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Abstract: The optical constants of Para-Toluene sulfonic acid-doped polyaniline (PANI), PANIchitosan
composites, PANI-reduced graphene-oxide composites and a ternary composite comprising of PANI,
chitosan and reduced graphene-oxide dispersed in diluted p-toluene sulfonic acid (PTSA) solution
and N-Methyl-2-Pyrrolidone (NMP) solvent have been evaluated and compared. The optical constant
values were extracted from the absorbance spectra of thin layers of the respective samples. The potential
utilization of the materials as the active sensing materials of surface plasmon resonance biosensors
has also been assessed in terms of the estimated value of the penetration depth through a dielectric
medium. The results show a reasonable dependence of the optical constant parameters on the solvent
type. Higher real part refractive index (n) and real part complex dielectric permittivity (ε’) values were
observed for the samples prepared using PTSA solution, while higher optical conductivity values
were observed for the NMP-based samples due to their relatively higher imaginary part refractive
index (k) and imaginary part complex dielectric permittivity (ε”) values. In addition, NMP-based
samples show improvement in terms of the penetration depth through a dielectric medium by around
9.5, 1.6, 4.4 and 2.9 times compared to PTSA-based samples for the PANI, PANI-chitosan, PANI-RGO
and the ternary composites, respectively. Based on these, it is concluded that preparation of these
materials using different dispersion solvents could produce materials of different optical properties.
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Thus, the variation of the dispersion solvent will allow the flexible utilization of the PANI and the
composites for diverse applications.

Keywords: p-toluene sulfonic acid-doped polyaniline; optical constant parameters; chitosan; reduced
graphene-oxide; surface plasmon resonance (SPR)

1. Introduction

Conducting polyaniline, especially in its doped form (emeraldine salt or ES), features many
potential industrial applications due to its unique optical, electrical and optoelectronic properties.
However, ES is considered a poorly processible material due to its increased crystallinity or crystalline
structure, which affects its dispersibility [1]. This hinders many of its industrial applications. Fortunately,
it was found that ES can be processed using some selected functional protonic acids and selected
organic solvents [2,3]. This opens the way for many important findings on the processibility of doped
polyaniline. For example, the electrical, optical, crystalline and dielectric properties of the resulting
processible ES have been investigated comprehensively [4]. Moreover, the optical properties of the ES
were found to differ with different solvents. For example, camphor sulfonic acid-doped polyaniline
dispersed in meta cresol was found to possess a region of carrier tails in place of the well-known
polaronic peaks that were observed in the doped polyaniline dispersed in chloroform [2,5].

It is important to assess the optical constant parameters, such as the refractive index, the dielectric
constants and the optical conductivity of materials, before their applications are widely considered [6,7].
This is due to the diverse optical property requirements for various applications. For example,
low refractive index materials are ideal for the fabrication of optical components such as reflectors,
filters, band-passes and photonic crystals. This is in addition to the fabrication of devices such as lasers,
LEDs, and solar cells [8]. On the other hand, high refractive index polymeric materials are reported to
be required for anti-refractive coatings, micro-lenses for CMOS image sensors, encapsulants for LEDs,
and high-n thermoplastic lens applications [9]. It could be concluded that the processability of doped
polyaniline and the investigation of its electrical, optical, crystalline and dielectric properties are well
developed [1,4,10]. However, investigation related to the effect of dispersion solvent on its optical
constant parameters is lacking.

As such, this work is aimed at comparing the optical constant parameters of p-toluene sulfonic
acid (PTSA) doped polyaniline (PANI), PANI-chitosan, PANI-reduced graphene oxide (RGO) and
the ternary composites of PANI, RGO and chitosan that are prepared using two different dispersion
solvents; diluted PTSA solution and N-Methyl-2-Pyrrolidone (NMP). In addition, the applicability of
the materials (samples) in surface plasmon resonance (SPR) sensing application is also explored. This is
an extension of our previous work on the optical constant of p-toluene sulfonic acid-doped polyaniline
processed in PTSA solution [7]. It is observed that the dispersion solvent variation can greatly affect the
optical constant values of the PANI and the composites (samples). Therefore, the solvent dependence
variability of the optical constants of these samples could allow the flexible utilization of the PANI and
the composites for various purposes, such as energy, environmental and sensing applications.

2. Materials and Methods

2.1. Materials

Toluene-4-sulfonic acid monohydrate (PTSA)-Merck, N-Methyl-2-Pyrrolidone (NMP), chitosan-Sigma
Aldrich (medium molecular weight (190-310 kDa) with 75–85% degree of deacetylation) were all supplied
by Avantis chemicals supply (Ipoh-Perak, Malaysia). All the chemicals used were of analytical grade.
PANI, PANI-chitosan, PANI-RGO, and the ternary composites of PANI, RGO and chitosan, were all
synthesized at our laboratory.



Molecules 2020, 25, 4414 3 of 12

2.2. Synthesis and Characterization

The methods for the synthesis and characterization of PANI, PANI-chitosan, PANI-RGO and
the ternary composites were explained comprehensively in our previous work [7]. In addition to
that, the UV-Visible characterization for the NMP-processed PANI and the composites was conducted
for comparison with the PTSA-based counterpart. The surface morphology of the thin films of
these materials was studied using Field Emission Scanning Electron Microscopy (FESEM) imagery,
obtained using VPFESEM, Zeiss Supra55 VP (Oberkochen, Germany). The potential of the materials
for surface plasmon resonance sensing application has been investigated through the estimation of the
penetration depth of plasmon waves through a dielectric medium [11,12].

2.3. Preparations of Thin Layer

The thin layer preparations for the PTSA-based PANI and the composites were explained
previously [7]. For the NMP-based materials, 15 mg/mL solution (dispersion) of the materials in NMP
was formed and utilized. The dispersion process was followed by a constant magnetic stirring for 12 h
at 600 rpm in each case. The thin layers were deposited on microscopic glass substrates (Menzel™
Microscope Coverslips) using a POLOS™ spin coater set at 1500 rpm for 1 min. The glass substrates
were washed with acetone and deionized water prior to the deposition in order to eliminate dust and
impurities. The deposited layers were then kept in an oven for 4 h at 40 ◦C before storing them in an
undisturbed place for further characterizations. The thicknesses of the respective thin film layers were
estimated by surface roughness tester (SV-mutitoyo-3000) using the scratch after deposition method.

3. Results

3.1. Comparison of UV-Vis Absorption Spectra

The UV-VIS absorption spectra for PANI, PANI-chitosan, PANI-RGO and the ternary composites are
shown in Figure 1a,b for the PTSA and NMP-based solvents, respectively. Previously, three characteristic
peaks attributable to the π–π* transition of the benzenoid rings, localized polarons and delocalized
polarons have been reported at around 325, 433 and 800 nm, respectively, for the PTSA-based materials [7].
These peaks are more obvious in the case of the PANI-chitosan composite as shown in Figure 1a. However,
the absorption spectra presented in Figure 1b for the NMP-based materials are closer to what was observed
for the CSA-doped polyaniline dispersed in meta cresol solvent [2,5]. As such, in Figure 1b, the delocalized
polaron band is obviously replaced by a free carrier tail.

The manifestation of the free carrier has been attributed to the greater delocalization of the
polaron band in the expanded coil-like conformation of doped polyaniline due to the removal of twist
defects between aromatic rings [13,14]. In addition, the weakening or even disappearance of the band
attributable to the π–π* transition of the benzenoid rings has been attributed to the elimination of the
energy gap between the π band and the polaron band [2,13,14]. As reported previously, a similar
overlapped or weakening feature has been observed at the region of π–π* transition and the localized
polarons [7,15]. The same effect is observed for the NMP-based materials as shown in Figure 1b.
In general, these features prove the presence of p-toluene sulfonic acid-doped polyaniline in all of the
composites. In addition, the modification of the PANI spectra compared to that of the composites
further confirms the formation of the composites [7].
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Figure 1. UV-VIS spectra of (a) PANI, PANI-chitosan, PANI-RGO and Ternary composites dispersed in
PTSA (b) PANI, PANI-chitosan, PANI-RGO and Ternary composites dispersed in NMP.

3.2. Field Emission Scanning Electron Microscopy (FESEM)

The surface morphology of the PANI, PANI-chitosan, PANI-RGO and the ternary composite
films processed using PTSA solution has been studied using FESEM, and presented in our previous
work [7]. In summary, PANI was found to feature a long fibrillar chain of short granular structures,
while PANI-chitosan depicted a flat flags surface with dispersed granular structures due to PANI.
In addition, a fibrilla–lamellar structure was observed in the case of PANI-RGO. Furthermore,
a nanoporous-like structure attributable to the uniform dispersion of RGO in chitosan was observed for
the ternary composite. Figure 2a–d shows the FESEM images for the PANI, PANI-chitosan, PANI-RGO
and the ternary composite films processed using NMP, respectively. Interestingly, structures similar
to that of the PTSA-based samples are observed. However, few changes are observed. For example,
reduction in the sizes of the particles for the PANI, PANI-chitosan and the ternary composites is
noted. This is due to the utilization of NMP in place of the sulfonated acid (PTSA), which has the
potential of clumping PANI particles at the risk of low conductivity, especially when the concentration
is ≥0.4 M [16]. In addition, clearer and improved distribution of particles attributable to the presence of
PANI is observed in Figure 2d. This is due to the presence of chitosan, which is known to improve the
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processibility of PANI [15,17,18]. More importantly, the roughness and the pore spaces of the ternary
composite film could result in better absorption of the analyte in sensing application [19].
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processed using NMP.

3.3. Comparison of Complex Refractive Index Parameters

In order to investigate how the propagation of optical radiation through the PANI, PANI-chitosan,
PANI-RGO and the ternary composites differ with PTSA and NMP solvents, their real part refractive
index (n) values are compared, as shown in Figure 3a. The formula (Equation (1)) and the method for
the evaluation of n were reported previously [7], where R is reflectance and k is the extinction coefficient
(imaginary refractive index) given by k = ((2.303 A/d)λ/4π). Moreover, A represents absorbance,
λ represents the wavelength of the light waves and d represents the thickness of the thin layer of the
materials. Surprisingly, the obtained n values for the NMP-based materials are quite less than the
previous value observed for the PTSA-based materials as depicted in Figure 3a [7]. It could be observed
that the values are closer to many available reports on the refractive index of doped polyaniline [20,21].
This implies that the PTSA solution is the main contributor of the high refractive index observed in
the materials dispersed in PTSA solution, as shown in Figure 3a [7]. For example, the peak n value
of PANI dispersed in PTSA is around 7.7 at 505 nm, while the peak n value of 1.6 at 431 nm was
observed for the PANI dispersed in NMP. The same trend is also observed in the other materials.
This indicates that the materials dispersed in PTSA are denser than the NMP-based ones due to their
greater proportion of sulfur, which is known to raise refractive index values due to its high value of
molecular refraction [7,9]. The higher n value of the materials dispersed in the PTSA compared to the
NMP-based materials could also be explained in terms of the hydrogen bond formation between the
PTSA and the polyaniline functional group [22]. It could also be noticed that the lowest n values for
the materials dispersed in both the PTSA and the NMP are found in the PANI-chitosan and the ternary
composite, which may be due to the low density of chitosan [23]. Moreover, the change in the n values
for the different materials proves the existence of some interaction between photons and electrons
in the thin layers of the materials in different ways [6]. This, by extension, confirms the presence of
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materials for different applications. Therefore, the tunable and different dispersive nature of both the
materials dispersed in PTSA and NMP could be exploited for different industrial applications.

n =
[1 + R

1−R

]
+

√
4R

(1−R)2 − k2, (1)

On the other hand, as shown in Figure 2b, the higher imaginary refractive index values of k are
observed for the materials dispersed in PTSA compared to NMP-based materials, which is due to the
higher scattering of photons by the PTSA-based materials relative to the NMP-based materials [6,7].
In addition, the lower values observed for the NMP-based materials indicate the more transparent
nature of the materials relative to the PTSA-based counterpart.
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Figure 3. (a) Real part refractive index of PANI, PANI-chitosan, PANI-RGO and Ternary composites
dispersed in both PTSA and NMP and (b) Imaginary part refractive index of PANI, PANI-chitosan,
PANI-RGO and Ternary composites dispersed in both PTSA and NMP.
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3.4. Comparison of Complex Dielectric Constant

The complex dielectric constant is another important optical parameter that is composed of real
and imaginary parts. The real part of the dielectric constant (ε’) indicates the ability of a material
to store electric energy. It could also be described in terms of the ability to allow the passage of an
electric field through a material [24]. On the other hand, the imaginary part (ε”) provides a measure
of the dissipation of the electromagnetic wave in the film of a material [6]. The formula for the
calculations of the components of this complex dielectric constant has been described previously
(Equations (2) and (3)) [7]. The values of the real and the imaginary part of the dielectric constant
based on the two dispersion solvents are shown in Figure 4a,b, respectively. It could be observed that
the Figures for the dielectric constant values (Figure 4a,b) are closely related to that of the complex
refractive index shown in Figure 3a,b. This proves the relationship between the two parameters [7,25].
The higher ε’ values in PANI and PANI-RGO for both the PTSA and NMP-based materials show the
existence of more energy density of states, which results in an increased polarization [7,26,27]. For the
same reason, PTSA-based materials also show higher ε’ values compared to NMP-based materials
(Figure 3a).

ε′ = n2
− k2, (2)

ε′′ = 2nk, (3)

Figure 3b shows that the values of ε” for both the PTSA and NMP-based material increase
with wavelength. It could also be observed that the dissipation of electrical energy varies with
different dispersion solvents. For example, the ternary composite dispersed in PTSA shows the
highest ε” compared to the other materials. However, the lowest values of ε” were found for the
ternary composite layer dispersed in NMP. This indicates that the ternary thin layer dispersed in PTSA
dissipates more electrical energy than the NMP-based films [6]. This further proves the tuning ability
of doped polyaniline and its composite by using different dispersion solvents which can be exploited
in different applications.
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3.5. Comparison of Optical Conductivity

The formula for the evaluation of the optical constant has also been described in our previous work
(Equation (4)) [7]. Figure 5 compares the optical conductivities of the PANI and the composite materials
dispersed in PTSA and NMP. The optical conductivity of PTSA-based materials was explained
previously [7]. The relatively higher optical conductivity for the NMP-based materials could be
attributed to their higher absorbance values as evidenced in their k and ε” values, which are in
direct proportion with the absorption co-efficient value [26]. The materials dispersed in PTSA are
expected to have a higher optical conductivity due to their greater charge carrier concentration [26].
However, the higher optical conductivity of the NMP-based materials has proven the domination of
the absorption effect over the charge carrier concentration.

σ =
αnc
4π

, (4)

where σ is the optical conductance, c is the velocity of the radiation in space, n is the refractive index
and α is the absorption coefficient.

3.6. Applications of the Materials for Surface Plasmon Resonance Biosensors

Surface plasmon resonance (SPR) biosensors are among the most promising sensing devices due
to their high sensitivity, real-time measurement, non-invasive measurement, label-free measurement
and non-requirement of electrodes [28]. The design of these biosensors is guided by knowledge of
the penetration depth of surface plasmon waves. The penetration depth is defined as the distance
from the metal–dielectric interface at which the amplitude of the field becomes 1/e of the value at
the interface [12,28]. It is classified as either the penetration depth through the dielectric medium
(δd) or the penetration depth through the metal medium (δm) . The penetration depth through the
dielectric medium gives the measurement of the length over which the surface plasmon is sensitive
to the changes in the refractive index of the dielectric medium [12]. A good SPR sensor is expected
to possess a high (δd) value [28]. The dielectric constant value of gold from the literature and that
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of the materials were substituted in Equation (5) in order to find the penetration depth through the
composite materials (δd) adjacent to the gold film [21].

δd =
λ0

2π

[
ε′m + εd

(εd)

]1/2

, (5)

where λ0 is the free space wavelength, and ε′m and εd are the real part dielectric constants of gold and
the material adjacent to gold, respectively.
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Figure 5. The optical conductivity values, σ versus incident photon energy for PANI, PANI-chitosan,
PANI-RGO and Ternary composite.

The penetration depths for both the PTSA and NMP-based samples are shown in Figure 6 at
633 nm wavelength. It could be observed that the penetration through a dielectric medium for the
NMP-based samples is about 9.5, 1.6, 4.4 and 2.9 times greater than the values for the PTSA-based
samples for the PANI, PANI-chitosan, PANI-RGO and the ternary composites films, respectively.
Therefore, the NMP-based materials are ideal SPR sensitive layers compared to the PTSA-based ones.
However, higher dielectric constant values of the PTSA-based materials could be advantageous in
other applications, such as in the development of supercapacitors [29–31].
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4. Conclusions

The successful synthesis and characterization of the PANI, PANI-chitosan, PANI-RGO and the
ternary composites was presented in our previous work. In this work, the optical constant parameters of
these materials (samples) have been evaluated from the absorbance spectra of thin films of the respective
samples. Diluted PTSA and NMP were used as the dispersion solvents for the materials in order to
compare their optical constant values. The applicability of the PTSA and the NMP-based materials
in SPR sensing application was also assessed in terms of the penetration depth through a dielectric
medium. It is observed that the optical constant parameters differ with different dispersion solvents.
The PTSA-based materials show higher n and ε’ values, while the NMP-based samples show higher
optical conductivity values due to their higher absorbance value. In addition, the NMP-based samples
also show improvement in terms of the penetration depth through a dielectric medium by around
9.5, 1.6, 4.4 and 2.9 times compared to PTSA-based samples for PANI, PANI-chitosan, PANI-RGO
and the ternary composites, respectively. Hence, NMP-based samples are more promising in terms
of SPR sensing application, while PTSA-based samples could be promising in other applications.
The dispersive and the solvent dependence of the optical parameters of these materials could therefore
be exploited for various applications according to their desired optical properties.
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