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Abstract: Alkylamino coupling reactions at the C4 positions of 4-halo-1H-1-tritylpyrazoles were
investigated using palladium or copper catalysts. The Pd(dba), catalyzed C-N coupling reaction of
aryl- or alkylamines, lacking a B-hydrogen atom, proceeded smoothly using ‘BuDavePhos as a ligand.
As a substrate, 4-Bromo-1-tritylpyrazole was more effective than 4-iodo or chloro-1-tritylpyrazoles.
Meanwhile, the Cul mediated C-N coupling reactions of 4-iodo-1H-1-tritylpyrazole were effective for
alkylamines possessing a 3-hydrogen atom.

Keywords: amination; 4-halopyrazole; Buchwald-Hartwig coupling; Pd(dba);; Cul mediated
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1. Introduction

Synthetic methodologies towards a range of substituted pyrazoles have been developed, as they
commonly exhibit bioactivities such as antitumor, antiviral, and antifungal activities. Furthermore,
the synthetic study of pyrazoles provides diverse building blocks for the discovery of new drugs,
biological probes, herbicides, and other new useful materials [1-3]. Therefore, introduction of various
functional groups at specific positions on a pyrazole ring is an important and attractive endeavor
in synthetic organic chemistry. In particular, the synthesis of C4-aminated pyrazoles has become
a prominent research topic, due to the important bioactivities exhibited by this compound class, as
shown in Figure 1.
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Figure 1. Examples of bioactive 4-aminopyrazoles (a—i).
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Simple 4-alkylaminopyrazoles (a and b) have been reported to exhibit weak inhibitory activities
against horse lever alcohol dehydrogenase (LADH) [4,5]. Azaisoindolinone derivative (c) exhibits
potent lipid kinase phosphoinositide 3-kinase y (PI3Ky) inhibition, with the distinct advantage of being
orally administered and central nervous system (CNS)-penetrant [6]. Two 4-heteroarylamidopyrazoles
(d and e) have been presented as apoptosis signal-regulating kinase 1 (ASK 1) inhibitors [7].
1-Acetoanilide-4-aminopyrazole-substituted quinazoles are selective Aurora B protein kinase inhibitors
with potent anti-tumor activity, and structure f is the most potent among them. The 3-aminopyrazole
analog of compound f is AZD1152, which was the first Aurora B selective inhibitor to enter
clinical trials [8]. 7H-pyrrolo[2,3-d]pyrimidine-based 4-amino-(1H)-pyrazole derivative (g) and
pyrimidine-based 4-amino-(1H)-pyrazole derivatives (h and i) are Janus kinase (JAK) inhibitors.
Specifically, compound i, a dual inhibitor of JAK and histone deacetylase (HDAC), comprises
a zinc-binding moiety (HONHCO) linked to the pyrazole N1, via a (CH;)s-aliphatic chain [9,10].

The well-known and widely utilized Buchwald-Hartwig coupling reaction is one of the most
powerful methods for the amination of aromatic rings. Moreover, the applicability and efficiency of
the reaction are continually being improved with the design and development of efficient palladium
catalysts, precatalysts, and bulky ligands. Numerous combinations of catalysts and ligands exist that
are suitable for specific coupling reactions [11-18].

In spite of such developments, there have been only a few reports of Buchwald-Hartwig coupling
at the C4 position of pyrazoles. In 2011, the first example involving the C4 coupling of pyrazoles
with aromatic amines was reported by Buchwald, as shown in Scheme 1, Equation (1) [19]. In
the following year, the same group described the amidation of five-membered heterocycles with
aromatic amides, wherein three examples using 1-benzyl-4-bromopyrazoles and one example using
4-bromo-1-methylpyrazole were reported (Equation (2)) [20]. In their subsequent study on the amination
of unprotected five-membered bromoheterocycles, Pd-catalyzed coupling reactions of 4-bromopyrazole
with eleven aromatic amines, as well as one benzylic amine, were disclosed (Equation (3)) [21]. Recently,
Buchwald et al. described visible-light-mediated amination of aryl halides in the presence of nickel
and photoredox catalysts, for which one example of the reaction between 1-benzyl-4-bromopyrazole
and pyrrolidine was included (Equation (4)) [22].
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Scheme 1. Preceding studies on C4-amino-functionalization of 4-bromo-1H-pyrazoles.

In the course of our continuing studies on the functionalization at the C4 position of pyrazoles,
we recently reported the synthesis of pyrazole-containing heterobicyclic molecules via ring-closing
metathesis [23,24]. Our engagement in pyrazole chemistry has been focused on metal-catalyzed
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coupling reactions, such as Kumada-Tamao, Suzuki-Miyaura, and Sonogashira couplings, and
the Heck-Mizoroki reaction [25-28]; while the Buchwald-Hartwig coupling reaction for the C4
amination of pyrazoles has remained unchallenged. Encouraged by the above-mentioned successful
results, our interest has shifted to Buchwald coupling between 4-halo-1H-1-tritylpyrazoles and alkyl
amines, which has not been investigated in detail, with readily accessible palladium or copper catalysts,
such as bis(benzylideneacetone) palladium(0) (Pd(dba),), or copper (I) iodide (Cul). Herein, we report
C4-alkylamino coupling reactions using Pd(dba), or Cul with 4-halo-1H-1-tritylpyrazoles.

2. Results and Discussion

2.1. Pd(dba),-Catalyzed Buchwald-Hartwig Coupling for C4-Amination of 4-halo-1H-1-tritylpyrazoles

First, we investigated the Buchwald-Hartwig coupling between 4-halo-1H-1-tritylpyrazoles (1)
and piperidine, as a representative secondary amine [16], in order to determine the optimum reaction
conditions. The results are summarized in Table 1.

Table 1. Buchwald-Hartwig coupling between 4-halo-1H-1-tritylpyrazoles (1) and piperidine.

Pd catalyst (10 mol%)
ligand (20 mol%) O

X 'BUOK (2.0 eq.) N
(\g piperidine (2.0 eq.) (\g
N‘N\ N‘N\

1 2"

Entry 2 Substrate Ca:;?ys t Ligand 4 Solvent Temgeg‘)a ture Time Yl?(l,/(j) 2a
1 1 X =1 Pd(dba), L1 xylene 160 (MW b) 10 min 0
2 11 Pd(dba), L2 xylene 160 (MW) 10 min 0
3 1p Pd(dba), L3 xylene 160 (MW) 10 min 0
4 11 Pd(dba), L4 xylene 160 (MW) 10 min 21
5 1p PdCl, L4 xylene 160 (MW) 10 min 9
6 11 Pd(OAc), L4 xylene 160 (MW) 10 min 20
7 1 PEPPSI-IPr L4 xylene 160 (MW) 10 min 13

8¢ 1p Pd(dba), L4 xylene 160 (MW) 10 min 52
9¢ 1x Pd(dba), L4 toluene 160 (MW) 10 min 30
10 € 15 Pd(dba), L4 mesitylene 160 (MW) 10 min 49
11°¢ 1p Pd(dba), L4 1,4-dioxane 160 (MW) 10 min 32
12¢ 1p Pd(dba), L4 THF 160 (MW) 10 min 0
13 11 Pd(dba), L4 xylene rt 24h 7
14 1x Pd(dba), L4 xylene 60 24h 19
15 1x Pd(dba), L4 xylene 90 24 h 48
16 1g:: X =Br Pd(dba); L4 xylene 90 24 h 60
17 1c;: X=Cl Pd(dba), L4 xylene 90 24h 40
18 1By Pd(dba), L4 xylene 70 24 h 43
19 1p: Pd(dba), L4 xylene 140 24 h 23
a general reaction conditions: substrate (50 mg, 0.13 mmol); solvent (2 mL), others are seen
in the scheme in this table. b, MW: microwave, €. 40 mol% of L4 was used. d
Pr 'Pr
Ph NHN
A QTPrT’P:Q SSppn, PhoR Q\Pth O
’ / " e <F®S’ PPhz 2 Phap (HsO)N o
N PPh 2
Ph ], uu 2 \© O
Pd(dba), PEPPSI-IPr  dppf (L1) dppe (L2) DPEPhos (L3) BuDavePhos (L4)

As the Buchwald-Hartwig coupling reaction for 4-halo-1H-pyrazoles requires high temperatures
(>80 °C) as well as prolonged time [19-21], we utilized microwave (MW) apparatus to expedite
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the experimental process. Ligand screening was performed with the fixed conditions of
4-iodo-1H-1-tritylpyrazole (1j, X = I), Pd(dba),, xylene, 160 °C, and 10 min under MW irradiation (entries
1-4). In the case of commonly used bidentate ligands, namely 1,1’-bis(diphenylphosphino)ferrocene
(dppf, L1), 1,2-bis(diphenylphosphino)ethane (dppe, L2), and 2,2’-bis(diphenylphosphino)diphenyl
ether (DPEPhos, L3), the reaction did not proceed (entries 1-3), while with the use of the bulky
‘BuDavePhos ligand (L4) the desired coupled product 2a was obtained in 21% yield; hence L4 was
deemed a suitable ligand for this coupling reaction (entry 4). The use of L4 with palladium(II) chloride
(PdCly), palladium(II) acetate (Pd(OAc),), or pyridine-enhanced precatalyst preparation stabilization
and initiation-isopropyl (PEPPSI-IPr) catalysts did not improve the yield of 2a (entries 5-7). Although
increasing the amount of L4 to 40 mol% yielded 52% of 2a, this created an additional problem for
the purification of 2a (entry 8). Solvent screening with the use of L4 (40 mol%) did not improve
results upon that of entry 8 (entries 9-12). Prolonged reaction time (24 h) with L4 (20 mol%) at room
temperature (rt) under MW irradiation gave 2a in only 7% yield (entry 13). Conducting the reaction at
60 °C and 90 °C afforded 2a in 19% and 48% yields, respectively (entries 14 and 15). Alternatively,
when 4-bromo- and 4-chloropyrazoles (1g,: X = Br and 1¢;: X = Cl) were used as substrates at 90 °C
for 24 h (entries 16 and 17), the 4-bromo analogue delivered the highest yield of 2a (60%) (entry 16).
Reaction conditions using bromo compound 1g; at lower or higher temperatures (70 or 140 °C in
a sealed reaction vial) delivered inferior results compared to that of entry 16 (entries 18 and 19). Based
on these results, further experiments were performed employing the reaction conditions listed in
entry 16.

Next, optimized reaction conditions were applied to various amines, and the results are
summarized in Table 2. Reactions of 1, (X=Br) with piperidine and morpholine afforded desired
products 2a and 2b in 60% and 67% yields, respectively (entries 1 and 2), while the reactions with
pyrrolidine and allylamine afforded 2¢ (7%) and 2d (6%) in low yields (entries 3 and 4). The coupling
reactions of 1g, with various primary amines produced the corresponding 4-alkylaminopyrazoles 2e-g,
2k, and 21 in low yields (17-34%) (entries 5-8, 11, and 12). Meanwhile, in the cases of isopropylamine
and benzylamine, the desired products 2i and 2j were not obtained (entries 9 and 10). The reactions of
1, with adamantylamine or tert-butylamine afforded the corresponding products 2m and 2n in 90%
and 53% yields, respectively (entries 13 and 14). Furthermore, reactions with aromatic amines (anilines
and 1-naphtylamine) gave the corresponding 20 (94%), 2p (91%), and 2q (85%) in high yields (entries
15-17) as being analogous to Buchwald’s findings [21]. As the reaction with diphenylamine afforded 2r
in 45% yield, we surmised that bulkiness at the reaction center depresses the chemical yield (entry 18).

Reactions of 1g; with pyrrolidine, allylamine, or primary amines bearing a 3-hydrogen atom
resulted in low yields (entries 3-12), while amines lacking a 3-hydrogen afforded good yields (entries
13-18). These contrasting results are likely due to 3-elimination occurring in the palladium complex
during the coupling process.
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Table 2. Buchwald-Hartwig coupling of 4-bromo-1H-1-tritylpyrazole (1g;) with various amines.
Pd(dba), (10 mol%)

Br ‘BuDavePhos (L4) (20 mol%) R‘N/R'
amine (2.0 eq.), 'BUOK (2.0 eq.)
TN xylene, 90 °C, 24 h I\
N\N N\N
\Tr lrr
18, 2
Entry. Amine Product Yield (%)
1 piperidine 2a: R =R’ = -CH,CH,CH,CH,CH,- 60
2 morpholine 2b: R =R’ = -CH,CH,OCH,CHj>- 67
3 pyrrolidine 2¢: R =R’ =-CH,;CH,;CH,CH,- 7
4 allylamine 2d: R = CH,CH=CH,,R'=H 6
5 n-propylamine 2e: R=CH,CH,CH3, R"=H 24
6 n-butylamine 2f: R = CH,CH,CH,CHj3, R’ =H 17
7 isobutylamine 2g: R=CH,CH(CH3),,R'=H 28
8 isoamylamine 2h: R = CH,CH,CH(CHj3),, R"=H 20
9 isopropylamine 2i: R=CH(CHj),,R"=H 0
10 PhCH,NH, 2j: R=CH,Ph,R'=H 0
11 PhCH,CH,NH, 2k: R = CH,CH,Ph,R"=H 30
12 PhCH,CH,CH,NH, 21: R = CH,CH,CH,Ph, R"=H 34
132 adamantylamine 2m: R = adamantyl, R = H 90
142 tert-butylamine 2n: R = CH(CH3)3, R" = H 53
152 aniline 20: R=Ph,R'"=H 94
162 2-methoxyaniline 2p: R =2-MeOPh,R"=H 91
172 1-naphthylamine 2q: R =naphth-1-yl, R’ =H 85
182 N,N-diphenylamine 2r: R=R’=Ph 45

2. Entries 13-18 were performed with 1.1 equivalents of amine.

2.2. Cul-Catalyzed Coupling for C4-Amination of 4-Halo-1H-1-tritylpyrazoles

Copper-catalyzed C-N coupling reactions have been extensively studied [29], and Buchwald has
reportedly implemented this type of reaction using bromo- or iodobenzenes as substrates progressively,
but not with five-membered heterocyclic compounds such as pyrazoles [30-36]. As the C-N coupling
reaction of 4-halopyrazoles 1 with allyl- or alkylamines bearing 3-hydrogen atoms revealed low
reactivities in the above investigation (Table 2, entries 4-12), the copper-catalyzed reaction of 1 was
further studied.

For this purpose, the reaction of allylamine with 4-iodopyrazole 1; (X = I), which could be
got easier than 4-bromopyrazole, was investigated, as presented in Table 3. First, the reaction was
performed using the conditions similar to those used in Buchwald’s procedure [32]: Cul (5 mol%),
2-isobutyrylcyclohexanone (L5: 20 mol%) as the ligand, N,N-dimethylformamide (DMF), 100 °C, 24 h,
and t-BuOK (2 eq). Although the desired 4-allylaminopyrazole 2d was obtained in only 17% yield (entry
1), increasing the amount of Cul from 5 to 20 mol% improved the chemical yield of 2d to 72% (entry 2).
The use of 2-acetylcyclohexanone (L6) as an alternative ligand, which is nearly 10-fold cheaper than
L5, afforded a good yield (68%, entry 3), while the use of 3,4,7,8-tetramethyl-1,10-phenanthroline (L7)
resulted in a poor yield (12%, entry 4). Hence, L6 was applied in the following experiments (entries
5-15 in Table 3). The reaction temperature was varied in entries 5-7, however 100 °C proved optimal
(entry 3). Furthermore, various copper catalysts were investigated in entries 9-13, and it was found
that the use of the high-cost (CuOTf),-C¢Hjg catalyst (entry 13) furnished a comparable yield (70%) to
that of Cul (72%) (entry 2). In addition, while the use of 4-bromopyrazole 1 (X = Br) provided 2i in
66% yield (entry 14), chloropyrazole 1¢; (X = Cl) did not react (entry 15).
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Table 3. Cul-catalyzed allylamination of 4-halo-1H-1-tritylpyrazoles 1.

X Cu catalyst (20 mol%), ligand (20 mol%) HN/\;

N\ allylamine (2.0 eq.), ‘BuOK (2.0 eq.) I N

N~N DMF, 24 h N~N

L \

1 17 Tr 2d
Entry 2 Substrate Cu Catalyst Ligand ¢ Temg)ecr)ature Yield 2d (%)
1P 1 X =1 Cul L5 100 17
2 1 Cul L5 100 72
3 1x Cul L6 100 68
4 1 Cul L7 100 12
5 11 Cul L6 rt 0
6 1x Cul L6 70 41
7 1 Cul Lé 130 9
8 1 Cul L6 100 52
9 1x Cul, L6 100 57
10 1 Cu(OAc), Lé 100 58
11 1 Cu,O L6 100 16
12 1x CuCT L6 100 50
13 1 [CuOT(], CeHg Lé 100 70
14 1gr: X =Br Cul L6 100 66
15 Ici: X=Cl1 Cul L6 100 0
4. general reaction conditions: substrate (50 mg, 0.12 mmol); solvent (2 mL), others are seen

in the scheme in this table. b, Cul (6 mol%), L5 (20 mol%), Csp,COs (2.0 Equation). c.

A &R MW

L5 L6 CuCT

Therefore, to evaluate the scope of this transformation, additional coupling reactions between
iodopyrazole 11 and various amines were performed, by applying the optimized reaction conditions
(entry 3 of Table 3), as shown in Table 4. It should be noted that there were a number of distinct contrasts
between the outcomes of the Cul-catalyzed (Table 4) and those of the Pd-catalyzed coupling reactions
(Table 2). In the case of Cul coupling, reactions of 1i with piperidine and morpholine afforded 2a and 2b
(21% and 22%, respectively) in lower yields (Table 4, entries 1 and 2) than those obtained (60% and 67%,
respectively) in the corresponding Pd-catalyzed reaction of 1, (entries 1 and 2 in Table 2). The Cul
catalyst provided the pyrrolidine derivative 2c¢ in 43% yield (Table 4, entry 3), while the Pd catalyst
yielded 2c in only 7% yield (Table 2, entry 3). Cul-catalyzed reactions with primary alkylamines gave
moderate to good yields of products 2d-21 (entries 4-12), while reactions with adamantyl, fert-butyl,
and aromatic amines did not afford the desired products (entries 13-17), and only aniline furnished
a low yield of 20 (15%) (entry 15); these trends were reversed in the case of Pd-catalyzed processes.
These negative results may be ascribed to the increase in bulkiness as well as a decrease in the basicity
of the amine sources.
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Table 4. Cul-catalyzed coupling of 11 with various amines.

Cul (20 mol%), L6 (20 mol%) R
' amine (2.0 eq.), BUOK (2.0 eq.) N-R
(\g DMF, 100 °C, 24 h A\
N~
i N
1 2 Tr
Entry Amine Product Yield (%)
1 piperidine 2a 21
2 morpholine 2b 22
3 pyrrolidine 2c 43
4 allylamine 2d 68
5 n-propylamine 2e 75
6 n-butylamine 2f 62
7 isobutylamine 2g 70
8 isoamylamine 2h 62
9 isopropylamine 2i 57
10 PhCH,NH, 2j 55
11 Ph CH,CH,;NH, 2k 53
12 Ph CH,; CH,CH,;NH, 21 69
13 adamantylamine 2m 0
14 tert-butylamine 2n 0
15 aniline 20 15
16 1-naphthylamine 2q 0
17 N,N-diphenylamine 2r 0

3. Conclusions

We have studied the C4 amination of pyrazole derivatives using readily accessible Pd(dba); or
Cul catalysts. The Pd(dba);-catalyzed reaction of 4-bromo-1H-1-tritylpyrazole proved to be suitable
for aromatic or bulky amines lacking (3-hydrogen atoms, but not for cyclic amines (piperidine and
morpholine); additionally it was not suitable for alkylamines possessing (-hydrogen atoms. On
the other hand, the Cul-catalyzed amination using 4-iodo-1H-1-tritylpyrazole was revealed to be
favorable for alkylamines possessing 3-hydrogen atoms, and not suitable for aromatic amines and bulky
amines lacking (3-hydrogens, indicating the complementarity of the two catalysts. Although further
improvements are required for practical synthesis, such as the reduction of catalyst or ligand loading,
the findings of the present study offer a useful synthetic method for the construction of 4-functionalized
pyrazoles. Further application of the methodology developed in this study to the C-O coupling reaction
of halopyrazoles with alkylated alcohols will be evaluated and reported in the near future.

4. Materials and Methods

General: Nuclear magnetic resonance (NMR) spectra were recorded at 27 °C on an Agilent
400-MR-DD2 spectrometer (Agilent Tech., Inc., Santa Clara, CA, USA) in CDCl3 with tetramethylsilane
(TMS) as an internal standard. Abbreviations for splitting patterns in 'H-NMR spectra are noted as d
= doublet; t = triplet; q = quartet; quin = quintet; sept = septet. Electron impact-high-resolution mass
spectra (EI-HRMS) were measured with a JEOL JMS-700 (2) mass spectrometer (JEOL, Tokyo, Japan).
Melting points were determined on a Yanagimoto micromelting point apparatus and were uncorrected.
Liquid column chromatography was conducted with silica gel (FL-60D, Fuji Silysia Chemical Ltd.,
Kasugai, Aichi, Japan). Analytical thin layer chromatography (TLC) was performed on silica gel 70
Fys54 plates (Wako Pure Chemical Industries, Tokyo, Japan), and compounds were detected by dipping
the plates into an EtOH solution of phosphomolybdic acid followed by heating. MW-aided reactions
were carried out in a Biotage Initiator® reactor (PartnerTech Atvidaberg AB for Biotage Sweden
AB, Uppsala, Sweden). Pd(dba),, mesitylene, dppf (L2), copper (I) thiophene-2-carboxylate (CuCT),
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piperidine, pyrrolidine, allylamine, n-propylamine, isobutylamine, isoamylamine, isopropylamine,
benzylamine, 2-phenylethylamine, 3-phenylpropylamine, adamantylamine, tert-butylamine, aniline,
2-methoxyaniline, 1-naphthylamine, and N,N-diphenylamine were purchased from Tokyo Chemical
Industry (TCI) Co. (Tokyo, Japan). ‘BuOK, Cul, and 3,4,7,8-tetramethyl-1,10-phenanthroline (L7) were
purchased from Nacalai Tesque, Inc. (Kyoto, Japan). Dry xylene, THF, 1,4-dioxane, and DMF were
purchased from FUJIFILM Wako Pure Chemical Co. (Osaka, Japan). PEPSI-IPr, dppf (L1), DEPPhos
(L3), ‘BuDavePhos (L4), morpholine, 2-isobutyrylcyclohexanone (L5), and 2-acetylcyclohexanone (L6)
were purchased from Sigma-Aldrich Co. LLC (St. Louis, MI, USA).

Palladium-catalyzed coupling reaction with 1 and amines (Tables 1 and 2)

Typical procedure (Table 1, entry 16): To a solution of 1g, (50.0 mg, 1.28 x 10! mmol) in xylene (2 mL)
in a MW vial were added ‘BuDavePhos (8.8 mg, 2.56 x 10~2 mmol, 20 mol%), Pd(dba); (7.4 mg, 1.
28 x 1072 mmol, 10 mol%), potassium t-butoxide (‘BuOK) (28.8 mg, 2.57 X 107! mmol, 2.0 Equation)
and piperidine (0.03 mL, 2.57 X 10~! mmol, 2.0 Equation). The reaction vial was sealed and heated at
90 °C with stirring in an oil bath for 24 h. The reaction mixture was quenched by the addition of sat.
aq. NH4Cl (1 mL) and extracted with CH,Cl, (1 mL X 3). The combined organic layers were dried
over MgSQ0y, filtered, and evaporated to give a crude residue, which was purified by silica gel column
chromatography (eluent: Hexane/AcOEt = 4:1) to afford 1-(1-trityl-1H-pyrazol-4-yl)piperidine (2a)
(30.9 mg, 60%) as a white powder.

Cul-catalyzed coupling reaction with 1 and amines (Tables 3 and 4)

Typical procedure (Table 3, entry 3); To a solution of 1j (50.0 mg, 1.15 x 107! mmol) in DMF (2 mL) in
a MW vial, were added 2-acetylcyclohexanone (3.0 pL, 2.30 X 1072 mmol, 20 mol%), Cul (4.4 mg, 2.30
X 1072 mmol, 20 mol%), 'BuOK (25.7 mg, 2.30 x 10~! mmol, 2.0 Equation) and allylamine (0.03 mL,
2.30 x 107! mmol, 2.0 Equation). The reaction vial was sealed and heated at 100 °C with stirring in an
oil bath for 24 h. The reaction mixture was quenched by the addition of sat. aq. NH4CI (1 mL) and
extracted with CH,Cl, (1 mL x 3). The combined organic layers were dried over MgSQOy, filtered, and
evaporated to give a crude residue, which was purified by silica gel column chromatography (eluent:
Hexane/AcOEt = 4:1) to afford 2d (28.6 mg, 68%).

1-(1-Trityl-1H-pyrazol-4-yl)piperidine (2a): white powder; mp 170-174 °C; 'H-NMR (400 MHz, CDCl3): &
1.49 (2H, quin, ] = 5.7 Hz, -CH,CH,CH,-), 1.64 (4H, quin, ] = 5.7 Hz, -CH,CH,CHy), 2.83 (4H, t, ] = 5.7
Hz, -NCH,CH,) 6.88 (1H, d, | = 0.8 Hz, pyrazole-H), 7.13-7.18 (6H, m, Ph-H), 7.28-7.31 (9H, m, Ph-H),
7.39 (1H, d, ] = 0.8 Hz, pyrazole-H); '*C-NMR (100 MHz, CDCl3): § 23.9, 25.5, 52.4, 78.4,118.9, 127.5,
127.6,129.5,130.1, 137.7, 143.4; EI-HRMS m/z calcd. for Co;HyyN3 (M*) 393.2205, found 393.2210.

4-(1-Trityl-1H-pyrazol-4-yl)morpholine (2b): white powder; mp 209-211 °C; 'H-NMR (400 MHz, CDCl3):
5287 (4H, t, ] =4.7 Hz, -NCH,CH,), 3.78 (4H, t, ] = 4.7 Hz, -OCH,CH>-), 6.90 (1H, s, pyrazole-H),
7.14-7.17 (6H, m, Ph-H), 7.27-7.30 (9H, m, Ph-H), 7.39 (1H, s, pyrazole-H); 13 C-NMR (100 MHz, CDCl;):
551.4,66.5,78.5,118.8,127.7,129.0,130.1, 136.9, 143.3 (two signals are overlapping to give one signal );
EI-HRMS m/z caled. for Co5HosN3O (M) 395.1996, found 395.1997.

4-(Pyrrolidin-1-yl)-1-trityl-1H-pyrazole (2c): white powder; mp 189-190 °C; 'H-NMR (400 MHz, CDCl3):
5190 (4H, br t, ] = 6.5 Hz, -NCH,CH,-), 2.99 (4H, t, | = 6.5 Hz, -NCH,CH,), 6.74 (1H, d, ] = 0.8 Hz,
pyrazole-H), 7.16-7.18 (6H, m, Ph-H), 7.25-7.30 (10H, m, Ph-H and pyrazole-H); 13C-NMR (100 MHz,
CDCl3): 524.7,51.0,78.3,116.9,127.5,127.6,128.2,130.1, 135.1, 143.5; EI-HRMS m/z calcd. for CpsHys5N3
(M) 379.2049, found 379.2048.

N-Allyl-1-trityl-1H-pyrazol-4-amine (2d): oil; IH-NMR (400 MHz, CDCl3): 6 3.53 (2H, dt, ] =5.7,1.6 Hz,
-NHCH,CH=CH,), 5.09-5.12 (1H, dq, ] = 10.1, 1.4 Hz, -NHCH,CH=CHH), 5.16-5.21 (1H, dq, ] =
17.1, 1.6 Hz, -NHCH,CH=CHH), 5.86-5.96 (1H, ddt, | = 17.1, 10.1, 5.7 Hz, -NHCH,CH=CH),), 6.88
(1H, d, ] = 0.8 Hz, pyrazole-H), 7.14-7.18 (6H, m, Ph-H), 7.25-7.30 (9H, m, Ph-H), 7.32 (1H, d, ] = 0.8,
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pyrazole-H); 13C-NMR (100 MHz, CDClz): § 50.5,78.3, 116.3, 119.2, 127.6, 129.9, 130.1, 132.3, 135.8, 143.
4; EI-HRMS m/z calcd. for Co5Hp3N3 (M™) 365.1892, found 365.1892.

N-Propyl-1-trityl-1H-pyrazol-4-amine (2e): white powder; mp 145-148 °C; 'H-NMR (400 MHz, CDCl3):
50.94 B3H, t,] = 7.4 Hz, -NHCH,CH,CH3), 1.56 (2H, sext, | = 7.4 Hz, -NHCH,CH,CH3), 2.86 (2H, t, |
=7.0 Hz, -NHCH,CH,CH3), 6.86 (1H, d, ] = 0.8 Hz, pyrazole-H), 7.14-7.20 (6H, m, Ph-H), 7.26-7.35
(10H, m, Ph-H and pyrazole-H); '>*C-NMR (100 MHz, CDCl3): § 11.6,23.0,49.7, 78.2, 118.7, 127.5, 127.6,
129.7,130.1, 132.9, 143.5; EI-HRMS m/z caled. for CpsHpsN3 (M*) 367.2048, found 367.2049.

N-Butyl-1-trityl-1H-pyrazol-4-amine (2f): white amorhous; mp 112-116 °C; 'H-NMR (400 MHz, CDCl3):
5091 (3H, t, ] = 7.4 Hz, -CH,CHj3-), 1.36 (2H, br sext, | = 7.4 Hz, -CH,CH,CHj3), 1.52 (2H, br quint, | =
74 Hz, -CH,CH,CH,-),2.89 (2H, t, ] = 7.0 Hz, -NHCH,CH>-), 6.86 (1H, s, pyrazole-H), 7.14-7.19 (6H,
m, Ph-H), 7.27-7.33 (10H, m, Ph-H and pyrazole-H); 3C-NMR (100 MHz, CDCl3): § 14.0,20.2, 32.0,
47.6,78.2,118.7,127.5,127.6,129.7, 130.1, 132.9, 143.4 EI-HRMS m/z calcd. for CosHpyN3 (M) 381.2205,
found 381.2215.

N-Isobutyl-1-trityl-1H-pyrazol-4-amine (2g): white powder; mp 135-136 °C; 'H-NMR (400 MHz, CDCl3):
50.93 (6H, d, ] = 6.6 Hz, -NHCH,CH(CH3),), 1.78 (1H, nonet, | = 6.6 Hz, -NHCH,CH(CH3),), 2.70
(2H, d, ] = 6.6 Hz, -NHCH,CH(CH3;),), 6.85 (1H, s, pyrazole-H), 7.11-7.19 (6H, m, Ph-H), 7.25-7.32
(10H, m, Ph-H and pyrazole-H); '*C-NMR (100 MHz, CDCl3): § 20.5, 28.4, 55.7, 78.2, 118.4, 127.5, 127.6,
129.6, 130.1, 133.1, 143.5; EI-HRMS m/z caled. for CpeHpyN3 (M*) 381.2205, found 381.2210.

N-Isoamyl-1-trityl-1H-pyrazol-4-amine (2h): white amorphous; mp 110-113 °C; 'H-NMR (400 MHz,
CDCls): 60.89 (6H, d, ] = 6.7 Hz, -CH(CH3);), 1.48 (2H, q, ] = 7.4 Hz, -CH,CH,CH-), 1.64 (1H, nonet, |
= 6.6 Hz, -CH,CH(CH3),), 2.89 (2H, br t, ] = 7.3 Hz, -NHCH,CH,-), 6.86 (1H, s, pyrazole-H), 7.15-7.18
(6H, m, Ph-H), 7.26-7.32 (10H, m, Ph-H and pyrazole-H); >*C-NMR (100 MHz, CDCl3): § 22.6,25.9,
38.9,46.0,78.3,118.7,127.5, 127.6, 129.7, 130.1, 132.9, 143.5; EI-HRMS m/z calcd. for Cy;Hy9N3 (M™)
395.2361, found 395.2359.

N-Isopropyl-1-trityl-1H-pyrazol-4-amine (2i): white powder; mp 130-133 °C; "H-NMR (400 MHz, CDCl3):
5 1.11 (6H, d, | = 6.3 Hz, -NHCH(CHS3),), 3.18 (1H, sept, | = 6.3 Hz, -NHCH(CHj3),), 6.88 (1H, s,
pyrazole-H), 7.15-7.19 (6H, m, Ph-H), 7.26-7.35 (10H, m, Ph-H and pyrazole-H); 13C-NMR (100 MHz,
CDCl3): 6 23.0, 484, 78.2, 120.5, 127.5, 127.6, 130.1, 131.1, 143.4 (two carbon signals overlapped);
EI-HRMS m/z caled. for CosHysN3 (M) 367.2048, found 367.2046

N-Benzyl-1-trityl-1H-pyrazol-4-amine (2j): white powder; mp 148-151 °C; 'H-NMR (400 MHz, CDCl3):
54.06 (2H, s, -CH,Ph), 6.84 (1H, s, pyrazole-H), 7.13-7.16 (6H, m, Ph-H), 7.24-7.30 (14H, m, Ph-H), 7.32
(1H, s, pyrazole-H); 3C-NMR (100 MHz, CDCl3): §52.2,78.3, 119.2, 127.2, 127.5, 127.6, 127.9, 128.5,
129.9,130.1, 132.4, 139.4, 143.4; EI-HRMS m/z caled. for CooHpsN3 (M*) 415.2048, found 415.2046.

N-Phenethyl-1-trityl-1H-pyrazol-4-amine (2k): white powder; mp 134-137 °C; 'H-NMR (400 MHz,
CDCls): 62.84 (2H, t, ] = 6.9 Hz, -NHCH,CH,Ph), 3.16 (2H, t, ] = 6.9 Hz, -NHCH,CH,Ph), 6.85 (1H, d,
] = 0.9 Hz, pyrazole-H), 7.14-7.32 (21H, m, Ph-H and pyrazole-H); *C-NMR (100 MHz, CDCl) & 35.8,
48.9,78.3,119.0, 126.4, 127.5, 127.6, 128.6, 128.8, 129.8, 130.1, 132.3, 139.3, 143.4; EI-HRMS m/z calcd. for
C3oHyyN3 (M) 429.2205, found 429.2200.

N-~(3-Phenyl)propyl-1-trityl-1H-pyrazol-4-amine (21): white powder; mp 114-117 °C; 'H-NMR (400 MHz,
CDCls): 6 1.86 (2H, br quint, ] = 7.3 Hz, -CH,CH, CHj.), 2.67 (2H, br t, | = 7.5 Hz, -CH,CH,Ph), 2.94
(2H, t, ] =7.1 Hz, -NHCH,CH,-), 6.84 (1H, s, pyrazole-H), 7.14-19 (8H, m, Ph-H and pyrazole-H),
7.24-7.30 (13H, m, Ph-H, and pyrazole-H); 3C-NMR (100 MHz, CDCl3) § 31.4, 33.3, 47.4, 78.3, 118.8,
125.9,127.5,127.6, 128.3, 128.4, 129.8, 130.1, 132.6, 141.8, 143.4; EI-HRMS m/z calcd. for C31Hy9N3 (M*)
443.2362, found 443.2365.

N~((3s,55,7s)-Adamantan-1-yl)-1-trityl-1H-pyrazol-4-amine (2m): white powder; mp 204-205 °C; 'H-NMR
(400 MHz, CDCl3): 4 1.59 (12H, m, Ad-H), 2.05 (4H, br n, Ad-H, and -NHAd), 7.00 (1H, s, pyrazole),
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7.14-7.18 (6H, m, Ph-H), 7.28-7.30 (9H, m, Ph-H), 7.34 (1H, s, pyrazole-H); 3 C-NMR (100 MHz, CDCls):
529.6,36.4,43.2, 51.7, 78.3, 125.4, 127.2, 127.5, 127.6, 130.1, 136.8, 143.3; EI-HRMS m/z calcd. for
C32H33N3 (M+) 459.2674, found 459.2673.

N-(tert-Butyl)-1-trityl-1H-pyrazol-4-amine (2n): white powder; mp 137-140 °C; 'H-NMR (400 MHz,
CDCl3): 6 1.11 (9H, s, -C(CH3)3), 7.01 (1H, s, pyrazole-H), 7.15-7.18 (6H, m, Ph-H), 7.28-7.30 (9H, m,
Ph-H), 7.36 (1H, s, pyrazole-H); 13C-NMR (100 MHz, CDCl3): §29.5, 51.9, 78.3, 126.7, 127.0, 127.5, 127.6,
130.1, 136.2, 143.3; EI-HRMS m/z calcd. for CogHpyN3 (M™) 381.2205, found 381.2206.

N-Phenyl-1-trityl-1H-pyrazol-4-amine (20): white powder; mp 191-192 °C; 'H-NMR (400 MHz, CDCl3):
5 5.05 (1H, br, -NHPh), 6.70-6.76 (3H, m, Ph-H and pyrazole-H), 7.14-7.20 (7H, m, Ph-H), 7.24-7.32
(11H, m,Ph-H), 7.61 (1H, s, pyrazole-H); '3C-NMR (100 MHz, CDCl;): § 78.8,113.4, 118.5, 123.5, 127.2,
127.8,129.3,130.0, 130.1, 136.0, 143.1, 146.6; EI-HRMS m/z calcd. for CpgHy3N3 (M*) 401.1892, found
401.1890.

N-(o-Methoxy)phenyl-1-trityl-1H-pyrazol-4-amine (2p): white powder; mp 133-136 °C; 'H-NMR (400 MHz,
CDCls): 63.87 (3H, s, -OCH3), 5.70 (1H, br, -NHAr), 6.70-6.76 (1H, m, Ph-H), 6.82-6.84 (2H, m, Ph-H),
7.22-7.25 (8H, m, Ph-H), 7.32-7.68 (9H, m, Ph-H, pyrazole-H), 7.68 (1H, s, pyrazole-H); IBC-NMR
(100 MHz, CDCl3): b 55.4, 78.6,109.8,110.9, 117.6, 121.1, 123.3, 126.6, 127.6, 130.1, 135.7, 136.2, 143.1,
146.5; EI-HRMS m/z calcd. for CyoHpsN3 (M) 431.1998, found 431.1998.

N-(Naphthalen-1-yl)-1-trityl-1H-pyrazol-4-amine (2q): white powder; mp 175-178 °C; 'H-NMR (400 MHz,
CDCl3): 6 5.66 (1H, s, -NH-naphthyl), 6.82-6.84 (1H, m, naphtyl-H), 7.21-7.26 (8H, m, Ph-H and
naphthyl-H), 7.28-7.36 (9H, m, Ph-H), 7.39 (1H, s, pyrazole-H), 7.43-7.48 (2H, m, naphthyl-H), 7.69 (1H,
s, pyrazole-H), 7.79-7.87 (2H, m, naphthyl-H); IBC-NMR (100 MHz, CDCl3): 6 78.8, 106.9, 118.9, 119.8,
123.4,123.6,125.1,125.9, 126.3, 127.6, 127.8,128.7,130.1, 130.4, 134.4, 136.4, 142.2, 143.1; EI-HRMS m/z
caled. for C3pHpsN3 (M™) 451.2049, found 451.2052.

N,N-Diphenyl-1-trityl-1H-pyrazol-4-amine (2r): white powder; mp 175-177 °C; 'H-NMR (400 MHz,
CDCl): 66.92 (2H, t, | = 7.3 Hz, Ph-H), 7.04-7.06 (4H, m, Ph-H and pyrazole-H), 7.16-7.22 (10H, m,
Ph-H), 7.29-7.33 (10H, m, Ph-H and pyrazole-H), 7.52 (1H, s, pyrazole-H); 3C-NMR (100 MHz, CDCl3):
5789,121.5,121.9,127.7,127.9, 127.74, 127.78, 127.8, 128.6, 129.1, 129.2, 130.1, 130.2, 137.1, 143.0, 147.7;
EI-HRMS m/z caled. for C34HyyN3 (M™) 477.2205, found 477.2197.
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