The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials
Abstract
:1. Introduction
2. Results
2.1. Hexane and Ethyl Acetate Fractions Revealed Similar HPLC Profiles for the Constituents of the Crude Extract of the Aerial Parts of H. noldeae
2.2. Hexane and Ethyl Acetate Extracted Constituents of Hibiscus noldeae Inhibit the Activation of the NLRP3 Inflammasome in THP-1 Macrophages
2.3. Hexane and Ethyl Acetate Fractions and Purified Compounds from H. noldeae Inhibit IL-6 Production
3. Discussion
4. Materials and Methods
4.1. Collection of Plant Materials
4.2. Isolation and Structure Elucidation of Major Compounds
4.2.1. Crude Extract Preparation and Fractionation
4.2.2. High-Performance Liquid Chromatography (HPLC) Analysis and Purification
4.3. Cell Culture and Viability Assay
4.4. Caspase-1 Inhibition Assays
4.5. THP-1-Derived Macrophage Treatment and Measurement of IL-1β
4.6. RAW264.7 Cell Treatment and Measurement of IL-6 Cytokine Production
4.7. Pyroptosis Inhibition Assay
4.8. Immunoblotting Analysis
4.9. Data Presentation and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ELISA | Enzyme linked immunosorbent assay |
IL-1B | Interleukin 1β |
IL-6 | Interleukin 6 |
CO2 | Carbon dioxide |
DMEM | Dulbecco’s Modified Eagle’s medium |
RPMI 1640 | Roswell Park Memorial Institute 1640 |
NMR | Nuclear magnetic resonance |
NLRP3 | NOD-, LRR- and pyrin domain-containing protein 3 |
ARES | Académie de Recherche et d’Enseignement Supérieur |
HPLC-DAD | High performance Liquid Chromatography with Diode-Array Detection |
PM | Plasmic membrane |
COPD | chronic obstructive pulmonary disease |
COVID-19 | Coronavirus disease 2019 |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
LMICs | Low and middle income countries |
NF-kB | Nuclear Factor-kappa B |
LPS | Lipopolysaccharide |
ATP | Adenosine Triphosphate |
ASC | Apoptosis-associated speck-like protein containing a caspase recruitment domain |
DAMP | Damage associated molecular patterns |
TLR4 | Toll-like receptor 4 |
THP-1 | Tamm-Horsfall Protein 1 |
PMA | Phorbol Myristate Acetate |
TNF-α | Tumor Necrosis Factor Alpha |
References
- Marciniuk, D.; Ferkol, T.; Nana, A.; de Oca, M.M.; Rabe, K.; Billo, N.; Zar, H. Respiratory Diseases in the World. Realities of Today—Opportunities for Tomorrow; European Respiratory Society: Sheffield, UK, 2013; Volume 53. [Google Scholar]
- The Global Asthma Network. The Global Asthma Report 2018; The Global Asthma Network: Auckland, New Zealand, 2018. [Google Scholar]
- Besnard, G.; Togbe, D.; Couillin, I.; Tan, Z.; Zheng, S.G.; Erard, F.; Le Bert, M.; Quesniaux, V.; Ryffel, B. Inflammasome-IL-1-Th17 response in allergic lung inflammation. J. Mol. Cell Biol. 2012, 4, 3–10. [Google Scholar] [CrossRef]
- Kiboneka, A.; Kibuule, D. The Immunology of Asthma and Allergic Rhinitis. Rhinosinusitis 2019. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Wang, Y.; Yan, J.; Jenson, A.B. Characterization of the anti-inflammation mechanism for the AO herbal extract. Exp. Mol. Pathol. 2016, 101, 341–345. [Google Scholar] [CrossRef]
- Wanderer, A.A. Interleukin-1β targeted therapy in severe persistent asthma (SPA) and chronic obstructive pulmonary disease (COPD): Proposed similarities between biphasic pathobiology of SPA/COPD and ischemia-reperfusion injury. Isr. Med. Assoc. J. 2008, 10, 837–842. [Google Scholar]
- Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular Immune Pathogenesis and Diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [CrossRef]
- Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433. [Google Scholar] [CrossRef]
- Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020, 53, 38–42. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Pinkerton, J.W.; Kim, R.Y.; Robertson, A.A.B.; Hirota, J.A.; Wood, L.G.; Knight, D.A.; Cooper, M.A.; O’Neill, L.A.J.; Horvat, J.C.; Hansbro, P.M. Inflammasomes in the lung. Mol. Immunol. 2017, 86, 44–55. [Google Scholar] [CrossRef]
- Madouri, F.; Guillou, N.; Fauconnier, L.; Marchiol, T.; Rouxel, N.; Chenuet, P.; Ledru, A.; Apetoh, L.; Ghiringhelli, F.; Chamaillard, M.; et al. Caspase-1 activation by NLRP3 inflammasome dampens IL-33-dependent house dust mite-induced allergic lung inflammation. J. Mol. Cell Biol. 2015, 7, 351–365. [Google Scholar] [CrossRef]
- Lin, X.; Liu, M. Pharmacological Use of NLRP3 Inflammasome Inhibitors: Novel Intervention Strategies in Diabetes-Associated Vascular Complications. J. Adv. Ther. Med. Innov. Sci. 2017, 2, 35–36. [Google Scholar]
- Kozloski, G.A. Inflammasome. Mater. Methods 2020, 10, 2869. [Google Scholar] [CrossRef]
- Sollberger, G.; Strittmatter, G.E.; Garstkiewicz, M.; Sand, J.; Beer, H.D. Caspase-1: The inflammasome and beyond. Innate Immun. 2014, 20, 115–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theofani, E.; Semitekolou, M.; Morianos, I.; Samitas, K.; Xanthou, G. Targeting NLRP3 Inflammasome Activation in Severe Asthma. J. Clin. Med. 2019, 8, 1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borthwick, L.A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 2016, 38, 517–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nile, S.H.; Nile, A.; Qiu, J.; Li, L.; Jia, X.; Kai, G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020, 53, 66–70. [Google Scholar] [CrossRef]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Dhimolea, E. Canakinumab. mAbs 2010, 2, 3–13. [Google Scholar] [CrossRef]
- Tomani, D.C.J.; Olive Lea, G.T.; Nshutiyayesu, S.; Mukazayire, M.J.; Stevigny, C.; Frederich, M.; Muganga, R.; Souopgui, J. An ethnobotanical survey and inhibitory e ff ects on NLRP3 in fl ammasomes/Caspase-1 of herbal recipes’ extracts traditionally used in Rwanda for asthma treatment. Ethnopharmacology 2018, 227, 29–40. [Google Scholar] [CrossRef]
- Vasudeva, N.; Sharma, S.K. Biologically Active Compounds from the Genus Hibiscus. Pharm. Biol. 2008, 46, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Kapepula, P.M.; Ngombe, N.K.; Tshibangu, P.T.; Tsumbu, C.; Franck, T.; Mouithys-Mickalad, A.; Mumba, D.; Katumbay, D.T.; Serteyn, D.; Tits, M.; et al. Comparison of metabolic profiles and bioactivities of the leaves of three edible Congolese Hibiscus species. Nat. Prod. Res. 2017, 31, 2885–2892. [Google Scholar] [CrossRef]
- Sogo, T.; Terahara, T.; Hisanaga, N.; Kumamoto, A.; Yamashiro, T.; Wu, T.; Sakao, S.K.; Hou, D.-X. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. Int. Union Biochem. Mol. Biol. 2015, 41, 58–65. [Google Scholar]
- Dubois, H.; Sorgeloos, F.; Sarvestani, S.T.; Martens, L.; Saeys, Y.; Mackenzie, J.M.; Lamkanfi, M.; van Loo, G.; Goodfellow, I.; Wullaert, A. Nlrp3 inflammasome activation and Gasdermin D-driven pyroptosis are immunopathogenic upon gastrointestinal norovirus infection. PLoS Pathog. 2019, 15, e1007709. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef] [Green Version]
- Chifundera, K. Contribution to the inventory of medicinal plants from the Bushi area, South Kivu Province, Democratic Republic of Congo. Fitoterapia 2001, 72, 351–368. [Google Scholar] [CrossRef]
- Telefo, P.B.; Lienou, L.L.; Yemele, M.D.; Lemfack, M.C.; Mouokeu, C.; Goka, C.S.; Tagne, S.R.; Moundipa, F.P. Ethnopharmacological survey of plants used for the treatment of female infertility in Baham, Cameroon. J. Ethnopharmacol. 2011, 136, 178–187. [Google Scholar] [CrossRef]
- Yemele, M.D.; Telefo, P.B.; Lienou, L.L.; Tagne, S.R.; Fodouop, C.S.P.; Goka, C.S.; Lemfack, M.C.; Moundipa, F.P. Ethnobotanical survey of medicinal plants used for pregnant womens health conditions in Menoua division-West Cameroon. J. Ethnopharmacol. 2015, 160, 14–31. [Google Scholar] [CrossRef]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Schramm, D.; German, J. Potential effects of flavonoids on the etiology of vascular disease. J. Nutr. Biochem. 1998, 9, 560–566. [Google Scholar] [CrossRef]
- Formica, J.; Regelson, W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995, 33, 1061–1080. [Google Scholar] [CrossRef]
- Priem, D.; Loo, G.; Bertrand, M.J.M. A20 and Cell Death-driven Inflammation. Trends Immunol. 2020, 41, 421–435. [Google Scholar] [CrossRef]
- Peltzer, N.; Walczak, H. Cell Death and Inflammation—A Vital but Dangerous Liaison. Trends Immunol. 2019, 40, 387–402. [Google Scholar] [CrossRef]
- Akbar, S. Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; Springer International Publishing: New York, NY, USA, 2020. [Google Scholar]
- Wang, H.; Guo, X.; Liu, J.; Li, T.; Fu, X.; Liu, R.H. Comparative suppression of NLRP3 inflammasome activation with LPS-induced inflammation by blueberry extracts (Vaccinium spp.). R. Soc. Chem. Adv. 2017, 7, 28931–28939. [Google Scholar] [CrossRef] [Green Version]
- LEE, S.W.; Tsou, A.-P.; Chan, H.; Thomas, J.; Petrie, K.; Eugui, E.M.; Allison, A.C. Glucocorticoids selectively inhibit the transcription of the interleukin 1,f gene and decrease the stability of interleukin 1,8 mRNA. Proc. Natl. Acad. Sci. USA 1988, 85, 1204–1208. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.E.; Yang, G.; Kim, N.D.; Jeong, S.; Jung, Y.; Choi, J.Y.; Park, H.H.; Lee, J.Y. Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: A novel strategy to treat acute gout. Sci. Rep. 2016, 6, 38622. [Google Scholar] [CrossRef] [Green Version]
- Rogerio, A.; Pereira, A. Quercetin as Drug to Treat Asthma—What is Missing? Austin J. Asthma 2017, 1, 1002. [Google Scholar]
- Reddy, N.; Navanesan, S.; Sinniah, S.; Wahab, N.; Sim, K. Phenolic content, antioxidant effect and cytotoxic activity of Leea indica leaves. BMC Complement. Altern. Med. 2012, 12, 128. [Google Scholar] [CrossRef] [Green Version]
- da Cunha, F.; Duma, D.; Assreuy, J.; Buzzi, F.; Niero, R.; Campos, M.; Et, A. Caffeic acid derivatives: In vitro and in vivo anti-inflammatory properties. Free Radic. Res. 2004, 38, 1241–1253. [Google Scholar] [CrossRef]
- McGeough, M.D.; Pena, C.A.; Mueller, J.L.; Pociask, D.A.; Broderick, L.; Hoffman, H.M.; Brydges, S.D. Cutting Edge: IL-6 Is a Marker of Inflammation with No Direct Role in Inflammasome-Mediated Mouse Models. J. Immunol. 2012, 189, 2707–2711. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Yang, B.; Men, D.; Li, F.; Xiong, J.; Ding, J.; Huang, Q.; Chen, X.; Liu, Y.; Feng, Y.; et al. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated With Drastically Elevated Interleukin 6 Level in Critically Ill Patients With Coronavirus Disease 2019. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Derek, K.C.; Al-Garawi, A.; Llop-Guevara, A.; Pillai, R.A.; Radford, K.; Shen, P.; Walker, T.D.; Goncharova, S.; Calhoun, W.J.; Nair, P.; et al. Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma. Allergy Asthma Clin. Immunol. 2015, 2015, 11–14. [Google Scholar]
- Dinarello, C.A. Anti-inflammatory Agents: Present and Future. Cell 2010, 140, 935–950. [Google Scholar] [CrossRef] [Green Version]
- Guaraldi, G.; Meschiari, M.; Cozzi-Lepri, A.; Milic, J.; Tonelli, Z.; Menozzi, M.; Franceschini, E.; Cuomo, G.; Orlando, G.; Borghi, V.; et al. Tocilizumab in patients with severe COVID-19: A retrospective cohort study. Lancet Rheumatol. 2020. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds Crude extract, Hexane fraction, ER2.4 and ER2.7 are available from the authors. |
Time (min) | Mobile Phase Proportion (%) | |
---|---|---|
Solvent A | Solvent B | |
0.0 | 0.0 | 100 |
1.0 | 3.0 | 97.0 |
45.0 | 40.0 | 60.0 |
55.0 | 40.0 | 60.0 |
56.0 | 60.0 | 40.0 |
66.0 | 60.0 | 40.0 |
67.0 | 0.0 | 100 |
82.0 | 0.0 | 100 |
Time (min) | Mobile Phase Proportion (%) | |
---|---|---|
Solvent A | Solvent B | |
0.0 | 0.0 | 100 |
2.0 | 3.0 | 97.0 |
35.0 | 15.5 | 84.5 |
55.0 | 19.0 | 81.0 |
76.0 | 27.5 | 72.5 |
98.0 | 31.5 | 68.5 |
133.0 | 60.0 | 40.0 |
144.0 | 60.0 | 40.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomani, J.C.D.; Kagisha, V.; Tchinda, A.T.; Jansen, O.; Ledoux, A.; Vanhamme, L.; Frederich, M.; Muganga, R.; Souopgui, J. The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials. Molecules 2020, 25, 4693. https://doi.org/10.3390/molecules25204693
Tomani JCD, Kagisha V, Tchinda AT, Jansen O, Ledoux A, Vanhamme L, Frederich M, Muganga R, Souopgui J. The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials. Molecules. 2020; 25(20):4693. https://doi.org/10.3390/molecules25204693
Chicago/Turabian StyleTomani, Jean Claude Didelot, Vedaste Kagisha, Alembert Tiabou Tchinda, Olivia Jansen, Allison Ledoux, Luc Vanhamme, Michel Frederich, Raymond Muganga, and Jacob Souopgui. 2020. "The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials" Molecules 25, no. 20: 4693. https://doi.org/10.3390/molecules25204693
APA StyleTomani, J. C. D., Kagisha, V., Tchinda, A. T., Jansen, O., Ledoux, A., Vanhamme, L., Frederich, M., Muganga, R., & Souopgui, J. (2020). The Inhibition of NLRP3 Inflammasome and IL-6 Production by Hibiscus noldeae Baker f. Derived Constituents Provides a Link to Its Anti-Inflammatory Therapeutic Potentials. Molecules, 25(20), 4693. https://doi.org/10.3390/molecules25204693