Development of an HPLC-DAD Method for the Quantification of Ten Compounds from Moringa oleifera Lam. and Its Application in Quality Control of Commercial Products
Abstract
:1. Introduction
2. Results
2.1. HPLC-DAD Method Development for Separation and Quantification
2.2. Validation of the HPLC-DAD Method
2.2.1. Linearity and Matrix Effect
2.2.2. Recovery, Precision, and Uncertainty Measurements
2.2.3. Specificity
2.3. Quantification of the Compounds in the Plant and Products’ Extracts
3. Materials and Methods
3.1. Instrumentation
3.2. Extraction Procedure
3.3. Chromatographic Procedure for Quantification of the Compounds
3.4. Method Validation
3.5. Quantification of the Compounds in the Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mahmood, K.T.; Mugal, T.; Haq, I.U. Moringa oleifera: A natural gift-a review. J. Pharm. Sci. Res. 2010, 2, 775–781. [Google Scholar]
- Mishra, G.; Singh, P.; Verma, R.; Kumar, S.; Srivastav, S.; Jha, K.K.; Khosa, R.L. Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: An overview. Der Pharm Lett. 2011, 3, 141–164. [Google Scholar]
- Ndabigengesere, A.; Narasiah, K.S. Quality of water treated by coagulation using Moringa oleifera seeds. Water Res. 1998, 32, 781–791. [Google Scholar] [CrossRef]
- Sanchez-Martin, J.; Beltran-Heredia, J.; Peres, J.A. Improvement of flocculation process in water treatment by using Moringa oleifera seeds extract. Braz. J. Chem. Eng. 2012, 29, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Suhartini, S.; Nur, H.; Esti, R. Influence of powdered Moringa oleifera seeds and natural filter media on the characteristics of tapioca starch wastewater. Int. J. Recycl. Org. Waste Agric. 2013, 2, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Chuang, P.H.; Lee, C.W.; Chou, J.Y.; Murugan, M.; Shieh, B.J.; Chen, H.M. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour. Technol. 2007, 98, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Fayazuddin, M.; Ahmad, F.; Kumar, A.; Yunus, S.M. An experimental evaluation of anti-inflammatory activity of Moringa oleifera seeds. Int. J. Pharm. Pharm. Sci. 2013, 5, 1–5. [Google Scholar]
- Tuorkey, M.J. Effects of Moringa oleifera aqueous leaf extract in alloxan induced diabetic mice. Interv. Med. Appl. Sci. 2016, 8, 109–177. [Google Scholar] [CrossRef] [PubMed]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar J. 2011, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmbhatt, M.; Gundala, S.R.; Asif, G.; Shamsi, S.A.; Aneja, R. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation. Nutr. Cancer 2013, 65, 263–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanker, K.; Gupta, M.M.; Srivastava, S.K.; Bawankule, D.U.; Pal, A.; Khanuja, S.P.S. Determination of bioactive nitrile glycoside(s) in drumstick (Moringa oleifera) by reverse phase HPLC. Food Chem. 2007, 105, 376–382. [Google Scholar] [CrossRef]
- Pachauri, S.D.; Khandelwal, K.; Singh, S.P.; Sashidhara, K.V.; Dwivedi, A.K. HPLC method for identification and quantification of two potential anti-inflammatory and analgesic agents-1, 3-dibenzyl urea and aurantiamide acetate in the roots of Moringa oleifera. Med. Chem. Res. 2013, 22, 5284–5289. [Google Scholar] [CrossRef]
- Fitri, A.; Toharmat, T.; Astuti, D.A.; Tamura, H. The potential uses of secondary metabolites in Moringa oleifera as an antioxidant source. Media Peternakan 2015, 38, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Niranjan, A.; Ngpoore, N.K.; Anis, N.; Kumar, A.; Lehri, A.; Tewari, S.K. Simultaneous quantification of six phenolic compounds in various parts of Moringa oleifera Lam. Using High Perfomance Thin-Layer Chromatography. J. Planar Chromatogr. 2017, 30, 502–509. [Google Scholar]
- Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Olusehinde, T.A.; Oyeleye, S.I.; Boligon, A.A.; Athayde, M.L. Phenolic extract from Moringa oleifera leaves inhibits key enzymes linked to erectile dysfunction and oxidative stress in rats’ penile tissues. Biochem. Res. Int. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.S.G.; Negi, P.S.; Radha, C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J. Funct. Foods 2013, 5, 1883–1891. [Google Scholar] [CrossRef]
- Walorczyk, S. Validation and use of a QuECheERS-based gas chromatographic-tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effect and estimation of measurement uncertainty. Talanta 2014, 120, 106–113. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Decision 2002/657/EC of 12 August 2002 Implementing council Directive 96/23/EC concerning the performance of analytical methods and interpretation of results as amended by decision 2003/181/EC (4). Off. J. Eur. Commun. 2002, 221, 8–36. [Google Scholar]
- Chokwe, R.C. Methodology Development of Quality Control, Quality Assurance and Standards for Moringa oleifera Seeds Using Liquid Chromatography. Master’s Thesis, University of South Africa, Pretoria, South Africa, 2016. [Google Scholar]
- Rodríguez-Péreź, C.; Gilbert-Lòpez, B.; Mensiola, J.A.; Quirantes-Piné, R.; Segura-Carretero, A.; Ibăňez, E. Optimization of Microwave-assisted extraction and pressurized liquid extraction of Phenolic compounds from Moringa oleifera leaves by multi response surface methodology. Electrophoresis 2016, 37, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1–10 are available from the authors. |
Compound | Solvent (mg L−1) | Leaves (mg kg−1) | Porridge (mg kg−1) | Pill (mg kg−1) | Seeds (mg kg−1) | Teabag (mg kg−1) |
---|---|---|---|---|---|---|
1 | Y = 5.6426x + 0.1675 | Y = 6.4329x + 0.3185 | Y = 8.1535x + 8.0563 | Y = 7.1004x + 4.761 | Y = 7.1488x + 1.322 | Y = 4.0215x + 2.1731 |
(0.9992), 0.4 #, 1.5 * | (0.9920), 1.4 #, 4.7 * | (0.9926), 1.4 #, 4.5 * | (0.9929), 1.3 #, 4.4 * | (0.9946), 1.4 #, 4.6 * | (0.9914), 0.8 #, 2.6 * | |
2 | Y = 5.2976x + 1.7616 | Y = 6.5537x + 0.3585 | Y = 4.5566x + 0.0311 | Y = 6.304x − 0.1218 | Y = 5.5164x − 1.0216 | Y = 5.655x + 0.0956 |
(0.9983), 0.2 #, 0.8 * | (0.9917), 0.9 #,2.8 * | (0.9980), 0.6 #, 2.1 * | (0.9998), 0.4 #, 1.2 * | (0.9977), 0.8 #, 2.5 * | (0.9910), 1.5 #, 2.9 * | |
3 | Y = 3.5287x + 0.0056 (0.9997) | Y = 4.4315x − 0.1674 | Y = 4.2137x − 0.7968 | Y = 4.6886x − 0.0703 | Y = 4.2517x − 0.9134 | Y = 4.4485x − 1.2286 |
0.2 #, 0.6 * | (0.9918), 1.4 #, 4.8 * | (0.9978), 0.7 #, 2.5 * | (0.9998), 0.2 #, 0.8 * | (0.9972), 0.8 #, 2.8 * | (0.9953), 0.9 #, 3.6 * | |
4 | Y = 17.023x + 0.2835 | Y = 16.614x + 1.8819 | Y = 15.178x + 1.3813 | Y = 19.759x − 0.7674 | Y = 14.183x − 0.8676 | Y = 14.365x + 0.2648 |
(0.9989), 0.1 #, 0.2 * | (0.9900), 0.5 #, 1.8 * | (0.9944), 0.2 #, 0.8 * | (0.9942), 1.2 #, 4.1 * | (0.9957), 0.3 #, 1.0 * | (0.9928), 0.1 #, 0.4 * | |
5 | Y = 6.7695x + 2.3567 | Y = 7.5045x + 0.1158 | Y = 7.9884x − 1.3053 | Y = 8.2307x + 0.2162 | Y = 7.7802x − 0.1998 | Y = 8.256x − 2.4614 |
(0.9998), 0.2 #, 0.6 * | (0.9930), 0.5 #, 1.5 * | (0.9983), 0.6 #, 2.1 * | (0.9954), 1.1 #, 3.6 * | (0.9997), 0.3 #, 0.9 * | (0.9907), 1.5 #, 2.9 * | |
6 | Y = 6.7935x + 0.0046 | Y = 5.6243x − 0.0925 | Y = 5.5703x + 0.016 | Y = 7.3807x − 0.9386 | Y = 5.5648x + 3.842 | Y = 7.3829x − 1.2771 |
(0.9990), 0.4 #, 1.2 * | (0.9910), 0.5 #, 1.5 * | (0.9978), 0.5 #, 1.6 * | (0.9991), 0.5 #, 1.6 * | (0.9978), 0.4 #, 1.2 * | (0.9980), 0.7 #, 2.3 * | |
7 | Y = 1.1315x − 0.0233 | Y = 0.9576x + 0.9475 | Y = 0.8799x + 0.8954 | Y = 1.2452x − 0.1016 | Y = 0.9489x + 12.643 | Y = 1.2494x − 0.2026 |
(0.9970), 0.6 #, 2.0 * | (0.9995), 0.9 #, 3.1 * | (0.9961), 1.3 #, 4.2 * | (0.9992), 0.9 #, 3.0 * | (0.9998), 0.6 #, 2.1 * | (0.9982), 0.7 #, 2.2 * | |
8 | Y = 14.335x − 0.7785 | Y = 10.429x − 0.3695 | Y = 17.239x − 3.9107 | Y = 10.303x + 0.137 | Y = 16.972x − 4.5354 | Y = 12.86x − 2.3863 |
(0.9999), 0.1 #, 0.4 * | (0.9905), 0.2 #, 3.1 * | (0.9966), 0.9 #, 0.4 * | (0.9978), 0.7 #, 2.5 * | (0.9955), 1.1 #, 3.5 * | (0.9915), 1.1 #, 3.7 * | |
9 | Y = 6.8643x − 0.7974 | Y = 5.629x + 0.0298 | Y = 4.909x − 1.1473 | Y = 6.0233x − 0.1356 | Y = 5.7694x − 0.2297 | Y = 7.4052x − 2.0624 |
(0.9952), 0.8 #, 2.8 * | (0.9919), 0.9 #, 3.3 * | (0.9955), 1.1 #, 3.1 * | (0.9969), 0.9 #, 2.9 * | (0.9966), 0.9 #, 3.0 * | (0.9941), 1.2 #, 4.0 * | |
10 | Y = 10.077x − 0.784 | Y = 12.112x − 0.9891 | Y = 11.679x − 2.3922 | Y = 12.11x − 1.6105 | Y = 11.615x − 2.5661 | Y = 12.44x − 2.7397 |
(0.9990), 0.4 #, 1.2 * | (0.9900), 0.5 #, 1.7 * | (0.9974), 0.8 #, 2.7 * | (0.9989), 0.5 #, 1.7 * | (0.9969), 0.9 #, 3.0 * | (0.9964), 0.9 #, 3.1 * |
Compound 1 | Compound 2 | Compound 3 | Compound 4 | Compound 5 | Compound 6 | Compound 7 | Compound 8 | Compound 9 | Compound 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Solvent | ||||||||||
1 mg L−1 | 1.1 + | 0.9 + | 0.8 + | 0.4 + | 0.7 + | 0.8 + | 1.0 + | 0.3 + | 0.9 + | 0.8 + |
1.6 * | 1.0 * | 0.3 * | 0.4 * | 1.1 * | 0.4 * | 0.6 * | 1.1 * | 1.6 * | 0.2 * | |
3 mg L−1 | 0.4 + | 0.7 + | 0.6 + | 0.4 + | 0.4 + | 0.6 + | 0.4 + | 0.8 + | 0.2 + | 0.5 + |
0.5 * | 0.05 * | 0.3 * | 0.05 * | 0.3 * | 0.1 * | 0.6 * | 0.05 * | 0.08 * | 0.1 * | |
10 mg L−1 | 0.3 + | 0.2 + | 0.3 + | 0.4 + | 0.2 + | 0.2 + | 0.3 + | 0.2 + | 0.2 + | 0.2 + |
0.02 * | 0.03 * | 0.1 * | 0.03 * | 0.1 * | 0.05 * | 0.2 * | 0.05 * | 0.2 * | 0.05 * | |
Leaves | ||||||||||
3 mg kg−1 | 76.0 | 77.4 | 99.8 | 96.5 | 113.0 | 100.0 | 75.7 | 93.9 | 94.0 | 101.4 |
4.3 + | 3.2 + | 0.4 + | 1.6 + | 0.9 + | 1.6 + | 1.8 + | 1.5 + | 1.9 + | 0.8 + | |
6.3 * | 3.5 * | 1.5 * | 4.2 * | 2.8 * | 3.2 * | 4.0 * | 3.0 * | 3.5 * | 1.6 * | |
6 mg kg−1 | 89.5 | 91.6 | 100.5 | 93.7 | 104.7 | 99.6 | 84.8 | 100.3 | 100.0 | 100.4 |
1.8 + | 0.8 + | 0.6 + | 1.3 + | 1.0 + | 1.7 + | 1.6 + | 0.9 + | 1.5 + | 0.4 + | |
2.5 * | 2.3 * | 1.2 * | 0.9 * | 0.6 * | 0.3 * | 1.8 * | 0.2 * | 0.4 * | 0.4 * | |
10 mg kg−1 | 99.1 | 95.6 | 100.5 | 98.2 | 97.3 | 100.5 | 91.1 | 99.9 | 99.9 | 99.5 |
0.4 + | 0.6 + | 0.4 + | 1.2 + | 0.3 + | 0.4 + | 0.5 + | 0.3 + | 0.6 + | 0.4 + | |
0.3 * | 0.4 * | 0.6 * | 0.6 * | 0.5 * | 0.2 * | 0.6 * | 0.6 * | 0.2 * | 0.2 * | |
U (%) | 8.1 | 7.4 | 0.3 | 1.2 | 4.0 | 0.4 | 7.0 | 2.1 | 1.6 | 0.5 |
Porridge | ||||||||||
3 mg kg−1 | 75.9 | 98.5 | 94.3 | 93.7 | 100.6 | 99.2 | 75.8 | 94.00 | 82.00 | 94.0 |
2.3 + | 0.6 + | 0.5 + | 1.9 + | 1.2 + | 0.5 + | 1.6 + | 0.8 + | 1.7 + | 0.2 + | |
4.0 * | 2.5 * | 0.9 * | 2.8 * | 2.9 * | 0.7 * | 4.6 * | 0.3 * | 1.5 * | 1.4 * | |
6 mg kg−1 | 87.5 | 101.6 | 97.0 | 96.4 * | 101.0 | 100.8 | 90.9 | 96.00 | 91.33 | 96.8 |
0.4 + | 0.5 + | 0.6 + | 1.3 + | 0.2 + | 0.5 + | 1.0 + | 0.2 + | 0.3 + | 0.5 + | |
1.6 * | 1.0 * | 1.0 * | 3.6 | 4.7 * | 1.2 * | 4.9 * | 1.9 * | 0.2 * | 0.9 * | |
10 mg kg−1 | 99.4 | 99.6 | 100.6 | 99.9 | 99.6 | 99.8 | 98.9 | 102.00 | 99.40 | 101.7 |
0.7 + | 0.6 + | 0.2 + | 1.2 + | 0.3 + | 0.3 + | 1.0 + | 0.6 + | 0.7 + | 0.2 + | |
0.3 * | 0.5 * | 0.2 * | 4.6 * | 1.2 * | 0.2 * | 2.6 * | 0.3 * | 0.3 * | 0.4 | |
U (%) | 7.3 | 2.9 | 1.9 | 5.7 | 3.2 | 3.2 | 7.5 | 1.9 | 5.4 | 2.3 |
Pill | ||||||||||
3 mg kg−1 | 72.0 | 99.3 | 97.7 | 78.0 | 82.00 | 94.3 | 99.3 | 100.2 | 99.3 | 87.3 |
1.7 + | 0.5 + | 1.4 + | 2.0 + | 2.9 + | 1.0 + | 1.6 + | 0.8 + | 0.6 + | 1.4 + | |
4.4 * | 1.4 * | 0.5 * | 1.7 * | 1.0 * | 0.3 * | 3.0 * | 2.4 * | 0.3 * | 0.4 * | |
6 mg kg−1 | 93.0 | 99.8 | 101.3 | 90.5 | 91.33 | 99.7 | 97.3 | 100.0 | 99.7 | 98.0 |
1.1 + | 0.8 + | 0.6 + | 1.8 + | 0.4 + | 1.2 + | 1.4 + | 0.4 + | 0.6 + | 0.8 + | |
0.2 * | 0.2 * | 0.5 * | 0.6 * | 0.1 * | 0.3 * | 1.8 * | 1.6 * | 2.2 * | 0.7 * | |
10 mg kg−1 | 98.2 | 100.1 | 99.7 | 99.1 | 99.40 | 100.6 | 101.0 | 99.8 | 100.3 | 101.1 |
0.1 + | 0.8 + | 0.3 + | 1.0 + | 0.4 + | 0.6 + | 1.4 + | 0.3 + | 0.5 + | 0.2 + | |
0.4 * | 0.6 * | 0.4 * | 0.3 * | 0.2 * | 0.2 * | 0.5 * | 0.2 * | 0.2 * | 0.7 * | |
U (%) | 9.3 | 1.5 | 0.9 | 6.6 | 6.0 | 1.7 | 0.5 | 2.4 | 0.4 | 3.7 |
Seeds | ||||||||||
3 mg kg−1 | 66.7 | 95.3 | 93.7 | 96.0 | 97.0 | 100.0 | 108.9 | 92.3 | 98.4 | 93.7 |
4.7 + | 0.6 + | 0.8 + | 1.8 + | 1.0 + | 0.4 + | 0.7 + | 0.6 + | 0.4 + | 1.3 + | |
6.0 * | 0.6 * | 0.8 * | 4.1 * | 2.4 * | 0.5 * | 0.7 * | 2.8 * | 0.6 * | 1.4 * | |
6 mg kg−1 | 84.2 | 96.5 | 96.7 | 100.8 | 101.3 | 100.6 | 105.4 | 95.5 | 99.7 | 96.3 |
0.3 + | 0.2 + | 0.4 + | 1.7 + | 0.3 + | 0.2 + | 0.6 + | 0.2 + | 0.4 + | 0.3 + | |
0.2 * | 0.5 * | 0.6 * | 4.4 * | 0.5 * | 0.8 * | 0.2 * | 0.5 * | 0.5 * | 0.3 * | |
10 mg kg−1 | 99.0 | 101.7 | 101.8 | 100.0 | 99.7 | 99.9 | 100.1 | 102.3 | 100.2 | 101.9 |
0.2 + | 0.3 + | 0.3 + | 1.4 + | 0.3 + | 0.3 + | 0.3 + | 0.1 + | 0.3 + | 0.2 + | |
0.2 * | 0.3 * | 1.2 * | 3.5 * | 1.3 * | 0.4 * | 0.8 * | 0.2 * | 1.2 * | 0.5 * | |
U (%) | 10.7 | 1.6 | 1.7 | 5.5 | 2.8 | 0.6 | 2.8 | 3.6 | 1.4 | 2.4 |
Teabags | ||||||||||
3 mg kg−1 | 86.2 | 69.7 | 93.7 | 99.2 | 96.3 | 95.3 | 96.0 | 98.9 | 93.7 | 94.7 |
4.3 + | 4.5 + | 2.0 + | 2.0 + | 1.3 + | 1.4 + | 1.9 + | 1.5 + | 1.9 + | 1.2 + | |
6.3 * | 5.7 * | 1.1 * | 3.5 * | 2.6 * | 2.7 * | 2.0 * | 1.2 * | 3.6 * | 3.7 * | |
6 mg kg−1 | 94.1 | 91.0 | 95.7 | 97.8 | 91.2 | 97.0 | 96.8 | 93.2 | 93.8 | 95.3 |
3.2 + | 3.1 + | 0.5 + | 0.5 + | 0.5 + | 0.9 + | 1.3 + | 0.3 + | 0.3 + | 1.2 + | |
3.2 * | 3.5 * | 0.5 * | 3.3 * | 0.6 * | 0.7 * | 3.7 * | 1.2 * | 0.5 * | 1.6 * | |
10 mg kg−1 | 103.6 | 98.2 | 102.3 | 100.3 | 103.6 | 101.5 | 101.5 | 102.6 | 102.8 | 102.1 |
0.4 + | 0.1 + | 0.6 + | 0.6 + | 0.7 + | 0.1 + | 1.3 + | 0.2 + | 0.3 + | 0.4 + | |
0.6 * | 0.5 * | 0.5 * | 2.9 * | 2.3 * | 1.4 * | 3.1 * | 0.3 * | 0.8 * | 0.9 * | |
U (%) | 6.0 | 9.8 | 2.3 | 4.6 | 3.8 | 3.3 | 3.9 | 1.5 | 4.1 | 4.1 |
Region | Compound 1 | Compound 2 | Compound 3 | Compound 4 | Compound 5 | Compound 6 | Compound 7 | Compound 8 | Compound 9 | Compound 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
L1 | Mpumalanga (SA) | 0.0 | 0.1 | 6.9 | 0.1 | 0.1 | 6.9 | 7.4 | 9.4 | 0.00 | 5.6 |
L2 | Mpumalanga (SA) | 0.0 | 0.0 | 6.1 | 0.0 | 0.1 | 8.7 | 7.0 | 7.0 | 0.0 | 7.9 |
L3 | Mpumalanga (SA) | 0.0 | 0.0 | 5.9 | 0.0 | 0.1 | 9.7 | 7.5 | 7.0 | 0.0 | 6.5 |
L4 | Mpumalanga (SA) | 0.1 | 0.1 | 8.4 | 0.1 | 0.1 | 5.0 | 7.5 | 8.6 | 0.1 | 6.6 |
L5 | Limpopo (SA) | 0.0 | 0.1 | 5.0 | 0.0 | 0.0 | 6.5 | 6.4 | 0.0 | 0.0 | 5.9 |
L6 | Limpopo (SA) | 0.1 | 0.1 | 5.0 | 0.0 | 0.1 | 8.8 | 5.0 | 0.1 | 0.0 | 6.9 |
L7 | Limpopo (SA) | 0.0 | 0.1 | 6.4 | 0.00 | 0.0 | 5.2 | 8.9 | 0.0 | 0.0 | 7.4 |
L8 | Limpopo (SA) | 0.0 | 0.1 | 6.1 | 0.0 | 5.4 | 7.0 | 8.0 | 0.0 | 0.0 | 7.1 |
L9 | Ethiopia | 0.0 | 0.0 | 5.8 | 0.0 | 0.1 | 4.2 | 7.1 | 0.1 | 0.0 | 0.1 |
P1 | MI (SA) | 0.0 | 0.1 | 5.6 | 0.0 | 0.0 | 4.5 | 6.6 | 0.1 | 0.0 | 5.7 |
P2 | MI (SA) | 0.0 | 0.1 | 5.2 | 0.0 | 0.1 | 5.1 | 6.9 | 0.1 | 0.0 | 6.0 |
P3 | MII (SA) | 0.0 | 0.1 | 6.9 | 0.0 | 5.0 | 6.2 | 8.6 | 0.0 | 0.0 | 7.7 |
P4 | MII (SA) | 0.1 | 0.1 | 5.7 | 0.0 | 0.1 | 6.7 | 0.1 | 0.1 | 0.0 | 7.6 |
P5 | MIII (SA) | 0.1 | 6.0 | 0.0 | 0.0 | 5.9 | 5.0 | 7.3 | 0.1 | 0.0 | 5.8 |
P6 | MIII (SA) | 0.1 | 5.7 | 0.0 | 0.0 | 5.6 | 6.1 | 8.5 | 0.1 | 0.0 | 5.2 |
PRD 1 | MI (SA) | 0.1 | 0.0 | 6.0 | 0.1 | 5.8 | 6.0 | 9.6 | 4.5 | 0.0 | 0.1 |
PRD 2 | MI (SA) | 0.1 | 0.0 | 5.9 | 0.1 | 6.0 | 6.0 | 9.1 | 4.5 | 0.0 | 0.1 |
PRD3 | MIV (SA) | 6.9 | 0.0 | 8.0 | 5.1 | 6.9 | 6.8 | 0.1 | 0.0 | 0.0 | 9.3 |
PRD4 | MIV (SA) | 5.3 | 0.0 | 7.6 | 5.0 | 6.5 | 5.8 | 0.1 | 0.0 | 0.0 | 8.8 |
TB1 | MI (SA) | 0.0 | 0.1 | 6.6 | 0.0 | 0.0 | 7.0 | 7.2 | 5.8 | 0.0 | 0.0 |
TB2 | MI (SA) | 0.1 | 0.0 | 6.4 | 0.0 | 0.0 | 4.2 | 6.5 | 4.6 | 0.0 | 0.0 |
TB3 | MII (SA) | 0.0 | 0.0 | 8.2 | 5.0 | 0.0 | 6.1 | 8.0 | 6.2 | 0.0 | 0.0 |
TB4 | MII (SA) | 0.1 | 0.0 | 8.1 | 6.8 | 0.0 | 7.0 | 8.1 | 5.9 | 0.0 | 0.0 |
TB5 | MIV (SA) | 0.0 | 5.6 | 5.0 | 0.0 | 0.0 | 4.1 | 6.9 | 4.2 | 0.0 | 0.1 |
TB6 | MIV (SA) | 0.0 | 6.2 | 6.0 | 0.0 | 0.0 | 4.2 | 6.6 | 4.6 | 0.0 | 0.1 |
TB7 | Jamaica | 6.5 | 0.0 | 6.3 | 0.1 | 8.7 | 8.5 | 7.0 | 4.7 | 0.0 | 6.1 |
S1 | Mpumalanga (SA) | 6.4 | 4.7 | 0.0 | 0.0 | 0.1 | 6.5 | 9.6 | 0.0 | 4.7 | 0.0 |
S2 | Mpumalanga (SA) | 5.2 | 0.1 | 0.1 | 0.0 | 0.1 | 7.7 | 8.8 | 0.0 | 0.1 | 0.1 |
S3 | Mpumalanga (SA) | 5.6 | 0.1 | 0.1 | 0.0 | 0.1 | 5.1 | 8.1 | 0.0 | 0.1 | 0.0 |
S4 | Limpopo (SA) | 5.0 | 4.7 | 0.1 | 0.0 | 0.1 | 5.5 | 9.5 | 0.0 | 4.9 | 0.1 |
S5 | Limpopo (SA) | 9.4 | 4.6 | 0.0 | 0.0 | 0.1 | 5.1 | 6.7 | 0.0 | 0.0 | 0.1 |
S6 | Zambia | 0.0 | 5.8 | 0.1 | 0.0 | 6.9 | 5.4 | 0.1 | 0.0 | 5.6 | 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chokwe, R.C.; Dube, S.; Nindi, M.M. Development of an HPLC-DAD Method for the Quantification of Ten Compounds from Moringa oleifera Lam. and Its Application in Quality Control of Commercial Products. Molecules 2020, 25, 4451. https://doi.org/10.3390/molecules25194451
Chokwe RC, Dube S, Nindi MM. Development of an HPLC-DAD Method for the Quantification of Ten Compounds from Moringa oleifera Lam. and Its Application in Quality Control of Commercial Products. Molecules. 2020; 25(19):4451. https://doi.org/10.3390/molecules25194451
Chicago/Turabian StyleChokwe, Ramakwala Christinah, Simiso Dube, and Mathew Muzi Nindi. 2020. "Development of an HPLC-DAD Method for the Quantification of Ten Compounds from Moringa oleifera Lam. and Its Application in Quality Control of Commercial Products" Molecules 25, no. 19: 4451. https://doi.org/10.3390/molecules25194451
APA StyleChokwe, R. C., Dube, S., & Nindi, M. M. (2020). Development of an HPLC-DAD Method for the Quantification of Ten Compounds from Moringa oleifera Lam. and Its Application in Quality Control of Commercial Products. Molecules, 25(19), 4451. https://doi.org/10.3390/molecules25194451