawla, P.R.; Bajaj, I.B.; Survase, S.A.; Singhal, R.S. Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol. 2009, 47, 107–124. [Google Scholar]
- Li, Z.; Wang, L.; Hua, J.; Jia, S.; Zhang, J.; Liu, H. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr. Polym. 2015, 120, 115–119. [Google Scholar] [CrossRef]
- Abeer, M.M.; Mohd Amin, M.C.I.; Martin, C. A review of bacterial cellulose-based drug delivery systems: Their biochemistry, current approaches and future prospects. J. Pharm. Pharmacol. 2014, 66, 1047–1061. [Google Scholar] [CrossRef]
- Zhang, S.; Winestrand, S.; Guo, X.; Chen, L.; Hong, F.; Jönsson, L.J. Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus. Microb. Cell Fact. 2014, 13, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.; Zhang, Y.; Phillips, G.O.; Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014, 35, 539–545. [Google Scholar] [CrossRef]
- Müller, A.; Ni, Z.; Hessler, N.; Wesarg, F.; Müller, F.A.; Kralisch, D.; Fischer, D. The biopolymer bacterial nanocellulose as drug delivery system: Investigation of drug loading and release using the model protein albumin. J. Pharm. Sci. 2013, 102, 579–592. [Google Scholar] [CrossRef]
- Numata, Y.; Mazzarino, L.; Borsali, R. A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. Int. J. Pharm. 2015, 486, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: A review. Arab. J. Chem. 2017, 10, S1409–S1421. [Google Scholar] [CrossRef] [Green Version]
- Orelma, H.; Filpponen, I.; Johansson, L.S.; Laine, J.; Rojas, O.J. Modification of cellulose films by adsorption of cmc and chitosan for controlled attachment of biomolecules. Biomacromolecules 2011, 12, 4311–4318. [Google Scholar] [CrossRef]
- Turon, X.; Rojas, O.J.; Deinhammer, R.S. Enzymatic kinetics of cellulose hydrolysis: A QCM-D study. Langmuir 2008, 24, 3880–3887. [Google Scholar] [CrossRef]
- Neiva, R.F.; Steigenga, J.; Al-Shammari, K.F.; Wang, H.-L. Effects of specific nutrients on periodontal disease onset, progression and treatment. J. Clin. Periodontol. 2003, 30, 579–589. [Google Scholar] [CrossRef]
- Combs, G.F. The Vitamins: Fundamental Aspects in Nutrition and Health, 2nd ed.; Academic Press: Cambridge, MA, USA, 1998; p. 618. ISBN 9780121834937. [Google Scholar]
- Klose, R.E.; Glicksman, M. Handbook of Food Additives; CRC Press: Cleveland, OH, USA, 1972; Chapter 1; pp. 295–359. [Google Scholar]
- Benbow, N.L.; Webber, J.L.; Pawliszak, P.; Sebben, D.A.; Karpiniec, S.; Stringer, D.; Tobin, M.J.; Vongsvivut, J.; Krasowska, M.; Beattie, D.A. Odd-even effects on hydration of natural polyelectrolyte multilayers: An in situ synchrotron FTIR microspectroscopy study. J. Colloid Interface Sci. 2019, 553, 720–733. [Google Scholar] [CrossRef]
- Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 49–76. [Google Scholar] [CrossRef]
- Tondar, M.; Parsa, M.J.; Yousefpour, Y.; Sharifi, A.M.; Shetab-Boushehri, S.V. Feasibility of clinoptilolite application as a microporous carrier for pH-controlled oral delivery of aspirin. Acta Chim. Slov. 2014, 61, 688–693. [Google Scholar]
- Hong, H.J.; Kim, J.; Suh, Y.J.; Kim, D.; Roh, K.M.; Kang, I. pH-sensitive mesalazine carrier for colon-targeted drug delivery: A two-fold composition of mesalazine with a clay and alginate. Macromol. Res. 2017, 25, 1145–1152. [Google Scholar] [CrossRef]
- Amin, M.M.C.I.; Ahmad, N.; Halib, N.; Ahmad, I. Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr. Polym. 2012, 88, 465–473. [Google Scholar] [CrossRef]
- Österbeg, M.; Claesson, P.M. Interactions between cellulose surfaces: Effect of solution pH. J. Adhes. Sci. Technol. 2000, 14, 603–618. [Google Scholar] [CrossRef]
- Kamida, K.; Kunihiko, K.; Matsui, T.; Kowsaka, K. Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym. J. 1984, 16, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Lindman, B.; Medronho, B.; Alves, L.; Costa, C.; Edlund, H.; Norgren, M. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena. Phys. Chem. Chem. Phys. 2017, 19, 23704–23718. [Google Scholar] [CrossRef] [Green Version]
- Bertsch, P.; Schneider, L.; Bovone, G.; Tibbitt, M.W.; Fischer, P.; Gstöhl, S. Injectable Biocompatible Hydrogels from Cellulose Nanocrystals for Locally Targeted Sustained Drug Release. ACS Appl. Mater. Interfaces 2019, 11, 38578–38585. [Google Scholar] [CrossRef]
- Eaton, P.; West, P. Atomic Force Microscopy; Oxford University Press: Oxford, UK, 2010; Chapter 1; pp. 103–120. ISBN 9780199570454. [Google Scholar]
- Haugstad, G.; Gladfelter, W.L.; Jones, R.R. Nanotribology on a polymer network film. J. Vac. Sci. Technol. A Vac. Surf. Film. 1996, 14, 1864–1869. [Google Scholar] [CrossRef]
- Haugstad, G. Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012; Chapter 1; pp. 379–399. ISBN 9781118360668. [Google Scholar]
- Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H.H. Roughness parameters. J. Mater. Process. Technol. 2002, 123, 133–145. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compound are not available from the authors. |
Vitamin | ∆F_ads [Hz] | ∆D_ads [ppm] | ∆F_des [Hz] | ∆D_des [ppm] | Mass_ads [ng/cm2] | Mass_des [ng/cm2] | ng vit/µg BNC |
---|---|---|---|---|---|---|---|
B1 | −16.7 | 1.14 | 25 | −3.89 | 132.76 ± 12.41 | −355.38 ± 21.55 | 43.5 ± 9.03 |
B2 | 32.3 | −8.34 | 21.78 | −0.69 | 302.55 ± 12.86 | −16.95 ± 11.54 | 88.37 ± 13.2 |
B3 | −16.2 | 2.6 | 4.62 | 0.55 | 109.56 ± 8.08 | −124.57 ± 10.11 | 34.78 ± 7.46 |
B12 | −16 | 2 | 23.1 | −0.6 | 182.43 ± 15.73 | 436.23 ± 29.37 | 37.52 ± 4.09 |
Parameter | BNC | B1 | B2 | B3 | B12 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | Before | After | ||
RSM (Rq) (nm) | Mean | 1.16 | 1.21 | 1.50 | 1.89 | 2.20 | 1.11 | 2.53 | 2.80 | 3.10 | 3.28 |
std | 0.11 | 0.05 | 0.08 | 0.07 | 0.41 | 0.10 | 0.08 | 0.16 | 0.08 | 0.23 | |
Skewness (Rsk)(–) | Mean | −0.08 | 0.20 | 0.25 | 0.13 | −0.03 | −0.22 | −0.39 | −0.30 | −0.14 | −0.13 |
std | 0.01 | 0.12 | 0.19 | 0.11 | 0.09 | 0.12 | 0.25 | 0.07 | 0.02 | 0.02 | |
Kurtosis (Rku) (–) | Mean | 2.88 | 4.94 | 3.39 | 3.14 | 4.08 | 4.16 | 3.49 | 3.66 | 2.82 | 3.30 |
std | 0.06 | 0.59 | 0.13 | 0.47 | 0.47 | 0.17 | 0.60 | 0.11 | 0.12 | 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Osorno, D.M.; Gomez-Maldonado, D.; Castro, C.; Peresin, M.S. Surface Interactions between Bacterial Nanocellulose and B-Complex Vitamins. Molecules 2020, 25, 4041. https://doi.org/10.3390/molecules25184041
Sánchez-Osorno DM, Gomez-Maldonado D, Castro C, Peresin MS. Surface Interactions between Bacterial Nanocellulose and B-Complex Vitamins. Molecules. 2020; 25(18):4041. https://doi.org/10.3390/molecules25184041
Chicago/Turabian StyleSánchez-Osorno, Diego Mauricio, Diego Gomez-Maldonado, Cristina Castro, and María Soledad Peresin. 2020. "Surface Interactions between Bacterial Nanocellulose and B-Complex Vitamins" Molecules 25, no. 18: 4041. https://doi.org/10.3390/molecules25184041
APA StyleSánchez-Osorno, D. M., Gomez-Maldonado, D., Castro, C., & Peresin, M. S. (2020). Surface Interactions between Bacterial Nanocellulose and B-Complex Vitamins. Molecules, 25(18), 4041. https://doi.org/10.3390/molecules25184041