Controlled Release of Pyrimidine Compound Using Polymeric Coated ZIF-8 Metal-Organic Framework as Glucagon-Like Peptide-1 Receptor Agonist Carrier
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antidiabetic Activity
2.2.1. Pharmacological Evaluation of the Compound 2 on Fasting Blood Glucose (FBG)
2.2.2. Effects of the Compound 2 on Insulin Secretion in the βTC6 Cell Line
2.3. Docking of Compound 2 in the GLP-1 Receptor
2.4. ZIF-8 Characterization
2.4.1. Synthesis
2.4.2. XRD Analysis
2.4.3. SEM Analysis
2.4.4. Thermogravimetric Analysis (TGA)
2.4.5. FT-IR Spectroscopy Analysis
3. Material and Methods
3.1. General
3.2. Synthesis of the GLP-1 Agonist
2-[(6′-Chloropyrimidin-4′-yl)(methylamino)]ethanol (2)
3.3. Synthesis of MOFs
3.3.1. Synthesis of ZIF-8
3.3.2. Synthesis of GLP-1 Agonist-Loaded ZIF-8
3.3.3. Synthesis of Polymer-Coated ZIF-8-Compound 2
3.4. Antidiabetic Activity
3.4.1. Animal Housing and Diabetic Induction
3.4.2. In Vivo Testing
3.4.3. In Vitro Testing
Cell Culture
Insulin Secretion Assay
Cell-Based Glucose Uptake Assay
Statistical Analysis
Ethical Approval
3.5. Docking Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwak, M.-K.; Ha, H. Where are we now in diabetic research? Arch. Pharmacal. Res. 2013, 36, 142–144. [Google Scholar] [CrossRef]
- Giugliano, D.; Standl, E.; Vilsbøll, T.; Betteridge, J.; Bonadonna, R.C.; Campbell, I.W.; Schernthaner, G.-H.; Staels, B.; Trichopoulou, A.; Farinaro, E. Is the current therapeutic armamentarium in diabetes enough to control the epidemic and its consequences? What are the current shortcomings? Acta Diabetol. 2009, 46, 173–181. [Google Scholar] [CrossRef]
- Meloni, A.R.; Deyoung, M.B.; Lowe, C.; Parkes, D.G. GLP-1 receptor activated insulin secretion from pancreatic β-cells: Mechanism and glucose dependence. Diabetes Obes. Metab. 2012, 15, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterol. 2007, 132, 2131–2157. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Ersbøll, A.K.; Holst, J.J.; Astrup, A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int. J. Obes. 2001, 25, 781–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turton, M.D.; O’Shea, D.; Gunn, I.; Beak, S.A.; Edwards, C.M.B.; Meeran, K.; Choi, S.J.; Taylor, G.M.; Heath, M.M.; Lambert, P.D.; et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996, 379, 69–72. [Google Scholar] [CrossRef]
- Deacon, C.F.; Nauck, M.A.; Toft-Nielsen, M.; Pridal, L.; Willms, B.; Holst, J.J. Both Subcutaneously and Intravenously Administered Glucagon-Like Peptide I Are Rapidly Degraded from the NH2-Terminus in Type II Diabetic Patients and in Healthy Subjects. Diabetes 1995, 44, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Hribal, M.L.; Sesti, G. Liraglutide, the once-daily human GLP-1 analog, in the treatment of Type 2 diabetes. Expert Rev. Endocrinol. Metab. 2010, 5, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.G.; Bloom, S.R. Nonpeptidic glucagon-like peptide 1 receptor agonists: A magic bullet for diabetes? Proc. Natl. Acad. Sci. USA 2007, 104, 689–690. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Ge, J.; Yang, C.; Hou, M.; Liu, Z. Facile synthesis of multiple enzyme-containing metal–organic frameworks in a biomolecule-friendly environment. Chem. Commun. 2015, 51, 13408–13411. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-pot Synthesis of Metal–Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 2016, 138, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, J.-C.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; et al. Recent progress in drug delivery. Acta Pharm. Sin. B 2019, 9, 1145–1162. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.-L.; Li, H.; Zhou, Y.; Zhang, Y.; Feng, X.; Wang, B.; Yang, Y.-W. Zn2+-Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates. Small 2015, 11, 3807–3813. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K. Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8, 2812–2819. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachuła, B.; Nowak, M.; Kusz, J. Crystal and Molecular Structure Analysis of 2-Methylimidazole. J. Chem. Crystallogr. 2009, 40, 201–206. [Google Scholar] [CrossRef]
- Mancini, M.M.; Nieto, J.C.D.C.; Amat, E.D.R. Novel Thiazolidinedione Derivatives as Antidiabetic Agents, VITA INVEST SA. Patent no. WO 2001036416 A, 25 May 2001. [Google Scholar]
- Runge, S.; Thøgersen, H.; Madsen, K.; Lau, J.; Rudolph, R. Crystal Structure of the Ligand-bound Glucagon-like Peptide-1 Receptor Extracellular Domain. J. Boil. Chem. 2008, 283, 11340–11347. [Google Scholar] [CrossRef] [Green Version]
- Sloop, K.W.; Willard, F.S.; Brenner, M.B.; Ficorilli, J.; Valasek, K.; Showalter, A.D.; Farb, T.B.; Cao, J.X.; Cox, A.L.; Michael, M.D.; et al. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets. Diabetes 2010, 59, 3099–3107. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Wang, R. Molecular modeling of the three-dimensional structure of GLP-1R and its interactions with several agonists. J. Mol. Model. 2008, 15, 53–65. [Google Scholar] [CrossRef]
- Undheim, K.; Benneche, T. Pyrimidines and their Benzo Derivatives. In Comprehensive Heterocyclic Chemistry II; Elsevier BV: Oxford, UK, 1996; pp. 93–231. [Google Scholar]
- Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071. [Google Scholar] [CrossRef] [PubMed]
- Schejn, A.; Balan, L.; Falk, V.; Aranda, L.; Medjahdi, G.; Schneider, R. Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. Cryst. Eng. Comm. 2014, 16, 4493–4500. [Google Scholar] [CrossRef]
- Kolmykov, O.; Commenge, J.-M.; Alem, H.; Girot, E.; Mozet, K.; Medjahdi, G.; Schneider, R. Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater. Des. 2017, 122, 31–41. [Google Scholar] [CrossRef]
- Cravillon, J.; Münzer, S.; Lohmeier, S.-J.; Feldhoff, A.; Huber, K.; Wiebcke, M. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chem. Mater. 2009, 21, 1410–1412. [Google Scholar] [CrossRef]
- Ordonez, M.J.C.; Balkus, K.J., Jr.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF-8/Matrimid®® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- Hu, Y.; Kazemian, H.; Rohani, S.; Huang, Y.; Song, Y. In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem. Commun. 2011, 47, 12694. [Google Scholar] [CrossRef]
- Mu, L.; Liu, B.; Liu, H.; Yang, Y.; Sun, C.; Chen, G. A novel method to improve the gas storage capacity of ZIF-8. J. Mater. Chem. 2012, 22, 12246. [Google Scholar] [CrossRef]
- Kong, L.; Liu, X.; Bian, X.; Wang, C. Silica nanocubes with a hierarchically porous structure. RSC Adv. 2012, 2, 2887. [Google Scholar] [CrossRef]
- Graphical contents list. Tetrahedron Lett. 2012, 53, 2925–2935. [CrossRef]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Schordinger Software, Version 8.0. Schördinger: New York, NY, USA. Available online: http://www.schrodinger.com/ (accessed on 10 November 2007).
- Lu, S.; Zheng, W.; Ji, L.; Luo, Q.; Hao, X.; Li, X.; Wang, F. Synthesis, characterization, screening and docking analysis of 4-anilinoquinazoline derivatives as tyrosine kinase inhibitors. Eur. J. Med. Chem. 2013, 61, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Deng, Y.; Sima, T.; Yang, H. A novel ZrO2–SO42− supported palladium catalyst for syntheses of disubstituted ureas from amines by oxidative carbonylation. Tetrahedron Lett. 2001, 42, 2161–2163. [Google Scholar] [CrossRef]
- Vasdev, N.; Dorff, P.N.; O’Neil, J.P.; Chin, F.T.; Hanrahan, S.; VanBrocklin, H.F. Metabolic stability of 6,7-dialkoxy-4-(2-, 3- and 4-[18F]fluoroanilino)quinazolines, potential EGFR imaging probes. Bioorganic Med. Chem. 2011, 19, 2959–2965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compound 2 is available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlNeyadi, S.S.; Amir, N.; Ghattas, M.A.; Atatreh, N.; Alketbi, S.S.; Ajeil, R.A.; Adem, A. Controlled Release of Pyrimidine Compound Using Polymeric Coated ZIF-8 Metal-Organic Framework as Glucagon-Like Peptide-1 Receptor Agonist Carrier. Molecules 2020, 25, 4313. https://doi.org/10.3390/molecules25184313
AlNeyadi SS, Amir N, Ghattas MA, Atatreh N, Alketbi SS, Ajeil RA, Adem A. Controlled Release of Pyrimidine Compound Using Polymeric Coated ZIF-8 Metal-Organic Framework as Glucagon-Like Peptide-1 Receptor Agonist Carrier. Molecules. 2020; 25(18):4313. https://doi.org/10.3390/molecules25184313
Chicago/Turabian StyleAlNeyadi, Shaikha S., Naheed Amir, Mohammad A. Ghattas, Noor Atatreh, Shaikha S. Alketbi, Ruba Al Ajeil, and Abdu Adem. 2020. "Controlled Release of Pyrimidine Compound Using Polymeric Coated ZIF-8 Metal-Organic Framework as Glucagon-Like Peptide-1 Receptor Agonist Carrier" Molecules 25, no. 18: 4313. https://doi.org/10.3390/molecules25184313
APA StyleAlNeyadi, S. S., Amir, N., Ghattas, M. A., Atatreh, N., Alketbi, S. S., Ajeil, R. A., & Adem, A. (2020). Controlled Release of Pyrimidine Compound Using Polymeric Coated ZIF-8 Metal-Organic Framework as Glucagon-Like Peptide-1 Receptor Agonist Carrier. Molecules, 25(18), 4313. https://doi.org/10.3390/molecules25184313