Pesticide Residues and Health Risk Assessment in Tomatoes and Lettuces from Farms of Metropolitan Region Chile
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quality Assurance of Method
2.2. Pesticide Residues Concentrations
2.3. Health Risk Assessment
3. Materials and Methods
3.1. Study Area
3.2. Sampling of Fresh Vegetables
3.3. Chemicals and Reagents
3.4. Quality Assurance of Method
3.5. Pesticide Analysis
3.6. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Donkor, A.; Osei-Fosu, P.; Dubey, B.; Kingsford-Adaboh, R.; Ziwu, C.; Asante, I. Pesticide residues in fruits and vegetables in Ghana: A review. Environ. Sci. Pollut. Res. 2016, 23, 18966–18987. [Google Scholar] [CrossRef]
- Pan, L.; Sun, J.; Li, Z.; Zhan, Y.; Xu, S.; Zhu, L. Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: Concentration, distribution, and risk assessment. Environ. Sci. Pollut. Res. 2018, 25, 4–11. [Google Scholar] [CrossRef]
- MacLachlan, D.J.; Hamilton, D. Estimation methods for Maximum Residue Limits for pesticides. Regul. Toxicol. Pharmacol. 2010, 58, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Claeys, W.L.; Schmit, J.F.; Bragard, C.; Maghuin-Rogister, G.; Pussemier, L.; Schiffers, B. Exposure of several Belgian consumer groups to pesticide residues through fresh fruit and vegetable consumption. Food Control. 2011, 22, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zhang, T.; Xu, D.; Wang, S.; Yuan, Y.; He, S.; Cao, Y. The removal of pesticide residues from pakchoi (Brassica rape L. ssp. chinensis) by ultrasonic treatment. Food Control 2019, 95, 176–180. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Pogăcean, M.O.; Rosca, M.; Cozma, P.; Gavrilescu, M. Modelling the behavior of pesticide residues in tomatoes and their associated long-term exposure risks. J. Environ. Manag. 2019, 233, 523–529. [Google Scholar] [CrossRef]
- Bempah, C.K.; Donkor, A.; Yeboah, P.O.; Dubey, B.; Osei-Fosu, P. A preliminary assessment of consumer’s exposure to organochlorine pesticides in fruits and vegetables and the potential health risk in Accra Metropolis, Ghana. Food Chem. 2011, 128, 1058–1065. [Google Scholar] [CrossRef]
- Chen, C.; Li, C.; Tao, C.; Li, Y.; Chen, Q.; Qian, Y. Evaluation of pesticide residues in fruits and vegetables from Xiamen, China. Food Control. 2011, 22, 1114–1120. [Google Scholar] [CrossRef]
- Bhandari, G.; Zomer, P.; Atreya, K.; Mol, H.G.J.; Yang, X.; Geissen, V. Pesticide residues in Nepalese vegetables and potential health risks. Environ. Res. 2019, 172, 511–521. [Google Scholar] [CrossRef]
- Chilean Food Safety and Quality Agency (ACHIPIA), PNIs Annual Report, Santiago, Chile. 2013. Available online: https://www.achipia.gob.cl/wp-content/uploads/2016/03/Informe-evaluacion-PNI-Plaguicidas.pdf (accessed on 10 March 2018).
- Chilean Food Safety and Quality Agency (ACHIPIA), RIAL Annual Report 2017, Santiago, Chile, 2019. Food Information and Alerts Network ACHIPIA. Chilean Agency for Food Safety and Quality. Available online: https://www.achipia.gob.cl/wp-content/uploads/2016/03/Reporte-RIAL-2014.pdf (accessed on 27 February 2018).
- Chilean Food Safety and Quality Agency (ACHIPIA), RIAL Annual Report 2016, Santiago, Chile, 2017. Food Information and Alerts Network ACHIPIA. Chilean Agency for Food Safety and Quality. Available online: https://www.achipia.gob.cl/wp-content/uploads/2017/11/OR.Informe-RIAL-2016.pdf (accessed on 11 June 2018).
- Agricultural and Livestock Service (SAG), Santiago, Chile. 2019. Available online: http://www.sag.cl (accessed on 22 April 2019).
- Wu, X.; Sun, Z.; Shi, T.; Pan, D.; Xue, J.; Li, Q.X.; Hua, R. Influence of plant growth regulating substances on transport and degradation of acephate and its metabolite methamidophos in tomato. Int. J. Environ. Anal. Chem. 2017, 97, 345–354. [Google Scholar] [CrossRef]
- Temerowski, M.; Van Der Staay, F.J. Absence of long-term behavioral effects after sub-chronic administration of low doses of methamidophos in male and female rats. Neurotoxicol. Teratol. 2005, 27, 279–297. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Dong, F.; Xu, J.; Liu, X.; Li, J.; Li, Y.; Tian, Y.; Guo, L.; Shan, W.; Zheng, Y. Degradation of acephate and its metabolite methamidophos in rice during processing and storage. Food Control. 2012, 23, 149–153. [Google Scholar] [CrossRef]
- Farré, M.; Fernandez, J.; Paez, M.; Granada, L.; Barba, L.; Gutierrez, H.M.; Pulgarin, C.; Barceló, D. Analysis and toxicity of methomyl and ametryn after biodegradation. Anal. Bioanal. Chem. 2002, 373, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Jardim, A.N.O.; Brito, A.P.; van Donkersgoed, G.; Boon, P.E.; Caldas, E.D. Dietary cumulative acute risk assessment of organophosphorus, carbamates and pyrethroids insecticides for the Brazilian population. Food Chem Toxicol. 2018, 112, 108–117. [Google Scholar] [CrossRef]
- Elgueta, S.; Moyano, S.; Sepúlveda, P.; Quiroz, C. Pesticide residues in leafy vegetables and human health risk assessment in North Central agricultural areas of Chile. Food Addit. Contam. Part. B 2017, 10, 1–8. [Google Scholar] [CrossRef]
- Elgueta, S.; Fuentes, M.; Valenzuela, M.; Zhao, G.; Liu, S.; Lu, H.; Correa, A. Pesticide residues in ready-to-eat leafy vegetables from markets of Santiago, Chile, and consumer’s risk. Food Addit. Contam. Part. B Surveill. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Agrarian Studies and Policies (ODEPA), Santiago, Chile. 2019. Available online: https://www.odepa.gob.cl/ (accessed on 31 October 2019).
- Ministry of Health of Chile (MINSAL), Santiago, Chile 2019. Available online: https://dipol.minsal.cl/departamentos-2/nutricion-y-alimentos/nutricion/ (accessed on 15 August 2019).
- European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed (SANTE 11813/2017). Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed on 20 January 2018).
- Yu, R.; Liu, Q.; Liu, J.; Wang, Q.; Wang, Y. Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control. 2016, 60, 353–360. [Google Scholar] [CrossRef]
- Reiler, E.; Jørs, E.; Bælum, J.; Huici, O.; Alvarez Caero, M.M.; Cedergreen, N. The influence of tomato processing on residues of organochlorine and organophosphate insecticides and their associated dietary risk. Sci. Total Environ. 2015, 527–528, 262–269. [Google Scholar] [CrossRef]
- Bakirci, G.T.; Yaman Acay, D.B.; Bakirci, F.; Ötleş, S. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem. 2014, 160, 379–392. [Google Scholar] [CrossRef]
- Quijano, L.; Yusà, V.; Font, G.; Pardo, O. Chronic cumulative risk assessment of the exposure to organophosphorus, carbamate and pyrethroid and pyrethrin pesticides through fruit and vegetables consumption in the region of Valencia (Spain). Food Chem. Toxicol. 2016, 89, 39–46. [Google Scholar] [CrossRef]
- Qin, G.; Zou, K.; Li, Y.; Chen, Y.; He, F.; Ding, G. Pesticide residue determination in vegetables from western China applying gas chromatography with mass spectrometry. Biomed. Chromatogr. 2016, 30, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Lozowicka, B.; Abzeitova, E.; Sagitov, A.; Kaczynski, P.; Toleubayev, K.; Li, A. Studies of pesticide residues in tomatoes and cucumbers from Kazakhstan and the associated health risks. Environ. Monit. Assess. 2015, 187, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akoto, O.; Oppong-otoo, J.; Osei-fosu, P. Carcinogenic and non-carcinogenic risk of organochlorine pesticide residues in processed cereal-based complementary foods for infants and young children in Ghana. Chemosphere 2015, 132, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.; Sampedro, M.C.; Ariño, A. de, Ortiz, A.; Barrio, R.J. Risk assessment of exposure to pesticides through dietary intake of vegetables typical of the Mediterranean diet in the Basque Country. J. Food Compos. Anal. 2016, 49, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Zhang, S.; Chen, Z.; Du, H.; Zhu, Q. Risk assessment of pesticide residues in dietary intake of celery in China. Regul. Toxicol. Pharmacol. 2015, 73, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Chun, O.K.; Kang, H.G. Estimation of risks of pesticide exposure, by food intake, to Koreans. Food Chem. Toxicol. 2003, 41, 1063–1076. [Google Scholar] [CrossRef]
- Park, D.W.; Kim, K.G.; Choi, E.A.; Kang, G.R.; Sun, T.; Yang, Y.S.; Moon, S.J.; Ha, D.R.; Kim, E.S.; Sik, B. Pesticide residues in leafy vegetables, stalk and stem vegetables from South Korea: A long-term study on safety and health risk assessment. Food Addit. Contam. 2016, 33, 105–118. [Google Scholar] [CrossRef]
- Jensen, B.H.; Petersen, A.; Nielsen, E.; Christensen, T.; Poulsen, M.E.; Andersen, J.H. Cumulative dietary exposure of the population of Denmark to pesticides. Food Chem. Toxicol. 2015, 83, 300–307. [Google Scholar] [CrossRef]
- Syed, J.H.; Alamdar, A.; Mohammad, A.; Ahad, K.; Shabir, Z.; Ahmed, H.; Ali, S.M.; Sani, S.G.A.S.; Bokhari, H.; Gallagher, K.D.; et al. Pesticide residues in fruits and vegetables from Pakistan: A review of the occurrence and associated human health risks. Environ. Sci. Pollut. Res. 2014, 21, 13367–13393. [Google Scholar] [CrossRef]
- McConnell, R.; Delgado-Téllez, E.; Cuadra, R.; Tórres, E.; Keifer, M.; Almendárez, J.; Miranda, J.; El-Fawal, H.A.N.; Wolff, M.; Simpson, D.; et al. Organophosphate neuropathy due to methamidophos: Biochemical and neurophysiological markers. Arch. Toxicol. 1999, 73, 296–300. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residue in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [PubMed]
- Payá, P.; Anastassiades, M.; MacK, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal Chem. 2007, 389, 1697–1714. [Google Scholar] [CrossRef] [PubMed]
- Perz, R.C.; Van Lishaut, H.; Schwack, W. CS2 blinds in Brassica crops: False positive results in the dithiocarbamate residue analysis by the acid digestion method. J. Agri. Food Chem. 2000, 48, 792–796. [Google Scholar] [CrossRef]
- Gad Alla, S.A.; Loutfy, N.M.; Shendy, A.H.; Ahmed, M.T. Hazard index, a tool for a long term risk assessment of pesticide residues in some commodities, a pilot study. Regul Toxicol Pharmacol. 2015, 73, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health of Chile (MINSAL) ENS Chile Annual Report 2009–2010, Santiago, Chile. Available online: https://www.minsal.cl/portal/url/item/bcb03d7bc28b64dfe040010165012d23.pdf (accessed on 15 March 2018).
- Ministry of Health of Chile (MINSAL) DIPOL Santiago, Chile. Available online: http://dipol.minsal.cl/wrdprss_minsal/wp-content/uploads/2015/09/Porciones-Consumo-Habitual-Referencia.xls (accessed on 10 March 2017).
Sample Availability: Samples of the compounds are available from the authors. |
Pesticide | Analytical Methodology | Limit of Detection (µg/kg) | Limit of Quantification (µg/kg) | % Recovery/RSD Lettuce/Tomato | |
---|---|---|---|---|---|
Acetamiprid [I] | GC-NPD | 5 | 10 | - | 116 ± 5.4 |
Azoxystrobin [F] | GC-ECD | 5 | 10 | 106 ± 9.7 | - |
Boscalid [F] | GC-ECD | 5 | 10 | 102 ± 1.1 | 97.3 ± 7.4 |
Chlorfenapyr [I] | GC-ECD | 5 | 10 | - | 94 ± 3.1 |
Chlorothalonil [F] | GC-ECD | 5 | 10 | 72.6 ± 11.9 | |
Chlorpyrifos [I] | GC-ECD | 5 | 10 | 93.7 ± 5.2 | 94.9 ± 6.6 |
Cyfluthrin [I] | GC-ECD | 10 | 20 | 92.6 ± 3.1 | 100.8 ± 3.2 |
Cypermethrin [I] | GC-ECD | 5 | 10 | 93.6 ± 8.1 | - |
Cyprodinil [F] | GC-NPD | 5 | 10 | 95.5 ± 4.4 | - |
Difenoconazole [F] | GC-ECD | 5 | 10 | 99.4 ± 4.2 | - |
Dimethomorph [F] | GC-ECD | 5 | 10 | - | 100 ± 3.4 |
Dithiocarbamates [F] | Colorimetric method | 5 | 10 | ND | - |
Esfenvalerate [I] | GC-ECD | 5 | 20 | 89.9 ± 3.7 | - |
Fludioxonil [F] | GC-NPD | 5 | 10 | 102.7 ± 4 | - |
Imidacloprid [I] | HPLC-DAD | 10 | 20 | 94.7 ± 14 | 100.5 ± 10.2 |
Iprodione [F] | GC-ECD | 5 | 10 | 101 ± 2.8 | 103.4 ± 2.2 |
γ-cyhalothrin [I] | GC-ECD | 5 | 10 | 99.1 ± 3.2 | 100.2 ± 9.2 |
Metalaxyl [F] | GC-NPD | 5 | 10 | 96.1 ± 2.2 | - |
Methamidophos [I] | GC-NPD | 5 | 10 | 85 ± 4.1 | 108 ± 10.6 |
Methomyl [I] | HPLC-FL | 5 | 10 | 101.1 ± 9.8 | 93.5 ± 10.9 |
Propamocarb [F] | GC-NPD | 5 | 10 | - | 75 ± 6.4 |
Vegetable | Pesticide | Median | Max Value (mg/kg) | Mean | MRL |
---|---|---|---|---|---|
Lettuce | Azoxystrobin | 5 | 5 | 0.28 ± 0.09 | 5 |
Boscalid | 4.1 | 8.73 | 4.37 ± 0.2 | 10 | |
Chlorothalonil | - | 0.61 | 0.61 | 0.01 | |
Chlorpyrifos | 1 | 1 | 0.08 ± 0.11 | 0.1 | |
Cyfluthrin | - | 0.07 | 0.07 | 3 | |
Cypermethrin | - | 0.02 | 0.02 | 0.7 | |
Cyprodinil | - | 5.82 | 5.82 | 10 | |
Difenoconazole | 2 | 2 | 2.46 ± 2.12 | 2 | |
Dithiocarbamates | 10 | 10 | 2.39 ± 3.74 | 10 | |
Esfenvalerate | 0.02 | 0.02 | 0.02 ± 0.01 | 0.02 | |
Fludioxonil | 10 | 2.5 | 1.38 ± 1.58 | 10 | |
Imidacloprid | 3.5 | 3.5 | 0.23 ± 0.45 | 3.5 | |
Iprodione | - | 1.32 | 1.32 | 25 | |
γ-cyhalothrin | 2 | 2 | 0.14 ± 0.2 | 2 | |
Metalaxyl | 5 | 5 | 0.07 ± 0.06 | 5 | |
Methamidophos | 0.01 | 0.01 | 2 ± 5.26 | 0.01 | |
Methomyl | 0.2 | 0.2 | 0.04 ± 0.02 | 0.2 | |
Propamocarb | 100 | 100 | 0.43 ± 0.82 | 100 | |
Tomato | Acetamiprid | 0.2 | 0.89 | 0.49 ± 0.57 | 0.2 |
Boscalid | - | - | <LOQ | 1.2 | |
Chlorfenapyr | - | - | <LOQ | 1 | |
Chlorothalonil | 5 | 1.64 | 0.85 ± 1.12 | 5 | |
Chlorpyrifos | - | 0.02 | 0.02 | 0.5 | |
Cyfluthrin | - | 0.04 | 0.04 | 0.2 | |
Dimethomorph | - | 0.03 | 0.03 | 1 | |
Imidacloprid | - | 0.27 | 0.27 | 0.5 | |
Iprodione | - | 0.3 | 0.16 | 5 | |
γ-cyhalothrin | 0.05 | 0.1 | 0.05 ± 0.07 | 0.3 | |
Methamidophos | 0.01 | 0.33 | 0.18 ± 0.22 | 0.01 | |
Methomyl | 0.02 | 1 | 3.04 ± 0.01 | 1 |
Vegetable | Samples | Samples Free Residues | No of Samples ≻ MRL | Samples with Multiple Residues | |||
---|---|---|---|---|---|---|---|
Type | No | No | % | No | % | No | % |
Lettuce | 57 | 24 | 42 | 9 | 16 | 14 | 25 |
Tomato | 23 | 11 | 48 | 4 | 17 | 4 | 17 |
Total samples | 80 | 35 | 44 | 13 | 16 | 18 | 23 |
Pesticides | Acceptable Daily Intake (ADI) (mg/kg) | a) EDI from WHO | b) EDI from Chile | ||||||
---|---|---|---|---|---|---|---|---|---|
15–24 | 25–44 | 44–65 | 65+ | 15–24 | 25–44 | 44–65 | 65+ | ||
Lettuces | |||||||||
Imidacloprid | 0.06 | 0.007 | 0.006 | 0.006 | 0.007 | 0.174 | 0.156 | 0.154 | 0.166 |
γ-cyhalothrin | 0.005 | 0.004 | 0.004 | 0.004 | 0.004 | 0.104 | 0.094 | 0.093 | 0.1 |
Methamidophos | 0.001 | 0.061 | 0.055 | 0.055 | 0.059 | 1.501 | 1.3 | 1.3 | 1.436 |
Chlorpyrifos | 0.01 | 0.002 | 0.002 | 0.002 | 0.002 | 0.061 | 0.055 | 0.054 | 0.058 |
Dithiocarbamates | 0.05 | 0.073 | 0.066 | 0.065 | 0.07 | 1.792 | 1.6 | 1.5 | 1.714 |
Propamocarb | 0.4 | 0.013 | 0.012 | 0.012 | 0.013 | 0.323 | 0.29 | 0.287 | 0.309 |
Difenoconazole | 0.01 | 0.075 | 0.068 | 0.067 | 0.072 | 1.8 | 1.6 | 1.6 | 1.7 |
Esfenvalerate | 0.02 | 0.001 | 0.001 | 0.001 | 0.001 | 0.019 | 0.017 | 0.017 | 0.018 |
Azoxystrobin | 0.2 | 0.009 | 0.008 | 0.008 | 0.008 | 0.211 | 0.19 | 0.188 | 0.202 |
Boscalid | 0.04 | 0.134 | 0.12 | 0.119 | 0.128 | 3.2 | 2.9 | 2.9 | 3.1 |
Chlorothalonil | 0.02 | 0.019 | 0.017 | 0.017 | 0.018 | 0.456 | 0.41 | 0.405 | 0.436 |
Methomyl | 0.02 | 0.001 | 0.001 | 0.001 | 0.001 | 0.033 | 0.03 | 0.03 | 0.032 |
Cyfluthrin | 0.04 | 0.002 | 0.002 | 0.002 | 0.002 | 0.052 | 0.047 | 0.047 | 0.05 |
Cyprodinil | 0.03 | 0.179 | 0.16 | 0.159 | 0.171 | 4.3 | 3.9 | 3.8 | 4.1 |
Fludioxonil | 0.4 | 0.042 | 0.038 | 0.038 | 0.04 | 1 | 0.929 | 0.919 | 0.989 |
Iprodione | 0.06 | 0.04 | 0.036 | 0.036 | 0.039 | 0.99 | 0.889 | 0.88 | 0.947 |
Metalaxyl | 0.08 | 0.002 | 0.002 | 0.002 | 0.002 | 0.055 | 0.049 | 0.049 | 0.052 |
Cypermethrin | 0.02 | 0.001 | 0.001 | 0.001 | 0.001 | 0.015 | 0.013 | 0.013 | 0.014 |
Tomatoes | |||||||||
Imidacloprid | 0.06 | 0.043 | 0.038 | 0.038 | 0.041 | 0.486 | 0.437 | 0.432 | 0.465 |
γ-cyhalothrin | 0.005 | 0.007 | 0.007 | 0.007 | 0.007 | 0.084 | 0.075 | 0.075 | 0.08 |
Methamidophos | 0.001 | 0.028 | 0.025 | 0.025 | 0.026 | 0.315 | 0.283 | 0.28 | 0.301 |
Chlorpyrifos | 0.01 | 0.003 | 0.003 | 0.003 | 0.003 | 0.036 | 0.032 | 0.032 | 0.034 |
Boscalid | 0.04 | 0.002 | 0.001 | 0.001 | 0.002 | 0.018 | 0.016 | 0.016 | 0.017 |
Chlorothalonil | 0.02 | 0.133 | 0.12 | 0.118 | 0.127 | 1.5 | 1.3 | 1.3 | 1.4 |
Methomyl | 0.02 | 0.479 | 0.43 | 0.426 | 0.458 | 5.4 | 4.9 | 4.8 | 5.2 |
Acetamiprid | 0.07 | 0.077 | 0.069 | 0.069 | 0.074 | 0.882 | 0.792 | 0.784 | 0.844 |
Cyfluthrin | 0.04 | 0.006 | 0.006 | 0.006 | 0.006 | 0.072 | 0.065 | 0.064 | 0.069 |
Iprodione | 0.04 | 0.025 | 0.023 | 0.022 | 0.024 | 0.288 | 0.259 | 0.256 | 0.275 |
Chlorfenapyr | 0.03 | 0.002 | 0.001 | 0.001 | 0.002 | 0.018 | 0.016 | 0.016 | 0.017 |
Dimethomorph | 0.2 | 0.005 | 0.004 | 0.004 | 0.005 | 0.054 | 0.049 | 0.048 | 0.052 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgueta, S.; Valenzuela, M.; Fuentes, M.; Meza, P.; Manzur, J.P.; Liu, S.; Zhao, G.; Correa, A. Pesticide Residues and Health Risk Assessment in Tomatoes and Lettuces from Farms of Metropolitan Region Chile. Molecules 2020, 25, 355. https://doi.org/10.3390/molecules25020355
Elgueta S, Valenzuela M, Fuentes M, Meza P, Manzur JP, Liu S, Zhao G, Correa A. Pesticide Residues and Health Risk Assessment in Tomatoes and Lettuces from Farms of Metropolitan Region Chile. Molecules. 2020; 25(2):355. https://doi.org/10.3390/molecules25020355
Chicago/Turabian StyleElgueta, Sebastian, Marcela Valenzuela, Marcela Fuentes, Pablo Meza, Juan Pablo Manzur, Shaofeng Liu, Guoqing Zhao, and Arturo Correa. 2020. "Pesticide Residues and Health Risk Assessment in Tomatoes and Lettuces from Farms of Metropolitan Region Chile" Molecules 25, no. 2: 355. https://doi.org/10.3390/molecules25020355
APA StyleElgueta, S., Valenzuela, M., Fuentes, M., Meza, P., Manzur, J. P., Liu, S., Zhao, G., & Correa, A. (2020). Pesticide Residues and Health Risk Assessment in Tomatoes and Lettuces from Farms of Metropolitan Region Chile. Molecules, 25(2), 355. https://doi.org/10.3390/molecules25020355