Rhizopus oligosporus and Lactobacillus plantarum Co-Fermentation as a Tool for Increasing the Antioxidant Potential of Grass Pea and Flaxseed Oil-Cake Tempe
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity
2.1.1. Substances Reacting with Folin–Ciocalteu Reagent
2.1.2. ABTS+• Scavenging Activity
2.1.3. Hydroxyl Radical Scavenging Activity
2.2. The Profile of Phenolic Compounds
2.3. Antioxidant Potential after In Vitro Digestion
3. Materials and Methods
3.1. Fermentation Substrates
3.2. Inoculum
3.3. Preparation of Flaxseed Oil-Cake
3.4. Preparation of Seeds
3.5. Preparation of Fermented Products
3.6. Preparation of Pre-Treated Substrates
3.7. Buffer Extracts Preparation
3.8. Analytical Methods
3.9. Phenolic Profile
3.9.1. LC-DAD Condition
3.9.2. LC-DAD Condition
3.10. In Vitro Digestion
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nout, M.R.; Kiers, J. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Appl. Microbiol. 2005, 98, 789–805. [Google Scholar] [CrossRef]
- Rybiński, W.; Karamać, M.; Sulewska, K.; Börner, A.; Amarowicz, R. Antioxidant Potential of Grass Pea Seeds from European Countries. Foods 2018, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Jamróz, M. Antioxidant properties of extracts from fermented and cooked seeds of Polish cultivars of Lathyrus sativus. Food Chem. 2008, 109, 285–292. [Google Scholar] [CrossRef]
- Meral, R.; Sait Dogan, I. Quality and antioxidant activity of bread. Italy J. Food Sci. 2013, 25, 51–57. [Google Scholar]
- Stodolak, B.; Starzyńska-Janiszewska, A.; Wikiera, A. Effect of flaxseed oil cake addition on antioxidant potential of grass pea tempeh. Zywnosc.Nauka.Technologia.Jakosc/Food.Science.Technology.Quality 2015, 22, 96–105. [Google Scholar] [CrossRef]
- Kasote, D.M. Flaxseed phenolics as natural antioxidants. Int. Food Res. J. 2013, 20, 27–34. [Google Scholar]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Mickowska, B. Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris) seeds. J. Sci. Food Agric. 2013, 94, 359–366. [Google Scholar] [CrossRef]
- Rodríguez, H.; Curiel, J.A.; Landete, J.M.; Rivas, B.D.L.; De Felipe, F.L.; Gómez-Cordovés, C.; Mancheño, J.M.; Muñoz, R. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. [Google Scholar] [CrossRef] [Green Version]
- McCue, P.; Horii, A.; Shetty, K. Solid-state bioconversion of phenolic antioxidants from defatted soybean powders by rhizopus oligosporus: Role of carbohydrate-cleaving enzymes. J. Food Biochem. 2003, 27, 501–514. [Google Scholar] [CrossRef]
- Bhanja, T.; Kumari, A.; Banerjee, R. Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour. Technol. 2009, 100, 2861–2866. [Google Scholar] [CrossRef]
- Gan, R.-Y.; Shah, N.P.; Wang, M.-F.; Lui, W.-Y.; Corke, H. Fermentation alters antioxidant capacity and polyphenol distribution in selected edible legumes. Int. J. Food Sci. Technol. 2016, 51, 875–884. [Google Scholar] [CrossRef]
- Rui, X.; Wang, M.; Zhang, Y.; Chen, X.; Li, L.; Liu, Y.; Dong, M.S. Optimization of soy solid-state fermentation with selected lactic acid bacteria and the effect on the anti-nutritional components. J. Food Process. Preserv. 2017, 41, 41. [Google Scholar] [CrossRef]
- Wang, Y.-K.; Zhang, X.; Chen, G.-L.; Yu, J.; Yang, L.-Q.; Gao, Y.-Q. Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. J. Funct. Foods 2016, 24, 359–372. [Google Scholar] [CrossRef]
- Reshma, M.; Namitha, L.; Sundaresan, A.; Kiran, C.R. Total Phenol Content, Antioxidant Activities and α-Glucosidase Inhibition of Sesame Cake Extracts. J. Food Biochem. 2012, 37, 723–731. [Google Scholar] [CrossRef]
- Terpinc, P.; Ceh, B.; Ulrih, N.P.; Abramovič, H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind. Crops Prod. 2012, 39, 210–217. [Google Scholar] [CrossRef]
- Fratianni, F.; Cardinalea, F.; Cozzolino, A.; Granese, T.; Albanese, D.; Di Matteo, M.; Zaccardelli, M.; Coppola, R.; Nazzaro, F. Polyphenol composition and antioxidant activity of different grass pea (Lathyrus sativus), lentils (Lens culinaris), and chickpea (Cicer arietinum) ecotypes of the Campania region (Southern Italy). J. Funct. Foods 2014, 7, 551–557. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Struijs, K.; Vincken, J.-P.; Doeswijk, T.G.; Voragen, A.; Gruppen, H. The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides. Phytochemistry 2009, 70, 262–269. [Google Scholar] [CrossRef]
- Aguilar, C.N.; Rodríguez, R.; Gutiérrez-Sánchez, G.; Augur, C.; Favela-Torres, E.; Prado-Barragan, L.A.; Ramírez-Coronel, A.; Contreras-Esquivel, J.C. Microbial tannases: Advances and perspectives. Appl. Microbiol. Biotechnol. 2007, 76, 47–59. [Google Scholar] [CrossRef]
- Wright, J.D. Fungal degradation of benzoic acid and related compounds. World J. Microbiol. Biotechnol. 1993, 9, 9–16. [Google Scholar] [CrossRef]
- Sachan, S.G.; Ghosh, S.; Sen, S.K.; Mitra, A. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638. Appl. Microbiol. Biotechnol. 2005, 71, 720–727. [Google Scholar] [CrossRef]
- Heleno, S.A.; Martins, A.; Queiroz, M.-J.R.; Ferreira, I.C. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Masella, R.; Santangelo, C.; D’Archivio, M.; Volti, G.L.; Giovannini, C.; Galvano, F. Protocatechuic acid and human disease prevention: Biological activities and molecular mechanisms. Curr. Med. Chem. 2012, 19, 2901–2917. [Google Scholar] [CrossRef]
- Sánchez-Maldonado, A.; Schieber, A.; Gänzle, M. Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J. Appl. Microbiol. 2011, 111, 1176–1184. [Google Scholar] [CrossRef]
- Calixto, F.D.S.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Swain, T.; Hillis, W.E. The phenolic constituents ofPrunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Marambe, P.W.M.L.H.K.; Shand, P.J.; Wanasundara, J.P. An In-vitro Investigation of Selected Biological Activities of Hydrolysed Flaxseed (Linum usitatissimum L.) Proteins. J. Am. Oil Chem. Soc. 2008, 85, 1155–1164. [Google Scholar] [CrossRef]
- Caño, A.; Acosta, M.; Arnao, M.B. Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biol. Technol. 2003, 28, 59–65. [Google Scholar] [CrossRef]
- Gökmen, V.; Serpen, A.; Fogliano, V. Direct measurement of the total antioxidant capacity of foods: The ‘QUENCHER’ approach. Trends Food Sci. Technol. 2009, 20, 278–288. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Harnly, J.M.; Pastor-Corrales, M.S.; Luthria, D.L. The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem. 2008, 107, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Stodolak, B.; Starzyńska-Janiszewska, A.; Pustkowiak, H.; Mickowska, B. Effect of sunflower seeds addition on the nutritional value of grass pea tempeh. Pol. J. Food Nutr. Sci. 2009, 59, 145–150. [Google Scholar]
FCRS (mg/g DM) | ˙OH-SA (ED50) | ABTS˙+-SA (mg Trolox/g DM) | ABTS˙+-QA (mg Trolox/g DM) | ||
---|---|---|---|---|---|
Treatment Kind × Substrate Kind | |||||
pre-treated | FOC0 | 1.44 ± 0.01 a | 14.10 ± 0.27 h | 2.14 ± 0.03 a | 9.27 ± 0.18 a |
FOC10 | 2.23 ± 0.01 b | 9.52 ± 0.11 g | 3.17 ± 0.05 b | 9.66 ± 0.34 ab | |
FOC20 | 2.75 ± 0.00 c | 5.33 ± 0.08 e | 4.19 ± 0.03 c | 9.52 ± 0.18 a | |
FOC30 | 3.28 ± 0.01 d | 6.84 ± 0.06 f | 4.11 ± 0.02 c | 9.80 ± 0.34 ab | |
fungal fermented | FOC0 | 3.40 ± 0.02 de | 4.61 ± 0.06 d | 5.72 ± 0.05 d | 11.14 ± 0.37 bc |
FOC10 | 5.68 ± 0.05 f | 3.77 ± 0.03 bc | 8.44 ± 0.04 f | 12.33 ± 0.22 cde | |
FOC20 | 6.07 ± 0.06 g | 3.50 ± 0.14 b | 8.56 ± 0.01 g | 12.65 ± 0.21 de | |
FOC30 | 5.64 ± 0.06 f | 2.79 ± 0.02 a | 7.53 ± 0.05 e | 11.95 ± 0.08 cde | |
co-fermented | FOC0 | 3.51 ± 0.06 e | 4.22 ± 0.10 cd | 5.74 ± 0.06 d | 11.65 ± 0.30 cd |
FOC10 | 6.01 ± 0.02 g | 3.71 ± 0.02 bc | 8.49 ± 0.05 f | 12.97 ± 0.22 de | |
FOC20 | 6.75 ± 0.06 h | 2.97 ± 0.02 a | 8.73 ± 0.05 g | 13.35 ± 0.17 e | |
FOC30 | 5.59 ± 0.05 f | 2.77 ± 0.02 a | 7.34 ± 0.06 e | 11.94 ± 0.63 cde | |
Treatment Kind | |||||
pre-treated | 2.41 ± 0.16 A | 8.95 ± 0.70 C | 3.39 ± 0.16 A | 9.56 ± 0.13 A | |
fungal fermented | 5.19 ± 0.26 B | 3.66 ± 0.13 B | 7.56 ± 0.24 B | 12.01 ± 0.16 B | |
co-fermented | 5.47 ± 0.30 C | 3.42 ± 0.11 A | 7.57 ± 0.25 B | 12.48 ± 0.24 B | |
Substrate Kind | |||||
FOC0 | 2.77 ± 0.29 A | 7.65 ± 1.10 C | 4.54 ± 0.40 A | 10.68 ± 0.32 A | |
FOC10 | 4.64 ± 0.51 B | 5.68 ± 0.67 B | 6.69 ± 0.61 C | 11.66 ± 0.40 B | |
FOC20 | 5.20 ± 0.53 D | 3.92 ± 0.24 A | 7.15 ± 0.50 D | 11.84 ± 0.45 B | |
FOC30 | 4.83 ± 0.32 C | 4.14 ± 0.45 A | 6.33 ± 0.37 B | 11.24 ± 0.34 AB |
Pre-treated | Fungal Fermented | Co-Fermented | ||
---|---|---|---|---|
Gallic Acid (μg/g DM) | ||||
Substrate kind | FOC0 | 0.000 ± 0.000 aA | 1.444 ± 0.485 bA | 3.691 ± 0.065 cA |
FOC10 | 1.100 ± 0.023 aA | 4.320 ± 0.588 bA | 3.939 ± 0.036 bA | |
FOC20 | 5.606 ± 0.395 aB | 4.291 ± 0.794 aA | 5.337 ± 0.240 aB | |
FOC30 | 9.362 ± 0.210 bC | 3.248 ± 0.008 aA | 3.368 ± 0.492 aA | |
Protocatechuic Acid (μg/g DM) | ||||
Substrate kind | FOC0 | 0.045 ± 0.014 aA | 0.079 ± 0.010 aA | 4.173 ± 0.104 bB |
FOC10 | 0.050 ± 0.006 aA | 3.058 ± 0.098 bB | 5.799 ± 0.404 cC | |
FOC20 | 0.050 ± 0.015 aA | 4.118 ± 0.048 bC | 4.320 ± 0.122 bB | |
FOC30 | 0.059 ± 0.003 aA | 2.640 ± 0.204 bB | 2.657 ± 0.246 bA | |
p-Hydroxybenzoic Acid (μg/g DM) | ||||
Substrate kind | FOC0 | 2.972 ± 0.639 aA | 30.984 ± 1.218 cA | 27.124 ± 0.315 bA |
FOC10 | 2.933 ± 0.567 aA | 31.813 ± 1.933 bA | 31.892 ± 0.631 bB | |
FOC20 | 14.651 ± 1.714 aB | 30.278 ± 1.915 bA | 26.073 ± 1.563 bA | |
FOC30 | 18.731 ± 0.035 aC | 40.220 ± 0.991 bB | 41.189 ± 1.337 bC | |
Vanillic Acid (μg/g DM) | ||||
Substrate kind | FOC0 | 0.161 ± 0.053 aA | 1.454 ± 0.239 bA | 1.169 ± 0.064 bA |
FOC10 | 0.767 ± 0.125 aAB | 3.437 ± 0.674 aAB | 3.924 ± 1.316 aA | |
FOC20 | 1.914 ± 0.041 aBC | 1.968 ± 0.165 aAB | 2.452 ± 0.630 aA | |
FOC30 | 2.813 ± 0.471 aC | 3.802 ± 0.320 aB | 4.780 ± 0.042 aA | |
Syringic Acid (μg/g DM) | ||||
Substrate kind | FOC0 | 1.488 ± 0.045 | 1.336 ± 0.023 | 1.570 ± 0.132 |
FOC10 | 1.378 ± 0.156 | 1.541 ± 0.040 | 1.163 ± 0.249 | |
FOC20 | 1.045 ± 0.092 | 0.976 ± 0.188 | 0.821 ± 0.316 | |
FOC30 | 1.004 ± 0.032 | 0.814 ± 0.246 | 2.244 ± 0.648 | |
Chlorogenic Acid (μg/g DM) | ||||
Substrate kind | FOC0 | 2.886 ± 0.081 bA | 1.054 ± 0.278 aA | 0.726 ± 0.081 aA |
FOC10 | 3.501 ± 0.716 bA | 0.882 ± 0.031 aA | 0.602 ± 0.048 aA | |
FOC20 | 2.446 ± 0.063 bA | 0.492 ± 0.016 aA | 0.341 ± 0.077 aA | |
FOC30 | 2.203 ± 0.152 bA | 0.875 ± 0.096 aA | 0.594 ± 0.069 aA | |
Caffeic Acid (μg/g DM) | ||||
Substrate kind | FOC0 | 0.426 ± 0.031 aA | 3.176 ± 0.056 cA | 2.716 ± 0.001 bA |
FOC10 | 1.191 ± 0.040 aB | 3.184 ± 0.102 bA | 2.904 ± 0.348 bA | |
FOC20 | 2.427 ± 0.098 aC | 3.842 ± 0.105 bB | 3.957 ± 0.191 bB | |
FOC30 | 3.895 ± 0.267 aD | 4.786 ± 0.179 abC | 5.702 ± 0.197 bC | |
p-Coumaric Acid (μg/g DM) | ||||
Substrate kind | FOC0 | 0.541 ± 0.018 aA | 0.680 ± 0.021 bA | 0.798 ± 0.032 cA |
FOC10 | 1.908 ± 0.038 bB | 1.668 ± 0.041 bB | 1.069 ± 0.169 aA | |
FOC20 | 2.617 ± 0.057 bC | 2.184 ± 0.049 aC | 2.192 ± 0.090 aB | |
FOC30 | 3.639 ± 0.157 bD | 2.565 ± 0.200 aD | 3.360 ± 0.055 bC | |
Ferulic & Sinapic Acid (μg/g DM) | ||||
Substrate kind | FOC0 | 0.338 ± 0.044 aA | 0.239 ± 0.009 aA | 0.169 ± 0.036 aA |
FOC10 | 1.977 ± 0.275 bB | 0.993 ± 0.004 aB | 0.688 ± 0.147 aB | |
FOC20 | 2.750 ± 0.072 bC | 1.933 ± 0.102 aC | 1.899 ± 0.020 aC | |
FOC30 | 3.857 ± 0.168 cD | 1.959 ± 0.166 aC | 2.849 ± 0.098 bD | |
Secoisolariciresinol (SECO) (μg/g DM) | ||||
Substrate kind | FOC0 | 0.00 A | 0.00 A | 0.00 A |
FOC10 | 0.609 ± 0.042 aAB | 0.440 ± 0.015 aAB | 0.386 ± 0.121 aA | |
FOC20 | 0.748 ± 0.036 aAB | 0.870 ± 0.009 bBC | 0.669 ± 0.006 aA | |
FOC30 | 1.305 ± 0.399 aB | 2.230 ± 0.348 aC | 1.322 ± 0.479 aA | |
Secoisolariciresinol Diglucoside (SDG) (μg/g DM) | ||||
Substrate kind | FOC0 | 0.00 A | 0.00 A | 0.00 A |
FOC10 | 2.569 ± 0.053 aB | 2.679 ± 0.373 aB | 2.645 ± 0.282 aB | |
FOC20 | 6.759 ± 0.226 aC | 6.124 ± 0.235 aC | 6.345 ± 0.118 aB | |
FOC30 | 12.942 ± 0.013 bD | 8.736 ± 1.178 aD | 10.417 ± 0.021 abD | |
Secoisolariciresinol Diglucoside Oligomers (SDG Oligomers) (μg/g DM) | ||||
Substrate kind | FOC0 | 0.00 A | 0.00 A | 0.00 A |
FOC10 | 216.108 ± 14.154 aB | 191.644 ± 4.805 aB | 249.658 ± 8.340 aB | |
FOC20 | 340.146 ± 39.628 aBC | 687.715 ± 22.626 bC | 787.046 ± 7.599 bC | |
FOC30 | 422.054 ± 83.111 aC | 310.644 ± 21.656 aD | 275.049 ± 25.153 aB | |
Sum (μg/g DM) | ||||
Substrate kind | FOC0 | 8.919 ± 0.816 aA | 40.547 ± 1.598 bA | 42.220 ± 0.187 bA |
FOC10 | 234.458 ± 14.405 aB | 246.029 ± 6.972 aB | 305.107 ± 7.092 bB | |
FOC20 | 381.978 ± 40.944 aBC | 745.862 ± 24.884 bC | 842.627 ± 8.865 bC | |
FOC30 | 482.879 ± 83.162 aC | 384.191 ± 22.043 aD | 355.804 ± 28.112 aB |
Compound | Retention Time (min) | Absorption Max (nm) | Absorption Min (nm) |
---|---|---|---|
Gallic acid | 7.9 | 271.8; 215.3 | 240.46 |
Protocatechuic acid | 14.457 | 294.3; 259.5; 204.6 | 282.0; 236.0 |
Chlorogenic acid | 11.445 | 327.4; 247.2; 197.9 | 264.0 |
p-Hydroxybenzoic acid | 12.6 | 256.1; 194.9 | 236.0 |
Vanillic acid | 14.51 | 292.1; 261.8; 201.2 | 281.95; 234.9 |
Caffeic acid | 14.93 | 323.2; 215.7; 193.4 | 262.8 |
Syringic acid | 15.07 | 274.1; 215.8 | 241.6 |
SDG | 19.5 | 280.1; 197.9 | 253.9 |
Coniferyl alcohol | 20.35 | 264.0; 241.6 | 211.0 |
p-Coumaric acid | 22.11 | 309.6; 223.5; 207.9 | 249.2; 217.9 |
Sinapic acid | 24.7 | 323.5; 199.9 | 263.9 |
Ferulic acid | 24.8 | 322.3; 212.4; 194.5 | 261.0 |
SECO | 33.96 | 282.0; 197.7 | 254.9 |
SDG oligomers | 45.815 | 285.3; 195.6 | 240.5 |
FCRS (mg/g DM) | ABTS˙+-SA (mgTrolox/g DM) | ˙OH-SA (mgTrolox/g DM) | ||
---|---|---|---|---|
Treatment Kind x Substrate Kind | ||||
pre-treated | FOC0 | 9.52 ± 0.04 bc | 22.66 ± 0.30 abc | 46.02 ± 3.69 bcd |
FOC10 | 8.77 ± 0.14 ab | 22.02 ± 0.35 ab | 34.23 ± 1.87 b | |
FOC20 | 8.18 ± 0.23 a | 20.89 ± 0.60 b | 19.04 ± 1.02 a | |
FOC30 | 8.30 ± 0.22 a | 20.85 ± 0.19 ab | 15.98 ± 0.84 a | |
fungal fermented | FOC0 | 9.96 ± 0.05 cd | 24.42 ± 0.39 cd | 49.24 ± 2.00 cde |
FOC10 | 10.97 ± 0.06 e | 26.00 ± 0.37 d | 40.50 ± 3.12 bc | |
FOC20 | 10.91 ± 0.21 de | 25.80 ± 0.26 d | 47.01 ± 2.00 cd | |
FOC30 | 10.10 ± 0.07 cde | 23.03 ± 0.49 bc | 49.74 ± 0.78 cde | |
co-fermented | FOC0 | 9.56 ± 0.10 bc | 24.28 ± 0.25 cd | 61.33 ± 2.39 e |
FOC10 | 13.30 ± 0.25 f | 34.56 ± 0.50 f | 59.08 ± 2.89 de | |
FOC20 | 13.23 ± 0.40 f | 34.96 ± 0.74 f | 97.43 ± 4.76 f | |
FOC30 | 10.62 ± 0.18 de | 30.16 ± 0.47 e | 59.82 ± 0.77 e | |
Treatment Kind | ||||
pre-treated | 8.63 ± 0.13 A | 21.55 ± 0.23 A | 28.81 ± 2.71 A | |
fungal fermented | 10.45 ± 0.10 B | 24.78 ± 0.28 B | 46.48 ± 1.29 B | |
co-fermented | 11.67 ± 0.31 C | 31.00 ± 0.80 C | 70.26 ± 3.90 C | |
Substrate Kind | ||||
FOC0 | 9.69 ± 0.05 A | 23.88 ± 0.23 A | 51.40 ± 2.05 B | |
FOC10 | 11.01 ± 0.40 B | 27.54 ± 1.11 B | 43.42 ± 2.76 A | |
FOC20 | 10.77 ± 0.49 B | 27.15 ± 1.21 B | 54.49 ± 8.04 B | |
FOC30 | 9.66 ± 0.23 A | 24.77 ± 0.85 A | 42.27 ± 4.33 A |
Sample Availability: Not available. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stodolak, B.; Starzyńska-Janiszewska, A.; Mika, M.; Wikiera, A. Rhizopus oligosporus and Lactobacillus plantarum Co-Fermentation as a Tool for Increasing the Antioxidant Potential of Grass Pea and Flaxseed Oil-Cake Tempe. Molecules 2020, 25, 4759. https://doi.org/10.3390/molecules25204759
Stodolak B, Starzyńska-Janiszewska A, Mika M, Wikiera A. Rhizopus oligosporus and Lactobacillus plantarum Co-Fermentation as a Tool for Increasing the Antioxidant Potential of Grass Pea and Flaxseed Oil-Cake Tempe. Molecules. 2020; 25(20):4759. https://doi.org/10.3390/molecules25204759
Chicago/Turabian StyleStodolak, Bożena, Anna Starzyńska-Janiszewska, Magdalena Mika, and Agnieszka Wikiera. 2020. "Rhizopus oligosporus and Lactobacillus plantarum Co-Fermentation as a Tool for Increasing the Antioxidant Potential of Grass Pea and Flaxseed Oil-Cake Tempe" Molecules 25, no. 20: 4759. https://doi.org/10.3390/molecules25204759
APA StyleStodolak, B., Starzyńska-Janiszewska, A., Mika, M., & Wikiera, A. (2020). Rhizopus oligosporus and Lactobacillus plantarum Co-Fermentation as a Tool for Increasing the Antioxidant Potential of Grass Pea and Flaxseed Oil-Cake Tempe. Molecules, 25(20), 4759. https://doi.org/10.3390/molecules25204759