Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish
Abstract
:1. Introduction
2. Results
2.1. Total Contents of Triterpenoid and Polysaccharide of ACEW
2.2. Effect on Water Quality
2.3. Effect on Growth Performance and Reproduction
2.4. Effect on Tolerance to Rapid Temperature Changes
2.5. Effect on Caudal Fin Regeneration Ability
2.6. Anti-Inflammatory Effect
3. Discussion
4. Materials and Methods
4.1. Preparation of ACEW and ACEW Diets
4.2. Analysis of Total Triterpenoid Content and Total Polysaccharide Content
4.3. Fish Husbandry
4.4. Determination of Water Quality Changes
4.5. Zebrafish Spawning and Embryo Collection
4.6. Temperature Challenge Tests
4.7. Regeneration Ability—Caudal Fin Recovery
4.8. Anti-Inflammatory Effect—Oxazolone-Induced Enteritis
4.9. Gene Expression Analysis with Quantitative RT-PCR
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pu, H.; Li, X.; Du, Q.; Cui, H.; Xu, Y. Research progress in the application of Chinese herbal medicines in aquaculture: A review. Engineering 2017, 3, 731–737. [Google Scholar] [CrossRef]
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Hai, N.V. The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture 2015, 446, 88–96. [Google Scholar]
- Ao, Z.H.; Xu, Z.H.; Lu, Z.M.; Xu, H.Y.; Zhang, X.M.; Dou, W.F. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. J. Ethnopharmacol. 2009, 121, 194–212. [Google Scholar] [CrossRef]
- Geethangili, M.; Tzeng, Y.M. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evid. Based Complement. Alternat. Med. 2011, 2011, 212641. [Google Scholar]
- Angamuthu, V.; Shanmugavadivu, M.; Nagarajan, G.; Velmurugan, B.K. Pharmacological activities of antroquinonol—Mini review. Chem. Biol. Interact. 2019, 297, 8–15. [Google Scholar] [CrossRef]
- Chen, W.J.; Chang, F.W. A pilot study to assess food safety and potential cholesterol-lowering efficacy of Antrodia cinnamomea solid-state cultivated mycelium in healthy adults. Evid. Based Complement. Alternat. Med. 2020, 2020, 5865764. [Google Scholar] [CrossRef]
- Chen, W.T.; Yang, T.S.; Chen, H.C.; Chen, H.H.; Chiang, H.C.; Lin, T.C.; Yeh, C.H.; Ke, T.W.; Chen, J.S.; Hsiao, K.H.; et al. Effectiveness of a novel herbal agent MB-6 as a potential adjunct to 5-fluoracil-based chemotherapy in colorectal cancer. Nutr. Res. 2014, 34, 585–594. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Hung, Y.C.; Chen, Y.H.; Chen, Y.H.; Huang, Y.C.; Kao, C.W.; Su, Y.L.; Chiu, H.H.; Rau, K.M. A preliminary randomised controlled study of short-term Antrodia cinnamomea treatment combined with chemotherapy for patients with advanced cancer. BMC Complement. Altern. Med. 2016, 16, 322. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Hu, C.T.; Weng, C.F. Antrodia cinnamomea prolongs survival in a patient with small cell lung cancer. Medicina 2019, 55, 640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, P.Y.; Wong, Y.Y.; Chan, T.Y.; Law, C.K.; Tsoi, Y.K.; Leung, K.S. Review of biological and pharmacological activities of the endemic Taiwanese bitter medicinal mushroom, Antrodia camphorata. Int. J. Med. Mushrooms 2012, 14, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Varela, M.; Figueras, A.; Novoa, B. Modelling viral infections using zebrafish: Innate immune response and antiviral research. Antiviral Res. 2017, 139, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Ghosh, S.; Malick, R.C.; Patra, B.C.; Das, B.K. Therapeutic applications of zebrafish (Danio rerio) miRNAs linked with human diseases: A prospective review. Gene 2018, 679, 202–211. [Google Scholar] [CrossRef]
- Yokobori, E.; Azuma, M.; Nishiguchi, R.; Kang, K.S.; Kamijo, M.; Uchiyama, M.; Matsuda, K. Neuropeptide Y stimulates food intake in the zebrafish, Danio rerio. J. Neuroendocrinol. 2012, 24, 766–773. [Google Scholar] [CrossRef]
- Aleström, P.; Winther-Larsen, H.C. Zebrafish offer aquaculture research their services. In Genomics in Aquaculture; MacKenzie, S., Jentoft, S., Eds.; Academic Press: New York, NY, USA, 2016; pp. 165–194. [Google Scholar]
- Lien, H.M.; Tseng, C.J.; Huang, C.L.; Lin, Y.T.; Chen, C.C.; Lai, Y.Y. Antimicrobial activity of Antrodia camphorata extracts against oral bacteria. PLoS ONE 2014, 9, e105286. [Google Scholar] [CrossRef]
- Chou, W.L.; Lee, T.H.; Huang, T.H.; Wang, P.W.; Chen, Y.P.; Chen, C.C.; Chang, Z.Y.; Fang, J.Y.; Yang, S.C. Coenzyme Q0 from Antrodia cinnamomea exhibits drug-resistant bacteria eradication and keratinocyte inflammation mitigation to ameliorate infected atopic dermatitis in mouse. Front. Pharmacol. 2019, 10, 1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Zhang, W.; Wong, J.H.; Ng, T.; Ye, X. Diversity of potentially exploitable pharmacological activities of the highly prized edible medicinal fungus Antrodia camphorata. Appl. Microbiol. Biotechnol. 2019, 103, 7843–7867. [Google Scholar] [CrossRef]
- Lee, D.H.; Ra, C.S.; Song, Y.H.; Sung, K.I.; Kim, J.D. Effects of dietary garlic extract on growth, feed utilization and whole body composition of juvenile sterlet sturgeon (Acipenser ruthenus). Asian Australas. J. Anim. Sci. 2012, 25, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, A.M.; Khattab, Y.M.; Abdel rahman, A.M. Effects of garlic (Allium sativum) and chloramphenicol on growth performance, physiological parameters and survival of Nile Tilapia (Oreochromis niloticus). J. Venom. Anim. Toxins Incl. Trop. Dis. 2006, 12, 172–201. [Google Scholar] [CrossRef] [Green Version]
- De Silva, S.S.; Anderson, T.A. Fish Nutrition in Aquaculture; Chapman & Hall: New York, NY, USA, 1995. [Google Scholar]
- Liu, X.; Chang, X.; Wu, H.; Xiao, J.; Gao, Y.; Zhang, Y. Role of intestinal inflammation in predisposition of Edwardsiella tarda infection in zebrafish (Danio rerio). Fish Shellfish Immunol. 2014, 41, 271–278. [Google Scholar] [CrossRef]
- Brugman, S. The zebrafish as a model to study intestinal inflammation. Dev. Comp. Immunol. 2016, 64, 82–92. [Google Scholar] [CrossRef] [Green Version]
- ARFS. Annual Report of Fishery Statistics on 2018; Fisheries Agency, Council of Agriculture, Executive Yuan: Taipei, Taiwan, 2019.
- Chang, C.J.; Lu, C.C.; Lin, C.S.; Martel, J.; Ko, Y.F.; Ojcius, D.M.; Wu, T.R.; Tsai, Y.H.; Yeh, T.S.; Lu, J.J.; et al. Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. Int. J. Obes. 2017, 42, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Hasenbein, S.; Poynton, H.; Connon, R.E. Contaminant exposure effects in a changing climate: How multiple stressors can multiply exposure effects in the amphipod Hyalella azteca. Ecotoxicology 2018, 27, 845–859. [Google Scholar] [CrossRef]
- Delnat, V.; Tran, T.T.; Verheyen, J.; Van Dinh, K.; Janssens, L.; Stoks, R. Temperature variation magnifies chlorpyrifos toxicity differently between larval and adult mosquitoes. Sci. Total Environ. 2019, 690, 1237–1244. [Google Scholar] [CrossRef]
- Park, K.; Kwak, I.S. The effect of temperature gradients on endocrine signaling and antioxidant gene expression during Chironomus riparius development. Sci. Total Environ. 2014, 470–471, 1003–1011. [Google Scholar] [CrossRef]
- Huo, D.; Sun, L.; Zhang, L.; Yang, H.; Liu, S.; Sun, J.; Su, F. Time course analysis of immunity-related gene expression in the sea cucumber Apostichopus japonicus during exposure to thermal and hypoxic stress. Fish Shellfish Immunol. 2019, 95, 383–390. [Google Scholar] [CrossRef]
- Zak, M.A.; Manzon, R.G. Expression and activity of lipid and oxidative metabolism enzymes following elevated temperature exposure and thyroid hormone manipulation in juvenile lake whitefish (Coregonus clupeaformis). Gen. Comp. Endocrinol. 2019, 275, 51–64. [Google Scholar] [CrossRef]
- Cominassi, L.; Moyano, M.; Claireaux, G.; Howald, S.; Mark, F.C.; Zambonino-Infante, J.L.; Le Bayon, N.; Peck, M.A. Combined effects of ocean acidification and temperature on larval and juvenile growth, development and swimming performance of European sea bass (Dicentrarchus labrax). PLoS ONE 2019, 14, e0221283. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, A.M.; Davis, B.E.; Fangue, N.A.; Todgham, A.E. Combined effects of warming and hypoxia on early life stage Chinook salmon physiology and development. Conserv. Physiol. 2019, 7, coy078. [Google Scholar] [CrossRef] [Green Version]
- Gemberling, M.; Bailey, T.J.; Hyde, D.R.; Poss, K.D. The zebrafish as a model for complex tissue regeneration. Trends Genet. 2013, 29, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Chassot, B.; Pury, D.; Jaźwińska, A. Zebrafish fin regeneration after cryoinjury-induced tissue damage. Biol. Open 2016, 5, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Hseu, Y.C.; Wu, F.Y.; Wu, J.J.; Chen, J.Y.; Chang, W.H.; Lu, F.J.; Lai, Y.C.; Yang, H.L. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-κB pathway. Int. Immunopharmacol. 2005, 5, 1914–1925. [Google Scholar] [CrossRef]
- Liu, D.Z.; Liang, H.J.; Chen, C.H.; Su, C.H.; Lee, T.H.; Huang, C.T.; Hou, W.C.; Lin, S.Y.; Zhong, W.B.; Lin, P.J.; et al. Comparative anti-inflammatory characterization of wild fruiting body, liquid-state fermentation, and solid-state culture of Taiwanofungus camphoratus in microglia and the mechanism of its action. J. Ethnopharmacol. 2007, 113, 45–53. [Google Scholar] [CrossRef]
- Tsai, T.C.; Tung, Y.T.; Kuo, Y.H.; Liao, J.W.; Tsai, H.C.; Chong, K.Y.; Chen, H.L.; Chen, C.M. Anti-inflammatory effects of Antrodia camphorata, a herbal medicine, in a mouse skin ischemia model. J. Ethnopharmacol. 2015, 159, 113–121. [Google Scholar] [CrossRef]
- Webb, C.R.; Koboziev, I.; Furr, K.L.; Grisham, M.B. Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology 2016, 23, 67–80. [Google Scholar]
- Brugman, S.; Liu, K.Y.; Lindenbergh-Kortleve, D.; Samsom, J.N.; Furuta, G.T.; Renshaw, S.A.; Willemsen, R.; Nieuwenhuis, E.E.S. Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota. Gastroenterology 2009, 137, 1757–1767. [Google Scholar] [CrossRef]
- Chang, C.L.; Lin, C.S.; Lai, G.H. Phytochemical characteristics, free radical scavenging activities, and neuroprotection of five medicinal plant extracts. Evid. Based Complement. Alternat. Med. 2012, 984295. [Google Scholar] [CrossRef] [Green Version]
- Pawar, H.A.; D’Mello, P.M. Spectrophotometric estimation of total polysaccharides in Cassia tora gum. J. Appl. Pharm. Sci. 2011, 1, 93–95. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△Ct method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pan, C.Y.; Huang, T.C.; Wang, Y.D.; Yeh, Y.C.; Hui, C.F.; Chen, J.Y. Oral administration of recombinant epinecidin-1 protected grouper (Epinephelus coioides) and zebrafish (Danio rerio) from Vibrio vulnificus infection and enhanced immune-related gene expressions. Fish Shellfish Immunol. 2012, 32, 947–957. [Google Scholar] [CrossRef]
- Patterson, H.; Saralahti, A.; Parikka, M.; Dramsi, S.; Trieu-Cuot, P.; Poyart, C.; Rounioja, S.; Rämet, M. Adult zebrafish model of bacterial meningitis in Streptococcus agalactiae infection. Dev. Comp. Immunol. 2012, 38, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.Y.; Peng, K.C.; Lin, C.H.; Chen, J.Y. Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens. Fish Shellfish Immunol. 2011, 31, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.Y.; Wu, J.L.; Hui, C.F.; Lin, C.H.; Chen, J.Y. Insights into the antibacterial and immunomodulatory functions of the antimicrobial peptide, epinecidin-1, against Vibrio vulnificus infection in zebrafish. Fish Shellfish Immunol. 2011, 31, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Growth Indices | Vehicle | 0.2% ACEW | 1% ACEW | 10% ACEW |
---|---|---|---|---|
Body weight gain (∆W, g) b | 0.082 ± 0.029 | 0.086 ± 0.024 | 0.099 ± 0.021 *** | 0.107 ± 0.018 *** |
Specific growth rate (μ, day−1) c | 0.809 ± 0.095 | 0.859 ± 0.075 * | 1.008 ± 0.082 *** | 1.084 ± 0.082 *** |
Feed conversion efficiency (FCE, %) d | 11.87 ± 1.55 | 11.67 ± 1.67 | 13.67 ± 1.72 *** | 14.47 ± 1.08 *** |
Daily growth rate (DGR, %) e | 0.917 ± 0.12 | 0.981 ± 0.10 * | 1.178 ± 0.10 *** | 1.282 ± 0.11 *** |
Primer | Sequence | Reference |
---|---|---|
β-actin | 5′-CACCATGAAGATCAAGATCA-3′ | |
5′-TTTATTCAAGATGGAGCCACCGATCC-3′ | ||
TNF-α | 5′-AAGGAGAGTTGCCTTTACCG-3′ | [43] |
5′-ATTGCCCTGGGTCTTATGG-3′ | ||
IL-1β | 5′-TGGACTTCGCAGCACAAAATG-3′ | [44] |
5′-GTTCACTTCACGCTCTTGGATG-3′ | ||
IL-6 | 5′-TCAACTTCTCCAGCGTGATG-3′ | [44] |
5′-TCTTTCCCTCTTTTCCTCCTG-3′ | ||
IL-10 | 5′-TCACGTCATGAACGAGATCC-3′ | [45] |
5′-CCTCTTGCATTTCACCATATCC-3′ | ||
IL4/13A | 5′-AGTCACGCTGCTGATGAAGA-3′ | [46] |
5′-AACTTGGTCTTGGGCTTTTT-3′ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-C.; Lu, Y.-C.; Wang, C.-C.; Ko, T.-L.; Chen, J.-R.; Wang, W.; Chen, Y.-L.; Wang, Y.-W.; Chang, T.-H.; Hsu, H.-F.; et al. Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish. Molecules 2020, 25, 4213. https://doi.org/10.3390/molecules25184213
Chang C-C, Lu Y-C, Wang C-C, Ko T-L, Chen J-R, Wang W, Chen Y-L, Wang Y-W, Chang T-H, Hsu H-F, et al. Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish. Molecules. 2020; 25(18):4213. https://doi.org/10.3390/molecules25184213
Chicago/Turabian StyleChang, Chi-Chang, Yung-Chuan Lu, Chih-Chun Wang, Tsui-Ling Ko, Jung-Ren Chen, Wei Wang, Ya-Ling Chen, Yu-Wen Wang, Tzu-Hsien Chang, Hsia-Fen Hsu, and et al. 2020. "Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish" Molecules 25, no. 18: 4213. https://doi.org/10.3390/molecules25184213
APA StyleChang, C. -C., Lu, Y. -C., Wang, C. -C., Ko, T. -L., Chen, J. -R., Wang, W., Chen, Y. -L., Wang, Y. -W., Chang, T. -H., Hsu, H. -F., & Houng, J. -Y. (2020). Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish. Molecules, 25(18), 4213. https://doi.org/10.3390/molecules25184213