Polyphenol Composition and Antioxidant Potential of Instant Gruels Enriched with Lycium barbarum L. Fruit
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Goji Fruits Addition on Polyphenols Content and Antioxidant Properties of Extruded Gruels
2.2. Influence of the Screw Speed on Polyphenols Content and Antioxidant Properties of Extruded Gruels
2.3. Free Phenolic Acid Content (LC-ESI-MS/MS)
3. Materials and Methods
3.1. Chemicals
3.2. Gruels Production
3.3. Preparation of Extracts
3.4. LC-ESI-MS/MS Analysis of Phenolic Acids
3.5. Antioxidant Properties
3.5.1. Determination of the Total Content of Polyphenolic Compounds (TPC)
3.5.2. Ability to Scavenge DPPH
3.5.3. TLC-DPPH Test
3.5.4. Trolox Equivalent Antioxidant Capacity (TEAC)
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, D.P. Deciphering the consumer behaviour facets of functional foods: A literature review. Appetite 2017, 112, 167–187. [Google Scholar] [CrossRef] [PubMed]
- Tarola, A.M.; Van de Velde, F.; Salvagni, L.; Preti, R. Determination of phenolic compounds in strawberries (Fragaria ananassa Duch) by high performance liquid chromatography with diode array detection. Food Anal. Methods 2013, 6, 227–237. [Google Scholar] [CrossRef]
- Sova, M.; Saso, L. Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites. Nutrients 2020, 12, 2190. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Olech, M.; Nowacka-Jechalke, N. Plant Polyphenols as Chemopreventive Agents. In Polyphenols in Human Health and Disease; Elsevier BV: Amsterdam, The Netherlands, 2014; Volume 2, pp. 1289–1307. [Google Scholar]
- Miller, N.; Ruiz-Larrea, M. Flavonoids and other plant phenols in the diet: Their significance as antioxidants. J. Nutr. Environ. Med. 2002, 12, 39–51. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Cairone, F.; Locatelli, M.; Cacciagrano, F.; Carradori, S.; Vodnar, D.C.; Crisan, G.; Simonetti, G.; Cesa, S. Polyphenols from Lycium barbarum (Goji) fruit european cultivars at different maturation steps: Extraction, HPLC-DAD analyses, and biological evaluation. Antioxidants 2019, 8, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Jin, H.; Dong, H.; Yang, S.; Ma, S.; Ni, J. Quality evaluation of Lycium barbarum (wolfberry) from different regions in China based on polysaccharide structure, yield and bioactivities. Chin. Med. 2019, 14, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Jeszka-Skowron, M.; Oszust, K.; Zgoła-Grześkowiak, A.; Frąc, M. Quality assessment of goji fruits, cranberries, and raisins using selected markers. Europ. Food Res. Technol. 2018, 244, 2159–2168. [Google Scholar] [CrossRef] [Green Version]
- Mocan, A.; Vlase, L.; Vodnar, D.C.; Bischin, C.; Hanganu, D.; Gheldiu, A.-M.; Oprean, R.; Silaghi-Dumitrescu, R.; Crișan, G. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules 2014, 19, 10056–10073. [Google Scholar] [CrossRef]
- Byambasuren, S.E.; Wang, J.; Gaudel, G. Medicinal value of wolfberry (Lycium barbarum L.). J. Med. Plants Stud. 2019, 7, 90–97. [Google Scholar]
- Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D.C.; Crisan, G.; Rohn, S. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies. J. Enzym. Inhib. Med. Chem. 2017, 32, 153–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Peng, Z.; Zhang, X.; Yang, J.; Lai, X.; Guowu, Y. Determination of polyphenols in Lycium barbarum leaves by high-performance liquid chromatography-tandem mass spectrometry. Anal. Lett. 2017, 50, 761–776. [Google Scholar] [CrossRef]
- Ren, L.; Li, J.; Xiao, Y.; Zhang, Y.; Fan, J.; Zhang, B.; Wang, L.; Shen, X. Polysaccharide from Lycium barbarum L. leaves enhances absorption of endogenous calcium, and elevates cecal calcium transport protein levels and serum cytokine levels in rats. J. Funct. Foods 2017, 33, 227–234. [Google Scholar] [CrossRef]
- Donno, D.; Mellano, M.G.; Riondato, I.; De Biaggi, M.; Andriamaniraka, H.; Gamba, G.; Beccaro, G.L. Traditional and unconventional dried fruit snacks as a source of health-promoting compounds. Antioxidants 2019, 8, 396. [Google Scholar] [CrossRef] [Green Version]
- Xin, G.; Zhu, F.; Du, B.; Xu, B. Antioxidants distribution in pulp and seeds of black and red goji berries as affected by boiling processing. J. Food Qual. 2017, 3145946. [Google Scholar] [CrossRef] [Green Version]
- Mocan, A.; Moldovan, C.; Zengin, G.; Bender, O.; Locatelli, M.; Simirgiotis, M.; Atalay, A.; Vodnar, D.C.; Rohn, S.; Crișan, G. UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food Chem. Toxicol. 2018, 115, 414–424. [Google Scholar] [CrossRef]
- Protti, M.; Gualandi, I.; Mandrioli, R.; Zappoli, S.; Tonelli, D.; Mercolini, L. Analytical profiling of selected antioxidants and total antioxidant capacity of goji (Lycium spp.) berries. J. Pharm. Biomed. Anal. 2017, 143, 252–260. [Google Scholar] [CrossRef]
- Multari, S.; Marsol-Vall, A.; Keskitalo, M.; Yang, B.; Suomela, J.P. Effects of different drying temperatures on the content of phenolic compounds and carotenoids in quinoa seeds (Chenopodium quinoa) from Finland. J. Food Compos. Anal. 2018, 72, 75–82. [Google Scholar] [CrossRef]
- Madhujith, T.; Izydorczyk, M.; Shahidi, F. Antioxidant properties of pearled barley fractions. J. Agric. Food Chem. 2006, 54, 3283–3289. [Google Scholar] [CrossRef]
- Patrón-Vázquez, J.; Baas-Dzul, L.; Medina-Torres, N.; Ayora-Talavera, T.; Sánchez-Contreras, Á.; García-Cruz, U.; Pacheco, N. The effect of drying temperature on the phenolic content and functional behavior of flours obtained from lemon wastes. Agronomy 2019, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Esparza-Martínez, F.J.; Miranda-López, R.; Guzman-Maldonado, S.H. Effect of air-drying temperature on extractable and non-extractable phenolics and antioxidant capacity of lime wastes. Ind. Crop. Prod. 2016, 84, 1–6. [Google Scholar] [CrossRef]
- Korus, J.; Gumul, D.; Czechowska, K. Effect of extrusion on the phenolic composition and antioxidant activity of dry beans of Phaseolus vulgaris L. Food Technol. Biotech. 2007, 45, 139–146. [Google Scholar]
- Bernardino-Nicanor, A.; Montañez-Soto, J.L.; de los Ángeles Vivar-Vera, M.; Juárez-Goiz, J.M.; Acosta-García, G.; González-Cruz, L. Effect of drying on the antioxidant capacity and concentration of phenolic compounds in different parts of the Erythrina americana tree. BioResources 2016, 11, 9741–9755. [Google Scholar] [CrossRef] [Green Version]
- Alonso, R.; Grant, G.; Dewey, P.; Marzo, F. Nutritional assessment in vitro and in vivo of raw and extruded peas (Pisum sativum L.). J. Agric. Food Chem. 2000, 48, 2286–2290. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R. Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 2005, 93, 273–278. [Google Scholar] [CrossRef]
- Brennan, C.; Brennan, M.; Derbyshire, E.; Tiwari, B.K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Hung, P.V.; Morita, N. Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem. 2008, 109, 325–331. [Google Scholar] [CrossRef]
- Singh, S.; Gamlath, S.; Wakeling, L. Nutritional aspects of food extrusion: A review. Int. J. Food Sci. Technol. 2007, 42, 916–929. [Google Scholar] [CrossRef]
- Forino, M.; Tartaglione, L.; Dell’Aversano, C.; Ciminiello, P. NMR-based identification of the phenolic profile of fruits of Lycium barbarum (goji berries). Isolation and structural determination of a novel N-feruloyl tyramine dimer as the most abundant antioxidant polyphenol of goji berries. Food Chem. 2016, 194, 1254–1259. [Google Scholar] [CrossRef]
- Inbaraj, S.B.; Lu, H.; Kao, T.H.; Chen, B.H. Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC–DAD–ESI-MS. JPBA 2010, 51, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Viscidi, K.A.; Dougherty, M.P.; Briggs, J.; Camire, M.E. Complex phenolic compounds reduce lipid oxidation in extruded oat cereals. LWT-Food Sci. Technol. 2004, 37, 789–796. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Waksmundzka-Hajnos, M.; Skalicka-Woźniak, K.; Głowniak, K. Comparison of matrix-solid phase dispersion and liquid-solid extraction connected with solid-phase extraction in the quantification of selected furanocoumarins from fruits of Heracleum leskovii by high performance liquid chromatography. Ind. Crops Prod. 2013, 50, 131–136. [Google Scholar] [CrossRef]
- Oniszczuk, A. LC-ESI-MS/MS analysis and extraction method of phenolic acids from gluten-free precooked buckwheat pasta. Food Anal. Methods 2016, 9, 3063–3068. [Google Scholar] [CrossRef] [Green Version]
- Kocira, S.; Sujak, A.; Kocira, A.; Oniszczuk, A. Fylloton application on photosynthetic activity of Moldavian dragonhead (Dracocephalum moldavica L.). Agric. Agric. Sci. Proceedia 2015, 7, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, I.; Cieśla, Ł.; Oniszczuk, T.; Waksmundzka-Hajnos, M.; Oleszek, W.; Stochmal, A. Comparison of two TLC-DPPH•-image processing procedures for studying free radical scavenging activity of compounds from selected varieties of Medicago sativa. J. Liq. Chromatogr. Relat. Technol. 2013, 6, 2387–2394. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Sample Availability: Samples of the gruels are available from the authors. |
Addition of Goji Fruits (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test | 80 rpm | 100 rpm | 120 rpm | |||||||||
0% | 1% | 3% | 5% | 0% | 1% | 3% | 5% | 0% | 1% | 3% | 5% | |
TPC (mg GAE/mL) | 1.13 a ± 0.07 | 1.31 ab ± 0.04 | 1.63 b ± 0.08 | 2.32 c ± 0.01 | 1.18 a ± 0.02 | 1.39 ab ± 0.02 | 1.82 bc ± 0.08 | 2.48 c ± 0.06 | 1.27 ab ± 0.03 | 1.52 ab ± 0.08 | 2.03 bc ± 0.03 | 2.55 c ± 0.11 |
TEAC (µM Trolox/g d.w.) | 35.24 a ± 0.21 | 36.82 ab ± 0.71 | 37.27 ab ± 1.01 | 37.89 ab ± 0.28 | 36.10 a ± 0.25 | 36.94 ab ± 0.51 | 37.79 ab ± 0.32 | 38.06 b ± 0.72 | 35.37 a ± 0.39 | 36.22 a ± 1.24 | 36.97 ab ± 0.78 | 38.48 b ± 0.99 |
TLC-DPPH | 1.17 a ± 0.03 | 1.29 ab ± 0.02 | 2.95 b ± 0.03 | 3.18 b ± 0.00 | 1.28 ab ± 0.02 | 1.54 ab ± 0.03 | 3.15 b ± 0.12 | 3.38 bc ± 0.07 | 1.24 ab ± 0.02 | 1.65 ab ± 0.02 | 3.04 b ± 0.11 | 3.51 c ± 0.08 |
DPPH Radical Scavenging Activity (%RSA) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Addition of Goji Fruits (%) | ||||||||||||
Time (min) | 80 rpm | 100 rpm | 120 rpm | |||||||||
0% | 1% | 3% | 5% | 0% | 1% | 3% | 5% | 0% | 1% | 3% | 5% | |
10 | 52.17 a ± 0.23 | 60.19 ab ± 0.43 | 83.95 b ± 0.83 | 91.11 bc ± 0.42 | 53.17 a ± 0.29 | 87.24 b ± 0.43 | 90.95 bc ± 1.43 | 94.78 c ± 0.57 | 52.74 a ± 0.12 | 73.65 ab ± 0.72 | 93.95 c ± 1.43 | 95.91 c ± 2.68 |
15 | 52.49 a ± 0.67 | 61.42 ab ± 0.36 | 89.42 bc ± 1.19 | 91.11 c ± 0.87 | 56.28 a ± 1.07 | 87.24 bc ± 0.72 | 94.06 c ± 2.23 | 96.67 c ± 0.64 | 55.67 a ± 0.29 | 84.36 b ± 0.91 | 94.42 c ± 1.92 | 95.91 c ± 0.64 |
Phenolic Acid | Content of Phenolic Acids (ng/g d.w.) | |||
---|---|---|---|---|
Addition of Goji Fruits (%) | ||||
0% | 1% | 3% | 5% | |
protocatechuic | 41.4 a ± 0.31 | 43.2 a ± 0.23 | 61.6 b ± 0.2 | 91.6 c ± 0.4 |
trans-caffeic | ND† | BQL †† | BQL †† | 46.4 a ± 0.1 |
4-OH-benzoic | 305.6 a ± 3.4 | 428.1 ab ± 2.5 | 468.0 b ± 0.7 | 664.3 c ±3.2 |
gentisic | ND † | BQL †† | BQL †† | 18.2 a ± 0.0 |
p-coumaric | ND † | 412.3 a ± 1.5 | 712.1 b ± 1.1 | 1644.1 c ± 3.5 |
ferulic | 143.6 a ± 1.2 | 172.4 ab ± 0.4 | 282.2 b ± 1.1 | 684.2 c ± 2.4 |
isoferulic | 7780.6 a ± 6.7 | 8720.1 ab ± 4.8 | 8880.2 ab ± 2.9 | 9120.1 b ± 3.1 |
salicylic | 214.0 a ± 2.9 | 240.0 ab ± 1.2 | 250.4 b ± 0.3 | 508.4 c ± 2.2 |
sum | 8485.2 | 10016.1 | 10654.5 | 12777.3 |
Phenolic Acid | Regression Equation | LOD [ng/mL] | LOQ [ng/mL] | r2 | Linearity Range [ng/mL] |
---|---|---|---|---|---|
protocatechuic | y = 86.3x + 1240 | 10 | 25 | 0.9999 | 50–12500 |
trans-caffeic | y = 1080x + 6640 | 10 | 25 | 0.9992 | 25–2500 |
4-OH-benzoic | y = 1470x + 7020 | 20 | 50 | 0.9999 | 50–2000 |
gentisic | y = 717x + 45100 | 5 | 15 | 0.9994 | 15–5000 |
p-coumaric | y = 888x + 855 | 10 | 25 | 0.9999 | 25–2500 |
ferulic | y = 360x − 3740 | 10 | 25 | 0.9994 | 40–2000 |
isoferulic | y = 360x − 3740 | 10 | 25 | 0.9994 | 40–2000 |
salicylic | y = 2060x + 13000 | 10 | 30 | 0.9999 | 30–1000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olech, M.; Kasprzak, K.; Wójtowicz, A.; Oniszczuk, T.; Nowak, R.; Waksmundzka-Hajnos, M.; Combrzyński, M.; Gancarz, M.; Kowalska, I.; Krajewska, A.; et al. Polyphenol Composition and Antioxidant Potential of Instant Gruels Enriched with Lycium barbarum L. Fruit. Molecules 2020, 25, 4538. https://doi.org/10.3390/molecules25194538
Olech M, Kasprzak K, Wójtowicz A, Oniszczuk T, Nowak R, Waksmundzka-Hajnos M, Combrzyński M, Gancarz M, Kowalska I, Krajewska A, et al. Polyphenol Composition and Antioxidant Potential of Instant Gruels Enriched with Lycium barbarum L. Fruit. Molecules. 2020; 25(19):4538. https://doi.org/10.3390/molecules25194538
Chicago/Turabian StyleOlech, Marta, Kamila Kasprzak, Agnieszka Wójtowicz, Tomasz Oniszczuk, Renata Nowak, Monika Waksmundzka-Hajnos, Maciej Combrzyński, Marek Gancarz, Iwona Kowalska, Anna Krajewska, and et al. 2020. "Polyphenol Composition and Antioxidant Potential of Instant Gruels Enriched with Lycium barbarum L. Fruit" Molecules 25, no. 19: 4538. https://doi.org/10.3390/molecules25194538
APA StyleOlech, M., Kasprzak, K., Wójtowicz, A., Oniszczuk, T., Nowak, R., Waksmundzka-Hajnos, M., Combrzyński, M., Gancarz, M., Kowalska, I., Krajewska, A., & Oniszczuk, A. (2020). Polyphenol Composition and Antioxidant Potential of Instant Gruels Enriched with Lycium barbarum L. Fruit. Molecules, 25(19), 4538. https://doi.org/10.3390/molecules25194538