Developments toward the Implementation of 44Sc Production at a Medical Cyclotron
Abstract
:1. Introduction
2. Results and Discussion
2.1. Target Preparation
2.2. Irradiation Conditions
2.3. Chemical Separation
2.4. Preclinical Application of 44Sc-PSMA-ALB-02 Imaging
3. Materials and Methods
3.1. Target Preparation
3.2. Target Irradiation
3.3. Chemical Separation
3.4. Radiolabeling
3.5. Preclinical Imaging
3.6. Preparation of 44Sc-PSMA-ALB-02
3.7. Tumor Mouse Model
3.8. Imaging Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frangos, S.; Buscombe, J.R. Why should we be concerned about a “g”? Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 519. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Domnanich, K.A.; Umbricht, C.A.; van der Meulen, N.P. Scandium and terbium radionuclides for radiotheranostics: Current state of development towards clinical application. Br. J. Radiol. 2018, 91, 20180074. [Google Scholar] [CrossRef]
- Muller, C.; Bunka, M.; Haller, S.; Koster, U.; Groehn, V.; Bernhardt, P.; van der Meulen, N.; Turler, A.; Schibli, R. Promising prospects for 44Sc-/47Sc-based theragnostics: Application of 47Sc for radionuclide tumor therapy in mice. J. Nucl. Med. 2014, 55, 1658–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NuDat 2.7. Available online: https://www.nndc.bnl.gov/nudat2/ (accessed on 1 July 2020).
- Garcia-Torano, E.; Peyres, V.; Roteta, M.; Sanchez-Cabezudo, A.I.; Romero, E.; Martinez Ortega, A. Standardisation and precise determination of the half-life of 44Sc. Appl. Radiat. Isot. 2016, 109, 314–318. [Google Scholar] [CrossRef]
- Rösch, F.; Baum, R.P. Generator-based PET radiopharmaceuticals for molecular imaging of tumours: On the way to THERANOSTICS. Dalton. Trans. 2011, 40, 6104–6111. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Bunka, M.; Reber, J.; Fischer, C.; Zhernosekov, K.; Turler, A.; Schibli, R. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β−-emitters: In vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J. Nucl. Med. 2013, 54, 2168–2174. [Google Scholar] [CrossRef] [Green Version]
- van der Meulen, N.P.; Bunka, M.; Domnanich, K.A.; Müller, C.; Haller, S.; Vermeulen, C.; Türler, A.; Schibli, R. Cyclotron production of 44Sc: From bench to bedside. Nucl. Med. Biol. 2015, 42, 745–751. [Google Scholar] [CrossRef]
- Singh, A.; van der Meulen, N.P.; Muller, C.; Klette, I.; Kulkarni, H.R.; Turler, A.; Schibli, R.; Baum, R.P. First-in-Human PET/CT Imaging of Metastatic Neuroendocrine Neoplasms with Cyclotron-Produced (44)Sc-DOTATOC: A Proof-of-Concept Study. Cancer Biother. Radiopharm. 2017, 32, 124–132. [Google Scholar] [CrossRef]
- Umbricht, C.A.; Benešová, M.; Schmid, R.M.; Türler, A.; Schibli, R.; van der Meulen, N.P.; Müller, C. 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617-preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. Ejnmmi Res. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Singh, A.; Kulkarni, H.R.; Schuchardt, C.; Müller, D.; Wester, H.-J.; Maina, T.; Rösch, F.; van der Meulen, N.P.; Müller, C.; et al. From Bench to Bedside—The Bad Berka Experience with First-in-Human Studies. Semin. Nucl. Med. 2019, 49, 422–437. [Google Scholar] [CrossRef]
- Severin, G.W.; Engle, J.W.; Valdovinos, H.F.; Barnhart, T.E.; Nickles, R.J. Cyclotron produced 44gSc from natural calcium. Appl. Radiat. Isot. 2012, 70, 1526–1530. [Google Scholar] [CrossRef] [Green Version]
- Domnanich, K.A.; Müller, C.; Farkas, R.; Schmid, R.M.; Ponsard, B.; Schibli, R.; Türler, A.; Van der Meulen, N. 44Sc for labeling of DOTA- and NODAGA- functionalized peptides: Preclinical in vitro and in vivo investigations. Ejnmmi. Radiopharm. Chem. 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Braccini, S. Compact medical cyclotrons and their use for radioisotope production and multi-disciplinary research. Hospital 2017, 200, 3–10. [Google Scholar]
- Braccini, S.; Aguilar, C.B.; Carzaniga, T.S.; Dellepiane, G.; Häffner, P.D.; Scampoli, P. Novel irradiation methods for theranostic radioisotope production with solid targets at the Bern Medical Cyclotron. In Proceedings of the 22nd International Conference on Cyclotrons and their Applications (Cyclotrons 2019), Cape Town, South Africa, 22–27 September 2019. [Google Scholar]
- Valdovinos, H.F.; Hernandez, R.; Barnhart, T.E.; Graves, S.; Cai, W.; Nickles, R.J. Separation of cyclotron-produced 44Sc from a natural calcium target using a dipentyl pentylphosphonate functionalized extraction resin. Appl. Radiat. Isot. 2014, 95, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domnanich, K.A. Studies towards 43Sc, 44Sc and 47Sc—A Novel Matched Pair for Theragnostic Applications. Ph.D. Thesis, University of Bern, Bern, Switzerland, 2017. [Google Scholar]
- Carzaniga, T.S. Study of Scandium Radioisotope Production for Theranostics with Medical Cyclotrons. Ph.D. Thesis, University of Bern, Bern, Switzerland, 2019. [Google Scholar]
- Levkovskij, V.N. Activation Cross Section Nuclides of Average Masses (A = 40–100) by Protons and Alpha-Particles with Average Energies (E = 10–50 MeV); Inter-Vesi: Moscow, Russia, 1991. [Google Scholar]
- Krajewski, S.; Cydzik, I.; Abbas, K.; Bulgheroni, A.; Simonelli, F.; Holzwarth, U.; Bilewicz, A. Cyclotron production of Sc-44 for clinical application. Radiochim. Acta 2013, 101, 333–338. [Google Scholar] [CrossRef]
- Carzaniga, T.S.; Auger, M.; Braccini, S.; Bunka, M.; Ereditato, A.; Nesteruk, K.P.; Scampoli, P.; Türler, A.; Van der Meulen, N. Measurement of 43Sc and 44Sc production cross-section with an 18 MeV medical PET cyclotron. Appl. Radiat. Isot. 2017, 129, 96–102. [Google Scholar] [CrossRef] [PubMed]
- van der Meulen, N.P.; Hasler, R.; Vermeulen, C.; Carzaniga, T.S.; Braccini, S. Targetry Developments for 44Sc Production Using Enriched CaO. In Proceedings of the 17th International Workshop on Targetry and Target Chemistry (WTTC), Coimbra, Portugal, 27–31 August 2018; pp. 78–79. [Google Scholar]
- van der Meulen, N.P.; Eichler, R.; Grundler, P.V.; Hasler, R.; Hirzel, W.; Joray, S.; Kiselev, D.C.; Sobbia, R.; Sommerhalder, A.; Talip, Z.; et al. The use of PSI’s IP2 beam line towards exotic radionuclide development and its application towards proof-of-principle preclinical and clinical studies. In Proceedings of the 22nd International Conference on Cyclotrons and their Applications (Cyclotrons 2019), Cape Town, South Africa, 22–27 September 2019. [Google Scholar]
- Carzaniga, T.S.; Haeffner, P.; Tuerler, A.; Braccini, S. Solid Target Developments at the Bern Medical Cyclotron. In Proceedings of the 17th Workshop on Targets and Target Chemistry (WTTC), Coimbra, Portugal, 27–31 August 2018. [Google Scholar]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM-The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Duchemin, C.; Guertin, A.; Haddad, F.; Michel, N.; Métivier, V. Production of scandium-44m and scandium-44g with deuterons on calcium-44: Cross section measurements and production yield calculations. Phys. Med. Biol. 2015, 60, 6847–6864. [Google Scholar] [CrossRef]
- Pourmand, A.; Dauphas, N. Distribution coefficients of 60 elements on TODGA resin: Application to Ca, Lu, Hf, U and Th isotope geochemistry. Talanta 2010, 81, 741–753. [Google Scholar] [CrossRef]
- Domnanich, K.A.; Eichler, R.; Müller, C.; Jordi, S.; Yakusheva, V.; Braccini, S.; Behe, M.; Schibli, R.; Türler, A.; van der Meulen, N.P. Production and separation of 43Sc for radiopharmaceutical purposes. EJNMMI Radiopharm. Chem. 2017, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Benešová, M.; Umbricht, C.A.; Schibli, R.; Müller, C. Albumin-Binding PSMA Ligands: Optimization of the Tissue Distribution Profile. Mol. Pharm. 2018, 15, 934–946. [Google Scholar] [CrossRef]
- Braccini, S. The new Bern PET cyclotron, its research beam line, and the development of an innovative beam monitor detector. AIP Conf. Proc. 2013, 1525, 144–150. [Google Scholar]
- Banerjee, S.R.; Ngen, E.J.; Rotz, M.W.; Kakkad, S.; Lisok, A.; Pracitto, R.; Pullambhatla, M.; Chen, Z.; Shah, T.; Artemov, D.; et al. Synthesis and evaluation of Gd(III)-based magnetic resonance contrast agents for molecular imaging of prostate-specific membrane antigen. Angew. Chem. Int. Ed. Engl. 2015, 54, 10778–11782. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.R.; Pullambhatla, M.; Foss, C.A.; Nimmagadda, S.; Ferdani, R.; Anderson, C.J.; Mease, R.C.; Pomper, M.G. 64Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J. Med. Chem. 2014, 57, 2657–2669. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Target No. | Time (h) | Beam Current (µA) | Integral (µAh) | Yield (EOS, GBq) | Quality Control with DOTANOC (MBq/nmol) † |
---|---|---|---|---|---|
1 | 1.67 | 45 | 75 | 3.81 * | 25 [~99%] |
2 | 1.5 | 50 | 75 | 2.50 | 13 [~98%] |
3 | 1.5 | 50 | 75 | 4.28 | 25 [~99%] |
4 | 1.5 | 50 | 75 | 3.97 | 25 [~99%] |
Target No. | Time (h) | Beam Current (µA) * | Integral (µAh) | Yield (End of Separation, GBq) | TLC Quality Control with DOTA (MBq/nmol) † |
---|---|---|---|---|---|
1 | 5.75 | 18.4 | 106 | 3.210 | 10 [~99%] ** |
2 | 4 | 5 | 20 | 0.704 | 17 [~93%] |
3 | 4 | 10 | 40 | 0.144 | 1 [~97%] 5 [~70%] |
4 | 4 | 10 | 40 | 0.197 | 1 [~58%] |
5 | 4 | 7 | 28 | 0.467 | 3 [~60%] |
6 | 5 | 7 | 35 | 0.580 | 22 [~96%] 14 [~99%] |
7 | 0.5 | 5 | 2.5 | 0.2 | N/A |
8 | 0.5 | 7 | 3.5 | <0.1 | N/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Meulen, N.P.; Hasler, R.; Talip, Z.; Grundler, P.V.; Favaretto, C.; Umbricht, C.A.; Müller, C.; Dellepiane, G.; Carzaniga, T.S.; Braccini, S. Developments toward the Implementation of 44Sc Production at a Medical Cyclotron. Molecules 2020, 25, 4706. https://doi.org/10.3390/molecules25204706
van der Meulen NP, Hasler R, Talip Z, Grundler PV, Favaretto C, Umbricht CA, Müller C, Dellepiane G, Carzaniga TS, Braccini S. Developments toward the Implementation of 44Sc Production at a Medical Cyclotron. Molecules. 2020; 25(20):4706. https://doi.org/10.3390/molecules25204706
Chicago/Turabian Stylevan der Meulen, Nicholas P., Roger Hasler, Zeynep Talip, Pascal V. Grundler, Chiara Favaretto, Christoph A. Umbricht, Cristina Müller, Gaia Dellepiane, Tommaso S. Carzaniga, and Saverio Braccini. 2020. "Developments toward the Implementation of 44Sc Production at a Medical Cyclotron" Molecules 25, no. 20: 4706. https://doi.org/10.3390/molecules25204706
APA Stylevan der Meulen, N. P., Hasler, R., Talip, Z., Grundler, P. V., Favaretto, C., Umbricht, C. A., Müller, C., Dellepiane, G., Carzaniga, T. S., & Braccini, S. (2020). Developments toward the Implementation of 44Sc Production at a Medical Cyclotron. Molecules, 25(20), 4706. https://doi.org/10.3390/molecules25204706