In Silico and In Vitro Experimental Studies of New Dibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)-oximes Designed as Potential Antimicrobial Agents
Abstract
:1. Introduction
2. Results
2.1. Chemistry and Spectral Data
2.2. Bioinformatic Study of Compounds 7a–j
2.2.1. Lipinski’s and Veber’s rule
2.2.2. Predicted ADME-Tox
2.3. Antimicrobial and Antibiofilm Activity of the Compounds 7a–j
2.4. The Cytotoxicity of the Compounds 7a–j
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. General Procedure for the Synthesis of Novel Compounds
4.3. Bioinformatic Study of Compounds 7a–j
4.3.1. Molecular Modeling
4.3.2. Determination of Drug–Like Character and Bioavailability
4.2.3. Predicted Pharmacokinetic Profile of Compounds 7a–j
4.4. Biological Assays
4.5. Cytotoxicity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://www.cdc.gov/drugresistance/biggest_threats.html (accessed on 30 December 2019).
- De Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J. Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance: London, UK, 2014. [Google Scholar]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, P. Where will new antibiotics come from? Nat. Rev. Microbiol. 2003, 1, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef]
- Available online: https://www.jpiamr.eu/download/Excerpt%20Edition%20JPIAMR%20Future%20Strategy%202020-2025.pdf (accessed on 30 December 2019).
- Rangel-Vega, A.; Bernstein, L.R.; Mandujano-Tinoco, E.A.; García-Contreras, S.J.; García-Contreras, R. Drug repurposing as an alternative for the treatment of recalcitrant bacterial infections. Front. Microbiol. 2015, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Soo, V.W.; Kwan, B.W.; Quezada, H.; Castillo-Juárez, I.; Pérez-Eretza, B.; García-Contreras, S.J.; Martínez-Vázquez, M.; Wood, T.K.; García-Contreras, R. Repurposing of anticancer drugs for the treatment of bacterial infections. Curr. Top. Med. Chem. 2017, 17, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
- Konreddy, A.K.; Rani, G.U.; Lee, K.; Choi, Y. Recent drug-repurposing-driven advances in the discovery of novel antibiotics. Curr. Med. Chem. 2018, 5. [Google Scholar] [CrossRef]
- Limban, C.; Missir, A.V.; Chiriţă, I.C.; Căproiu, M.T.; Chifiriuc, M.C.; Israil, M.A.; Delcaru, C. Derivaţi de O-acil-2-etil-11-oximino-6,11-dihidro-dibenz[b,e]oxepină, compoziţie farmaceutică ce îl cuprinde şi utilizarea lor. RO Patent 2010. 3–7. [Google Scholar]
- Grossmann, A.; von der Saal, W.; Sattelkan, T.; Tibes, U. Triciclic Alkylhydroxamate Derivatives. U.S. Patent 6,512,123 B2, 28 January 2003. [Google Scholar]
- Hoehn, H. Imidazole Derivatives of 6,11-Dihydrodibenz[b,e]oxepins and 6,11-Dihydrodibenz[b,e]thiepines. U.S. Patent 4,169,205, 25 September 1979. [Google Scholar]
- Lin, J.; Liu, S.; Sun, B.; Niu, S.; Li, E.; Liu, X.; Che, Y. Polyketides from the ascomycete fungus Leptosphaeria sp. J. Nat. Prod. 2010, 73, 905–910. [Google Scholar] [CrossRef]
- Crovetti, A.J.; Stein, R.G. Certain O-Substituted Thiophene Oxime Carbamates Used as Antibacterial and Antifungal Agents. U.S. Patent 4,061,764, 6 December 1977. [Google Scholar]
- Siegle, P.; Kűhle, E.; Hammann, I.; Behrenz, W.; Hameyer, B. N-methyl-N-(3-trifluoromethylphenylsulfenyl)-carbonyloxime-carbamates. U.S. Patent 4,008,328, 15 February 1977. [Google Scholar]
- Georgiev, V.S.; Saeva, G.A. Novel 2-Adamantanone Oxime Carbamate Derivatives, Including Tricyclo[3.3.1.13,7]decan-2-one O-[(cyclohexyl) aminocarbonyl]oxime, Tricyclo[3.3.1.13,7]decan-2-one O-[3-methoxy)aminocarbonyl] Oxime, and Tricyclo[3.3.1.13,7)decan-2-one O-[(2-chlorophenyl)aminocarbonyl]oxime; Useful as Antifungal Agents Against E. floccosum. U.S. Patent 4,652,680, 24 March 1987. [Google Scholar]
- Upadhayaya, R.S.; Lahore, S.V.; Sayyed, A.Y.; Dixit, S.S.; Shinde, P.D.; Chattopadhyaya, J. Conformationally-constrained indeno[2,1-c]quinolones—A new class of anti-mycobacterial agents. Org. Biomol. Chem. 2010, 8, 2180–2197. [Google Scholar] [CrossRef] [Green Version]
- Durden, J.A., Jr.; Sousa, A.A. Tertiary Butyl Substituted Carbamoyl Oxime Pesticides. U.S. Patent 3,998,963, 21 December 1976. [Google Scholar]
- Ray, S.; Pathak, S.R.; Chaturvedi, D. Organic carbamates in drug development. Part II: Antimicrobial agents—Recent reports. Drugs Fut. 2005, 30, 161. [Google Scholar] [CrossRef]
- Georgescu, M.; Vrinceanu, D.; Radulescu, L.; Tusaliu, M.; Martu, C.; Curutiu, C.; Hussien, M.D.; Budu, V. Microbial biofilms and implantable hearing aids. Rom. Biotechnol. Lett. 2017, 22, 12681. [Google Scholar]
- Limban, C.; Marutescu, L.; Chifiriuc, M.C. Synthesis, spectroscopic properties and antipathogenic activity of new thiourea derivatives. Molecules 2011, 16, 7593–7607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limban, C.; Chifiriuc, M.C. Antibacterial Activity of New Dibenzoxepinone Oximes with Fluorine and Trifluoromethyl Group Substituents. Int. J. Mol. Sci. 2011, 12, 6432–6444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limban, C.; Ditu, L.M.; Vasile, A.; Chifiriuc, M.; Cproiu, M.T.; Morusciag, L.; Chirita, C.; Udrea, A.; Avram, S. Design, Synthesis and Biopharmacological Profile Evaluation of New 2-((4-Chlorophenoxy)Methyl)-N-(Arylcarbamothioyl)Benzamides with Broad Spectrum Antifungal Activity. Curr. Org. Chem. 2019, 23, 1360–1372. [Google Scholar] [CrossRef]
- Saviuc, C.; Grumezescu, A.M.; Chifiriuc, M.C.; Bleotu, C.; Stanciu, G.; Hristu, R.; Mihaiescu, D.; Lazăr, V. In vitro methods for the study of microbial biofilms. Biointerface Res. Appl. Chem. 2011, 1, 31–40. [Google Scholar]
- Janković, A.; Eraković, S.; Ristoscu, C.; Mihailescu Serban, N.; Duta, L.; Visan, A.; Stan, G.E.; Popa, A.C.; Husanu, M.A.; Luculescu, C.R.; et al. Structural and biological evaluation of lignin addition to simple and silver-doped hydroxyapatite thin films synthesized by matrix-assisted pulsed laser evaporation. J. Mater. Sci. Mater. Med. 2015, 26, 17. [Google Scholar] [CrossRef]
- Pietkiewicz, S.; Schmidt, J.H.; Lavrik, I.N. Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. J. Immunol. Methods 2015, 423, 99–103. [Google Scholar] [CrossRef]
- Limban, C.; Missir, A.V.; Chiriţă, I.C.; Drăghici, C. New 2-Methyl-O-Acyl-Oximino-Dibenz[b,e]Oxepins with potential antidepressive action. Rev. Chim. 2007, 58, 655–658. [Google Scholar]
- Limban, C.; Missir, A.V.; Chiriţă, I.C.; Căproiu, M.T.; Draghici, C.; Niţulescu, G.M. Novel dibenz[b,e]oxepins derivatives. Rev. Chim. 2009, 60, 1313–1317. [Google Scholar]
- Udrea, A.M.; Puia, A.; Shaposhnikov, S.; Avram, S. Computational approaches of new perspectives in the treatment of depression during pregnancy. Farmacia 2018, 66, 680–687. [Google Scholar]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Saviuc, C.; Grumezescu, A.; Holban, M.A.; Bleotu, C.; Chifiriuc, M.C.; Balaure, P.; Lazar, V. Phenotypical studies of raw and nanosystem embedded Eugenia carryophyllata buds essential oil antibacterial activity on Pseudomonas aeruginosa and Staphylococcus aureus strains. Biointerface Res. Appl. Chem. 2011, 1, 111–118. [Google Scholar]
- Cinteza, L.O.; Voicu, S.N.; Popa, M.; Marutescu, L.; Nitu, S.; Somoghi, R.; Nistor, C.L.; Petcu, C. Rational design of silver nanoparticles with reduced toxicity and enhanced antimicrobial activity. Rom. Biotechnol. Lett. 2017, 22, 13878–13887. [Google Scholar]
- Costescu, A.; Ciobanu, C.S.; Iconaru, S.L.; Ghita, R.V.; Chifiriuc, C.M.; Marutescu, L.G.; Predoi, D. Fabrication, Characterization, and Antimicrobial Activity, Evaluation of Low Silver Concentrations in Silver-Doped Hydroxyapatite Nanoparticles. J. Nanomater. 2013. [Google Scholar] [CrossRef]
- Stan, T.; Teodor, E.D.; Gatea, F.; Chifiriuc, M.C.; Lazăr, V. Antioxidant and antifungal activity of Romanian propolis. Rom. Biotechnol. Lett. 2017, 22, 13116–13125. [Google Scholar]
- Telcian, A.; Hussien, M.D.; Chifiriuc, M.C.; Bleotu, C.; Holban, A.M.; Curutiu, C.; Grosu, E.; Ficai, A.; Mihaescu, G.; Grigore, R.; et al. Assessment of the anti-biofilm activity and biocompatibility of novel PE and PVC polymers. Rom. Biotechnol. Lett. 2017, 22, 12997–13005. [Google Scholar]
- Dinescu, S.; Ignat, S.; Predoiu, L.; Hermenean, A.; Ionita, M.; Mladenov, M.; Costache, M. Graphene oxide improves chitosan-based biomaterials with applications in bone tissue engineering. Rom. Biotechnol. Lett. 2017, 22, 13108–13116. [Google Scholar]
Sample Availability: Samples of the compounds 7a–j are available from the authors. |
Compound | 7a | 7b | 7c | 7d | 7e | 7f | 7g | 7h | 7i | 7j |
---|---|---|---|---|---|---|---|---|---|---|
Rule | ||||||||||
Lipinski’s Rule of Five | yes | yes | yes | yes | yes (1 violation) | yes | yes (1 violation) | yes | yes | yes (1 violation) |
HBA | 4 | 5 | 4 | 4 | 4 | 7 | 4 | 4 | 5 | 4 |
HBD | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
MW(g/mol) | 358.3 | 362.3 | 378.8 | 378.8 | 413.2 | 412.3 | 427.2 | 372.4 | 390.4 | 441.3 |
LogP(o/w) | 4.16 | 4.11 | 4.36 | 4.35 | 5.11 | 4.86 | 5.26 | 4.47 | 4.78 | 5.57 |
Veber’s Rule | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes |
RTB | 4 | 4 | 4 | 4 | 4 | 5 | 4 | 5 | 5 | 5 |
TPSA(Å2) | 59.92 | 59.92 | 59.92 | 59.92 | 59.92 | 59.92 | 59.92 | 59.92 | 59.92 | 59.92 |
Compound | 7a | 7b | 7c | 7d | 7e | 7f | 7g | 7h | 7i | 7j | Unit |
---|---|---|---|---|---|---|---|---|---|---|---|
Descriptor | |||||||||||
Intestinal Absorption | 92.1 | 92.7 | 92.3 | 91.8 | 89.7 | 90.9 | 89.9 | 90.9 | 92.2 | 89.2 | % Absorbed |
Caco-2 Permeability PkCSM | 1.5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.4 | 1.0 | 0.9 | log Papp in 10−6 cm/s |
Caco-2 Permeability AdmetSAR | 1.5 | 1.6 | 1.6 | 1.6 | 1.6 | 1.5 | 1.6 | 1.3 | 1.4 | 1.5 | LogPapp, cm/s |
BBB Permeability | 0.2 | −0.0 | −0.1 | −0.0 | 0.0 | −0.1 | −0.3 | 0.2 | −0.3 | −0.2 | log BB |
CNS Permeability | −1.5 | −1.6 | −1.5 | −1.5 | −1.3 | −1.4 | −1.2 | −1.5 | −1.6 | −1.3 | log PS |
Compound | 7a | 7b | 7c | 7d | 7e | 7f | 7g | 7h | 7i | 7j | Unit. |
---|---|---|---|---|---|---|---|---|---|---|---|
Descriptor | |||||||||||
Tox. AMES pkCSM | yes | no | no | no | no | no | no | no | no | no | yes/no |
MTD | 0.14 | 0.04 | 0.07 | 0.08 | −0.28 | 0.05 | −0.32 | 0.28 | 0.01 | −0.21 | log mg/kg/zi |
hERGI Inhibition pkCSM | no | no | no | no | no | no | no | no | no | no | yes/no |
hERGII Inhibition pkCSM | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes/no |
LD50 pkCSM | 2.4 | 2.3 | 2.4 | 2.3 | 2.4 | 2.5 | 2.4 | 2.3 | 2.4 | 2.4 | mol/kg |
LD50 admetSAR | 2.6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.7 | 2.5 | 2.5 | 2.5 | 2.5 | mol/kg |
LOAEL | 1.1 | 0.9 | 0.9 | 0.8 | 0.6 | 0.6 | 0.5 | 0.9 | 0.7 | 0.4 | log mg/kg_bw/zi |
Hepatotoxicity | no | yes | no | no | yes | yes | yes | no | yes | yes | yes/no |
Tox. T. pyriformis pkCSM | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | log µg/L |
Tox. T. pyriformis admetSAR | 0.7 | 0.9 | 1.1 | 1.1 | 1.1 | 1.0 | 1.0 | 0.8 | 0.9 | 1.1 | log µg/L |
Tox. Minnow pkCSM | -0.9 | 0.8 | 0.1 | 0.5 | 0.1 | 0.3 | −0.2 | −0.9 | 0.7 | −0.1 | log mM |
Tox. Minnow admetSAR | 0.7 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.6 | 0.8 | 0.9 | 0.6 | log mg/L |
Carcinogenic effect | no | no | no | no | no | no | no | no | no | no | danger/warning/no |
Chemical Compounds | 7a | 7b | 7c | 7d | 7e | 7f | 7g | 7h | 7i | 7j | Antibiotic Positive Control (Ticarcillin) | Antifungal Positive Control (Fluconazole) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Microbial Strains | |||||||||||||
B. subtilis ATCC 6633 | 8 mm | 7 mm | 0 | 0 | 0 | 11 mm | 0 | 0 | 0 | 0 | 15 | - | |
S. aureus ATCC 25923 | 0 | 0 | 0 | 0 | 0 | 8 mm | 0 | 0 | 0 | 0 | 21 | - | |
P. aeruginosa ATCC 27853 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | - | |
E. coli ATCC 25922 | 0 | 0 | 4 mm | 0 | 0 | 10 mm | 0 | 0 | 0 | 0 | 24 | - | |
K. pneumoniae 1771 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | |
C. albicans ATCC 10231 | 8 mm | 0 | 8 mm | 0 | 0 | 12 mm | 0 | 0 | 0 | 0 | - | 10 |
Chemical Compounds | 7a | 7b | 7c | 7f | Antibiotic Positive Control (Ticarcillin) | Antifungal Positive Control (Fluconazole) | |
---|---|---|---|---|---|---|---|
Microbial Strains | |||||||
B. subtilis ATCC 6633 | 4.8 | 4.8 | >5000 | 39 | 78 | - | |
S. aureus ATCC 25923 | >5000 | >5000 | >5000 | 4.8 | 9.76 | - | |
E. coli ATCC 25922 | >5000 | >5000 | 1250 | 78 | 19.5 | - | |
C. albicans ATCC 10231 | 4.8 | >5000 | 1250 | - | - | 4.8 |
Chemical Compounds | 7a | 7b | 7c | 7f | Antibiotic Positive Control (Ticarcillin) | Antifungal Positive Control (Fluconazole) | |
---|---|---|---|---|---|---|---|
Microbial Strains | |||||||
B. subtilis ATCC 6633 | 156 | - | - | 39 | 156 | - | |
S. aureus ATCC 25923 | 39 | 19.5 | - | 39 | 156 | - | |
E. coli ATCC 25922 | 625 | - | - | - | 625 | - | |
C. albicans ATCC 10231 | 39 | - | 4.8 | - | - | 39 |
7a–j | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No | R | R1 | Molecular Formula | Mol. Weight | Melting Point (°C) | Yields (%) | C% | H% | N% | |||
c | e | c | e | c | e | |||||||
7a | -H | C22H18N2O3 | 358.38 | 131.6–132.9 | 76 | 73.73 | 73.41 | 5.06 | 5.14 | 7.82 | 7.82 | |
7b | -H | C21H15FN2O3 | 362.35 | 189.5–193.1 | 72 | 69.60 | 69.41 | 4.17 | 4.17 | 7.73 | 7.70 | |
7c | -H | C21H15ClN2O3 | 378.81 | 175.3–178.4 | 67 | 66.58 | 66.43 | 3.99 | 3.91 | 7.39 | 7.28 | |
7d | -H | C21H15ClN2O3 | 378.81 | 165.2–167.4 | 64 | 66.58 | 66.24 | 3.99 | 4.14 | 7.40 | 7.47 | |
7e | -H | C21H14Cl2N2O3 | 413.25 | 181.2–183.3 | 54 | 61.03 | 61.31 | 3.41 | 3.45 | 6.78 | 6.69 | |
7f | -H | C22H15F3N2O3 | 412.36 | 164.2–165.8 | 79 | 64.08 | 63.77 | 3.67 | 3.79 | 6.80 | 6.69 | |
7g | -CH3 | C22H16Cl2N2O3 | 427.28 | 150.4–152.7 | 59 | 61.83 | 61.97 | 3.77 | 3.69 | 6.55 | 6.49 | |
7h | -C2H5 | C23H20N2O3 | 372.42 | 173.7–175.9 | 71 | 74.18 | 74.34 | 5.41 | 5.32 | 7.52 | 7.38 | |
7i | -C2H5 | C23H19FN2O3 | 390.4 | 178.2–181 | 73 | 70.76 | 70.51 | 4.91 | 4.87 | 7.18 | 7.17 | |
7j | -C2H5 | C23H18Cl2N2O3 | 441.3 | 192–194.1 | 69 | 62.59 | 62.78 | 4.11 | 4.02 | 6.35 | 6.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlad, I.M.; Nuta, D.C.; Chirita, C.; Caproiu, M.T.; Draghici, C.; Dumitrascu, F.; Bleotu, C.; Avram, S.; Udrea, A.M.; Missir, A.V.; et al. In Silico and In Vitro Experimental Studies of New Dibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)-oximes Designed as Potential Antimicrobial Agents. Molecules 2020, 25, 321. https://doi.org/10.3390/molecules25020321
Vlad IM, Nuta DC, Chirita C, Caproiu MT, Draghici C, Dumitrascu F, Bleotu C, Avram S, Udrea AM, Missir AV, et al. In Silico and In Vitro Experimental Studies of New Dibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)-oximes Designed as Potential Antimicrobial Agents. Molecules. 2020; 25(2):321. https://doi.org/10.3390/molecules25020321
Chicago/Turabian StyleVlad, Ilinca Margareta, Diana Camelia Nuta, Cornel Chirita, Miron Teodor Caproiu, Constantin Draghici, Florea Dumitrascu, Coralia Bleotu, Speranța Avram, Ana Maria Udrea, Alexandru Vasile Missir, and et al. 2020. "In Silico and In Vitro Experimental Studies of New Dibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)-oximes Designed as Potential Antimicrobial Agents" Molecules 25, no. 2: 321. https://doi.org/10.3390/molecules25020321
APA StyleVlad, I. M., Nuta, D. C., Chirita, C., Caproiu, M. T., Draghici, C., Dumitrascu, F., Bleotu, C., Avram, S., Udrea, A. M., Missir, A. V., Marutescu, L. G., & Limban, C. (2020). In Silico and In Vitro Experimental Studies of New Dibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)-oximes Designed as Potential Antimicrobial Agents. Molecules, 25(2), 321. https://doi.org/10.3390/molecules25020321