Loseolamycins: A Group of New Bioactive Alkylresorcinols Produced after Heterologous Expression of a Type III PKS from Micromonospora endolithica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification and Expression of the Type III PKS Gene
2.2. Purification and Structure Elucidation
2.3. Biosynthetic Scheme
2.4. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Isolation and Manipulation of DNA
3.3. Metabolite Extraction
3.4. Mass Spectrometry (MS) Metabolite Analysis
3.5. Purification
3.6. Nuclear Magnetic Resonance (NMR) Spectroscopy
3.7. Activity Testing
3.8. Genome Mining and Bioinformatic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Shen, B. A New Golden Age of Natural Products Drug Discovery. Cell 2015, 163, 1297–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myronovskyi, M.; Rosenkränzer, B.; Stierhof, M.; Petzke, L.; Seiser, T.; Luzhetskyy, A. Identification and Heterologous Expression of the Albucidin Gene Cluster from the Marine Strain Streptomyces Albus Subsp. Chlorinus NRRL B-24108. Microorganisms 2020, 8, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, L.; Plaza, A.; Dubiella, C.; Groll, M.; Kaiser, M.; Müller, R. Macyranones: Structure, Biosynthesis, and Binding Mode of an Unprecedented Epoxyketone that Targets the 20S Proteasome. J. Am. Chem. Soc. 2015, 137, 8121–8130. [Google Scholar] [CrossRef] [PubMed]
- Daum, M.; Peintner, I.; Linnenbrink, A.; Frerich, A.; Weber, M.; Paululat, T.; Bechthold, A. Organisation of the Biosynthetic Gene Cluster and Tailoring Enzymes in the Biosynthesis of the Tetracyclic Quinone Glycoside Antibiotic Polyketomycin. ChemBioChem 2009, 10, 1073–1083. [Google Scholar] [CrossRef]
- Baltz, R.H. Marcel Faber Roundtable: Is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J. Ind. Microbiol. Biotechnol. 2006, 33, 507–513. [Google Scholar] [CrossRef]
- Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Newman, D. Screening and identification of novel biologically active natural compounds. F1000Research 2017, 6, 783. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Cobb, R.E.; Zhao, H. Recent advances in natural product discovery. Curr. Opin. Biotechnol. 2014, 30, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Zarins-Tutt, J.S.; Barberi, T.T.; Gao, H.; Mearns-Spragg, A.; Zhang, L.; Newman, D.J.; Goss, R.J.M. Prospecting for new bacterial metabolites: A glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Nat. Prod. Rep. 2016, 33, 54–72. [Google Scholar] [CrossRef] [Green Version]
- Baltz, R.H. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol. 2008, 8, 557–563. [Google Scholar] [CrossRef]
- Myronovskyi, M.; Luzhetskyy, A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat. Prod. Rep. 2019, 36, 1281–1294. [Google Scholar] [CrossRef] [PubMed]
- Medema, M.H.; Blin, K.; Cimermancic, P.; De Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, W339–W346. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Myronovskyi, M.; Rosenkränzer, B.; Nadmid, S.; Pujic, P.; Normand, P.; Luzhetskyy, A. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab. Eng. 2018, 49, 316–324. [Google Scholar] [CrossRef]
- Olano, C.; García, I.; González, A.; Rodriguez, M.; Rozas, D.; Rubio, J.; Sánchez-Hidalgo, M.; Braña, A.F.; Méndez, C.; Salas, J.A. Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb. Biotechnol. 2014, 7, 242–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegl, T.; Tokovenko, B.; Myronovskyi, M.; Luzhetskyy, A. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab. Eng. 2013, 19, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Xu, F.; Zeng, J.; Zhan, J. Type III polyketide synthases in natural product biosynthesis. IUBMB Life 2012, 64, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Funa, N.; Awakawa, T.; Horinouchi, S. Pentaketide Resorcylic Acid Synthesis by Type III Polyketide Synthase from Neurospora crassa. J. Biol. Chem. 2007, 282, 14476–14481. [Google Scholar] [CrossRef] [Green Version]
- Awakawa, T.; Fujita, N.; Hayakawa, M.; Ohnishi, Y.; Horinouchi, S. Characterization of the Biosynthesis Gene Cluster for Alkyl-O-Dihydrogeranyl-Methoxyhydroquinones in Actinoplanes missouriensis. ChemBioChem 2011, 12, 439–448. [Google Scholar] [CrossRef]
- Funabashi, M.; Funa, N.; Horinouchi, S. Phenolic Lipids Synthesized by Type III Polyketide Synthase Confer Penicillin Resistance on Streptomyces griseus. J. Biol. Chem. 2008, 283, 13983–13991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funa, N.; Ozawa, H.; Hirata, A.; Horinouchi, S. Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA 2006, 103, 6356–6361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; John Innes Foundation: Norwich, UK, 2000. [Google Scholar]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012. [Google Scholar]
- Rebets, Y.; Kormanec, J.; Luzhetskyy, A.; Bernaerts, K.; Anné, J. Cloning and Expression of Metagenomic DNA in Streptomyces lividans and Subsequent Fermentation for Optimized Production. Methods Mol. Biol. 2016, 1539, 99–144. [Google Scholar] [CrossRef]
- Court, D.L.; Sawitzke, J.A.; Thomason, L.C. Genetic Engineering Using Homologous Recombination. Annu. Rev. Genet. 2002, 36, 361–388. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
Gene | Identifier | Putative Function |
---|---|---|
1 | LU17765_001550 | l-aspartate oxidase |
2 | LU17765_001560 | carboxylating nicotinate-nucleotide diphosphorylase |
3 | LU17765_001570 | Type III pantothenate kinase |
4 | LU17765_001580 | putative methyltransferase |
5 | LU17765_001590 | putative methyltransferase |
6 | LU17765_001600 | Lysine-tRNA ligase |
7 | LU17765_001610 | Nucleoid-associated protein Lsr2 |
8 | LU17765_001620 | ATP-dependent Clp protease ATP-binding subunit |
9 | LU17765_001630 | A/G-specific adenine glycosylase |
10 | LU17765_001640 | ACT domain-containing protein |
11 | LU17765_001650 | Peptide deformylase |
12 | LU17765_001660 | Hypothetical protein |
13 | LU17765_001670 | DNA integrity scanning protein DisA |
14 | LU17765_001680 | DNA repair protein RadA |
15 | LU17765_001690 | Hypothetical protein |
16 | LU17765_001700 | UbiA family prenyltransferase |
17 | LU17765_001710 | putative methyltransferase |
18 | LU17765_001720 | acyl-CoA dehydrogenase |
19 [losA] | LU17765_001730 | type III polyketide synthase |
20 | LU17765_001740 | Hypothetical protein |
21 | LU17765_001750 | Hypothetical protein |
22 | LU17765_001760 | CarD family transcriptional regulator |
23 | LU17765_001770 | 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase |
24 | LU17765_001780 | 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase |
25 | LU17765_001790 | tetratricopeptide repeat protein |
1-Loseolamycin A1 | 2-Loseolamycin A2 | ||||
---|---|---|---|---|---|
Position | δC, Type | δH, Type (J [Hz]) | HMBC 1 | Position | δH, Type |
1 | 158.14, C | - | - | 1 | - |
2 | 99.91, CH | 5.98, s | 3, 4, 6 | 2 | 5.98, m |
3 | 158.14, C | - | - | 3 | - |
4 | 106.24, CH | 5.99, s | 3, 6, 1′ | 4 | 5.98, m |
5 | 144.15, C | - | - | 5 | - |
6 | 106.24, CH | 5.99, s | 3, 4, 1′ | 6 | 5.98, m |
1′ | 35.24, CH2 | 2.33, dd, 7.5 Hz | 5, 4, 6, 2′, 8′ | 1′ | 2.32, m |
2′ | 30.67, CH2 | 1.45, m | - | 2′ | 1.44, m |
3′ | 29.77, CH2 | 1.15–1.24, m | - | 3′ | 1.15–1.34, m |
4′ | 29.10, CH2 | 1.15–1.24, m | - | 4′ | 1.15–1.34, m |
5′ | 29.02, CH2 | 1.15–1.24, m | - | 5′ | 1.15–1.34, m |
6′ | 29.02, CH2 | 1.15–1.24, m | - | 6′ | 1.15–1.34, m |
7′ | 29.01, CH2 | 1.15–1.24, m | - | 7′ | 1.15–1.34, m |
8′ | 28.99, CH2 | 1.15–1.24, m | - | 8′ | 1.15–1.34, m |
9′ | 28.87, CH2 | 1.15–1.24, m | - | 9′ | 1.15–1.34, m |
10′ | 28.64, CH2 | 1.15–1.24, m | - | 10′ | 1.15–1.34, m |
11′ | 23.83, CH2 | 1.26, m | 9′, 14′, 1″, 8′, 12′, 13′ | 11′ | 1.15–1.34, m |
12′ | 43.67, CH2 | 1.29, m | 13′, 14′, 1″, 10′ | 12′ | 1.44, m |
13′ | 68.70, C | - | - | 13′ | 1.52, m |
14′ | 29.25, CH3 | 1.03, s | 13′, 12′, 1″, 11′ | 14′ | 4.35, m |
1″ | 29.25, CH3 | 1.03, s | 13′, 12′, 14′, 11′ | 15′ | 1.49, d |
1-OH | - | 9.01, s br | - | 1-OH | 9.06, s br |
3-OH | - | 9.01, s br | - | 3-OH | 9.06, s br |
13′-OH | - | 4.01, s br | 14′, 1″ | 14′-OH | 5.30, s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lasch, C.; Gummerlich, N.; Myronovskyi, M.; Palusczak, A.; Zapp, J.; Luzhetskyy, A. Loseolamycins: A Group of New Bioactive Alkylresorcinols Produced after Heterologous Expression of a Type III PKS from Micromonospora endolithica. Molecules 2020, 25, 4594. https://doi.org/10.3390/molecules25204594
Lasch C, Gummerlich N, Myronovskyi M, Palusczak A, Zapp J, Luzhetskyy A. Loseolamycins: A Group of New Bioactive Alkylresorcinols Produced after Heterologous Expression of a Type III PKS from Micromonospora endolithica. Molecules. 2020; 25(20):4594. https://doi.org/10.3390/molecules25204594
Chicago/Turabian StyleLasch, Constanze, Nils Gummerlich, Maksym Myronovskyi, Anja Palusczak, Josef Zapp, and Andriy Luzhetskyy. 2020. "Loseolamycins: A Group of New Bioactive Alkylresorcinols Produced after Heterologous Expression of a Type III PKS from Micromonospora endolithica" Molecules 25, no. 20: 4594. https://doi.org/10.3390/molecules25204594
APA StyleLasch, C., Gummerlich, N., Myronovskyi, M., Palusczak, A., Zapp, J., & Luzhetskyy, A. (2020). Loseolamycins: A Group of New Bioactive Alkylresorcinols Produced after Heterologous Expression of a Type III PKS from Micromonospora endolithica. Molecules, 25(20), 4594. https://doi.org/10.3390/molecules25204594