Evaluation of Solvents Used as Keepers in the Determination of Organic Pollutants by GC/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of the Keeper on Recovery of PCBs
2.2. Influence of the Keeper on Recovery of OCPs
2.3. Influence of the Keeper on Recovery of PAHs
2.4. Influence of the Keeper on Recovery of OPPs and Other Substances
3. Materials and Methods
3.1. Materials and Reagents
3.2. Evaporation of Standard Solutions
3.2.1. Evaporation without the Addition of a Keeper
3.2.2. Evaporation with the Addition of a Keeper
3.3. GC/MS Analysis
3.4. Data Processing
4. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Hassan, J.; Farahani, A.; Shamsipur, M.; Damerchili, F. Rapid and Simple Low Density Miniaturized Homogeneous liquid–liquid Extraction and Gas chromatography/Mass Spectrometric Determination of Pesticide Residues in Sediment. J. Hazard. Mater. 2010, 184, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Hu, B.; Yu, C.; Xia, L.; Jiang, Z. Optimization of a Single-Drop Microextraction Procedure for the Determination of Organophosphorus Pesticides in Water and Fruit Juice with Gas Chromatography-Flame Photometric Detection. Talanta 2006, 69, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, D.; Huang, S.-D. Determination of Triazine Herbicides in Aqueous Samples by Dispersive liquid–liquid Microextraction With Gas chromatography–ion Trap Mass Spectrometry. J. Chromatogr. A 2007, 1161, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Stocka, J.; Tankiewicz, M.; Biziuk, M.; Namieśnik, J. Green Aspects of Techniques for the Determination of Currently Used Pesticides in Environmental Samples. Int. J. Mol. Sci. 2011, 12, 7785–7805. [Google Scholar] [CrossRef]
- Dąbrowski, Ł. Review of Use of Keepers in Solvent Evaporation Procedure during the Environmental Sample Analysis of Some Organic Pollutants. TrAC Trends Anal. Chem. 2016, 80, 507–516. [Google Scholar] [CrossRef]
- Matthiessen, A. Use of a Keeper to Enhance the Recovery of Volatile Polycyclic Aromatic Hydrocarbons in HPLC Analysis. Chromatographia 1997, 45, 190–194. [Google Scholar] [CrossRef]
- Dušek, B.; Hajslova, J.; Kocourek, V. Determination of Nitrated Polycyclic Aromatic Hydrocarbons and Their Precursors in Biotic Matrices. J. Chromatogr. A 2002, 982, 127–143. [Google Scholar] [CrossRef]
- Leech, C.; Tighe, M.K.; Pereg, L.; Winter, G.; McMillan, M.; Esmaeili, A.; Wilson, S.C. Bioaccessibility Constrains the Co-Composting Bioremediation of Field Aged PAH Contaminated Soils. Int. Biodeterior. Biodegrad. 2020, 149, 104922. [Google Scholar] [CrossRef]
- Mueller, A.; Ulrich, N.; Hollmann, J.; Sanchez, C.E.Z.; Rolle-Kampczyk, U.E.; Von Bergen, M. Characterization of a Multianalyte GC-MS/MS Procedure for Detecting and Quantifying Polycyclic Aromatic Hydrocarbons (PAHs) and PAH Derivatives from Air Particulate Matter for an Improved Risk Assessment. Environ. Pollut. 2019, 255, 112967. [Google Scholar] [CrossRef]
- Zhen, X.; Liu, L.; Wang, X.; Zhong, G.; Tang, J. Fates and Ecological Effects of Current-Use Pesticides (CUPs) in a Typical River-Estuarine System of Laizhou Bay, North China. Environ. Pollut. 2019, 252, 573–579. [Google Scholar] [CrossRef]
- Göen, T.; Schmidt, L.; Lichtensteiger, W.; Schlumpf, M. Efficiency Control of Dietary Pesticide Intake Reduction by Human Biomonitoring. Int. J. Hyg. Environ. Health 2017, 220, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Stubleski, J.; Kukucka, P.; Salihovic, S.; Lind, P.M.; Lind, L.; Kärrman, A. A Method for Analysis of Marker Persistent Organic Pollutants in Low-Volume Plasma and Serum Samples Using 96-Well Plate Solid Phase Extraction. J. Chromatogr. A 2018, 1546, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Dufour, P.; Pirard, C.; Seghaye, M.-C.; Charlier, C. Association between Organohalogenated Pollutants in Cord Blood and Thyroid Function in Newborns and Mothers from Belgian Population. Environ. Pollut. 2018, 238, 389–396. [Google Scholar] [CrossRef]
- Dufour, P.; Pirard, C.; Petrossians, P.; Beckers, A.; Charlier, C. Association Between Mixture of Persistent Organic Pollutants and Thyroid Pathologies in a Belgian Population. Environ. Res. 2020, 181, 108922. [Google Scholar] [CrossRef] [Green Version]
- Sprague, M.; Walton, J.; Campbell, P.; Strachan, F.; Dick, J.; Bell, J. Replacement of Fish Oil With a DHA-Rich Algal Meal Derived from Schizochytrium Sp. On the Fatty Acid and Persistent Organic Pollutant Levels in Diets and Flesh of Atlantic Salmon (Salmo Salar, L.) Post-Smolts. Food Chem. 2015, 185, 413–421. [Google Scholar] [CrossRef]
- Arp, H.P.H.; Morin, N.A.; Andersson, P.L.; Hale, S.E.; Wania, F.; Breivik, K.; Breedveld, G.D. The Presence, Emission and Partitioning Behavior of Polychlorinated Biphenyls in Waste, Leachate and Aerosols from Norwegian Waste-Handling Facilities. Sci. Total Environ. 2020, 715, 136824. [Google Scholar] [CrossRef] [PubMed]
- Sprague, M.; Dick, J.; Medina, A.; Tocher, D.; Bell, J.; Mourente, G. Lipid and Fatty Acid Composition, and Persistent Organic Pollutant Levels in Tissues of Migrating Atlantic Bluefin Tuna (Thunnus Thynnus, L.) Broodstock. Environ. Pollut. 2012, 171, 61–71. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Skupinska, K.; Misiewicz, I.; Kasprzycka-Guttman, T. Polycyclic Aromatic Hydrocarbons: Physicochemical Properties, Environmental Appearance and Impact on Living Organisms. Acta Pol. Pharm.-Drug Res. 2004, 61, 233–240. [Google Scholar]
- Lee, S.; Gan, J.; Kabashima, J. Recovery of Synthetic Pyrethroids in Water Samples During Storage and Extraction. J. Agric. Food Chem. 2002, 50, 7194–7198. [Google Scholar] [CrossRef]
- Radford, S.A.; Panuwet, P.; Hunter, R.E., Jr.; Barr, D.B.; Ryan, P.B. Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment. Toxics 2018, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Experiment No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Experiment or Keeper Name/Analyte | w/o Keeper | w/o Keeper, w/o Heating | Isooctane | Toluene | Nonane | 1-Octanol | Dodecane |
PCB 10 | 28.2 | 90.5 | 79.5 | 73.9 | 82.6 | 100.6 | 77.8 |
(61.6) | (2.7) | (2.7) | (6.7) | (0.8) | (1.6) | (1.9) | |
PCB 28 | 45.3 | 94.2 | 83 | 83.5 | 86.3 | 106.6 | 82.2 |
(12.8) | (3.0) | (2.4) | (5.0) | (1.3) | (2.3) | (2.0) | |
PCB 52 | 54.7 | 90.5 | 84.8 | 72.9 | 86.0 | 102.1 | 77.8 |
(7.2) | (2.8) | (1.7) | (4.5) | (0.9) | (3.5) | (2.3) | |
PCB 153 | 71.5 | 89.3 | 85.7 | 81.8 | 85.8 | 92.4 | 80.4 |
(1.6) | (1.3) | (2.0) | (2.1) | (0.5) | (1.4) | (3.7) | |
PCB 137 | 73.9 | 88.8 | 85.2 | 85.4 | 85.6 | 91.3 | 79.7 |
(1.2) | (1.2) | (2.4) | (3.8) | (1.0) | (2.4) | (2.9) | |
PCB 180 | 81.0 | 89.2 | 87.2 | 91.6 | 87.3 | 92.4 | 82.6 |
(1.2) | (3.0) | (2.1) | (2.3) | (0.6) | (1.7) | (3.3) | |
Average | 59.1 | 90.4 | 84.2 | 81.5 | 85.6 | 97.6 | 80.1 |
(14.3) | (2.3) | (2.2) | (4.1) | (0.9) | (2.1) | (2.7) | |
Number of cpds with recovery ∈ [90;110] | 0 | 3 | 0 | 1 | 0 | 6 | 0 |
Experiment No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Experiment or Keeper Name/Analyte | w/o Keeper | w/o Keeper, w/o Heating | Isooctane | Toluene | Nonane | 1-Octanol | Dodecane |
α-HCH | 34.3 | 89.8 | 78.6 | 60.9 | 87.3 | 98.9 | 77.4 |
(32.9) | (11.9) | (1.6) | (6.3) | (2.0) | (2.7) | (3.5) | |
β-HCH | 64.7 | 105.8 | 86.4 | 69.4 | 91.6 | 101.4 | 78.6 |
(3.8) | (7.7) | (1.9) | (3.0) | (1.6) | (1.4) | (2.9) | |
Lindane | 35.0 | 91.5 | 77.4 | 56.6 | 80.4 | 99.8 | 78.7 |
(24.2) | (9.2) | (2.2) | (7.6) | (2.1) | (3.5) | (2.9) | |
δ-HCH | 59.7 | 69.4 | 81.9 | 65.7 | 87.0 | 104.4 | 79.2 |
(5.1) | (10.3) | (2.3) | (6.5) | (3.4) | (2.0) | (1.7) | |
Heptachlor | 46.9 | 81.6 | 82.3 | 60.4 | 85.8 | 92.2 | 78.3 |
(16.1) | (1.8) | (3.0) | (8.0) | (2.4) | (9.0) | (1.5) | |
Aldrin | 45.0 | 64.2 | 79.1 | 58.5 | 84.3 | 93.3 | 72.5 |
(16.5) | (7.6) | (2.1) | (8.2) | (1.3) | (15.2) | (5.0) | |
Heptachlor epoxide | 58.9 | 88.2 | 85.5 | 66.2 | 89.5 | 89.2 | 74.1 |
(4.5) | (1.4) | (2.1) | (6.3) | (1.0) | (11.7) | (5.1) | |
α-endosulfan | 64.3 | 98.6 | 84.6 | 68.0 | 88.1 | 93.5 | 89.3 |
(4.5) | (5.1) | (2.6) | (5.2) | (2.4) | (12.4) | (4.7) | |
4,4′-DDE | 66.5 | 92.5 | 85.5 | 72.9 | 89.1 | 93.7 | 76.3 |
(1.4) | (6.8) | (1.7) | (3.7) | (2.4) | (3.5) | (3.5) | |
Dieldrin | 62.9 | 98.8 | 81.6 | 70.3 | 86.3 | 91.5 | 74.6 |
(2.2) | (13.9) | (2.0) | (3.7) | (1.5) | (4.6) | (5.6) | |
4,4’-DDD | 82.8 | 93.0 | 91.3 | 83.4 | 94.3 | 93.8 | 84.2 |
(1.1) | (2.8) | (1.2) | (1.9) | (0.7) | (4.4) | (4.8) | |
4,4’-DDT | 72.7 | 104.7 | 80.4 | 79.0 | 78.1 | 88.1 | 86.3 |
(6.3) | (1.3) | (4.9) | (1.3) | (5.0) | (7.3) | (3.9) | |
Endosulfan sulfate | 85.0 | 92.4 | 89.6 | 88.0 | 87.4 | 95.0 | 77.8 |
(1.1) | (1.3) | (2.5) | (1.4) | (0.9) | (2.9) | (5.1) | |
Average | 59.9 | 90.0 | 83.4 | 69.2 | 86.9 | 95.0 | 79.0 |
(9.2) | (6.2) | (2.3) | (4.9) | (2.0) | (6.2) | (3.9) | |
Number of cpds with recovery ∈ [90;110] | 0 | 8 | 1 | 0 | 2 | 11 | 0 |
Experiment No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Experiment or Keeper Name/Analyte | w/o Keeper | w/o Keeper, w/o Heating | Isooctane | Toluene | Nonane | 1-Octanol | Dodecane |
Naphthalene | 20.6 | 53.9 | 96.2 | 33.9 | 77.7 | – | – |
(7.3) | (13.8) | (4.1) | (1.6) | (8.5) | |||
2-Methylnaphthalene | 22.3 | 89.4 | 97.3 | 48.4 | 96.0 | – | 62.4 |
(25.6) | (4.7) | (11.3) | (2.5) | (12.5) | (2.3) | ||
1-Methylnaphthalene | 22.0 | 49.0 | 96.9 | 54.3 | 81.8 | – | 65.5 |
(24.5) | (4.8) | (6.0) | (4.3) | (7.4) | (4.4) | ||
Acenaphthylene | 31.3 | 29.1 | 97.5 | 57.1 | 82.0 | – | 38.5 |
(30.0) | (9.0) | (4.9) | (4.7) | (3.2) | (26.1) | ||
Acenaphthene | 32.5 | 69.3 | 102.3 | 54.5 | 75.3 | – | 48.2 |
(39.3) | (4.7) | (4.5) | (7.1) | (3.9) | (3.9) | ||
Fluorene | 34.4 | 79.1 | 98.4 | 61.6 | 81.0 | 91.9 | 76.2 |
(36.3) | (4.4) | (8.2) | (3.5) | (3.1) | (2.7) | (2.3) | |
Phenanthrene | 49.5 | 59.2 | 96.7 | 63.6 | 93.5 | 99.3 | 84.0 |
(23.3) | (4.8) | (7.1) | (2.1) | (3.3) | (4.5) | (2.4) | |
Anthracene | 41.6 | 59.2 | 83.4 | 53.9 | 89.7 | 86.0 | 45.1 |
(23.0) | (4.8) | (3.3) | (5.6) | (6.2) | (5.3) | (2.7) | |
Fluoranthene | 86.9 | 88.4 | 100.2 | 79.5 | 81.2 | 91.0 | 86.0 |
(5.5) | (2.8) | (7.4) | (4.4) | (2.1) | (3.3) | (1.7) | |
Pyrene | 83.1 | 67.2 | 98.4 | 77.1 | 78.0 | 101.1 | 80.8 |
(3.5) | (5.5) | (2.6) | (2.4) | (2.8) | (5.0) | (1.8) | |
Benz[a]anthracene + Chrysene | 97.5 | 81.3 | 92.1 | 97.9 | 94.1 | 91.5 | 77.3 |
(2.6) | (3.1) | (8.4) | (6.3) | (6.2) | (1.1) | (1.1) | |
Benzo[b]fluoranthene | 104.2 | 62.0 | 85.8 | 100.0 | 89.6 | 93.5 | 101.2 |
(3.3) | (11.4) | (8.7) | (5.8) | (5.5) | (3.4) | (3.2) | |
Benzo[k]fluoranthene | 100.3 | 52.1 | 91.4 | 93.0 | 90.3 | 91.0 | 101.2 |
(3.3) | (10.2) | (6.6) | (0.9) | (3.4) | (3.2) | (3.2) | |
Benzo[a]pyrene | 83.1 | – | 89.1 | 79.2 | 88.4 | 86.9 | 105.5 |
(9.3) | – | (7.4) | (6.4) | (4.3) | (13.1) | (6.8) | |
Indeno[1,2,3-cd]pyrene + Dibenz[a,h]anthracene | 101.4 | 44.5 | 99.2 | 106.8 | 98.0 | 93.4 | 109.8 |
(2.6) | (23.4) | (5.5) | (9.3) | (11.9) | (7.5) | (7.5) | |
Benzo[ghi]perylene | 102.7 | 32.0 | 103.1 | 107.1 | 98.7 | 85.4 | 114.5 |
(4.6) | (11.2) | (8.4) | (4.1) | (6.9) | (6.6) | (9.3) | |
Average | 63.3 | 61.1 | 95.5 | 73.0 | 87.2 | 91.9 | 79.8 |
(15.3) | (7.9) | (6.5) | (4.4) | (5.7) | (5.1) | (5.2) | |
Number of cpds with recovery ∈ [90;110] | 5 | 0 | 13 | 5 | 6 | 8 | 4 |
Experiment No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Experiment or Keeper Name/Analyte | w/o Keeper | w/o Keeper, w/o Heating | Isooctane | Toluene | Nonane | 1-Octanol | Dodecane |
Ethoprophos | 70.3 | n.d. | 106.5 | 88.4 | 102.8 | 101.6 | 83.8 |
(9.6) | – | (1.5) | (4.9) | (1.3) | (5.0) | (3.2) | |
Fenchlorphos | 61.0 | n.d. | 87.9 | 68.7 | 92.5 | 100.0 | 83.2 |
(5.0) | – | (2.1) | (4.6) | (1.3) | (3.8) | (3.6) | |
Chlorpyrifos | 66.4 | n.d. | 92.4 | 74.6 | 94.7 | 98.6 | 82.0 |
(1.2) | – | (2.3) | (2.9) | (1.1) | (1.6) | (3.3) | |
Prothiofos | 77.6 | n.d. | 98.3 | 81.9 | 97.3 | 98.6 | 85.5 |
(1.4) | – | (2.3) | (1.2) | (0.9) | (1.5) | (2.4) | |
Average | 68.8 | – | 96.3 | 78.4 | 96.8 | 99.7 | 83.6 |
(4.3) | – | (2.0) | (3.4) | (1.1) | (3.0) | (3.1) | |
Number of cpds with recovery ∈ [90;110] | 0 | 0 | 3 | 0 | 4 | 4 | 0 |
Experiment No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Experiment or Keeper Name/Analyte | w/o Keeper | w/o Keeper, w/o Heating | Isooctane | Toluene | Nonane | 1-Octanol | Dodecane |
o-Hydroxybiphenyl | 43 | n.d. | 96.6 | 62.8 | 95.8 | n.d. | n.d. |
(37.6) | – | (3.1) | (9.4) | (7.8) | – | – | |
Pyrimethanil | 78.4 | 76.4 | 58.2 | 70.5 | 59.8 | 107.4 | 51.9 |
(1.4) | (6.0) | (6.6) | (6.7) | (2.9) | (8.3) | (12.4) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowski, Ł. Evaluation of Solvents Used as Keepers in the Determination of Organic Pollutants by GC/MS. Molecules 2020, 25, 4419. https://doi.org/10.3390/molecules25194419
Dąbrowski Ł. Evaluation of Solvents Used as Keepers in the Determination of Organic Pollutants by GC/MS. Molecules. 2020; 25(19):4419. https://doi.org/10.3390/molecules25194419
Chicago/Turabian StyleDąbrowski, Łukasz. 2020. "Evaluation of Solvents Used as Keepers in the Determination of Organic Pollutants by GC/MS" Molecules 25, no. 19: 4419. https://doi.org/10.3390/molecules25194419
APA StyleDąbrowski, Ł. (2020). Evaluation of Solvents Used as Keepers in the Determination of Organic Pollutants by GC/MS. Molecules, 25(19), 4419. https://doi.org/10.3390/molecules25194419