Supplementary materials

Rational Design of Polyamine-Based Cryogels for Metal Ions Sorption

Irina Malakhova¹, Yuliya Privar¹, Yuliya Parotkina¹, Aleksandr Mironenko¹, Marina Eliseikina², Denis Balatskiy¹, Alexey Golikov¹, and Svetlana Bratskaya^{1*}

- ¹ Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159, prosp.100-letiya Vladivostoka, Vladivostok 690022, Russia; sbratska@ich.dvo.ru
- ² A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskogo street, Vladivostok 690041, Russia
- * Correspondence: sbratska@ich.dvo.ru

Figure 1S. Kinetic curves of Cu(II) ions sorption on fines of PEI cryogel cross-linked with DGEBD at molar ratio DGEEB:PEI 1:4, pH=5, T=25°C, initial Cu(II) concentration 0.78 mmol/l.

Figure 2S. Breakthrough curves of Cu(II) ions sorption on PEI and PAA monolith cryogels from water and 1M CH₃COONH₄ solution, initial Cu(II) concentration (C₀) is 100 mg/l, pH=5, flow rate is 84 BV/h, monolith volume is 1 ml

Figure 3S. Breakthrough curves of Zn(II), Cd(II), and Cu(II) ions sorption on PEI-DGEBD 1:4 cryogel from three-component mixture in water, pH 5, initial metal concentrations were 51 mg/l, 39 mg/l and 30 mg/l, respectively (a). Breakthrough curves of Zn(II), Cd(II), Cu(II), and Ni(II) ions on PAA-DGEBD 1:8 cryogel from four-component mixture in water, pH 5, initial metal concentrations were 35 mg/l, 34 mg/l, 29mg/l, and 32 mg/l, respectively (b). Column parameters for (a) and (b): diameter is 0.48 cm, bed length is 6 cm, flow rate is 84 BV/h.

Figure 4S. SEM images and EDX mapping for CuFCN/PEI composite cryogel fabricated in situ

Figure 5S. Breakthrough curve of Cs⁺ ions sorption on CuFCN/PAA (precipitation) cryogel from CsCl solution containing 20 mgCs/l (pH~6) and release of Cu(II) and Fe(III) species to outlet solution, monolith composite volume is 1 ml, flow rate is 84 BV/h.

Figure 6S. Mössbauer spectra of CuFCN/PEI (in situ), CuFCN, K₄Fe(CN)₆ samples: dots are experimental data, lines are spectra fits obtained with the WinNormos program

The Mössbauer spectra were obtained at room temperature using a Wissel spectrometer in transmission geometry and a ⁵⁷Co(Rh) source. The Mössbauer spectra were fitted using the WinNormos program in order to obtain the values of isomer shift (δ), quadrupole splitting (Δ), linewidth (Γ) and relative subspectrum area (see Table 4S). The velocity scale was calibrated using the spectrum of metallic iron (α -Fe). The value of isomer shifts was determined relative to the center of gravity of the α -Fe spectrum.

Molar ratio	Weight of	Weight of	Maximal flow	Static sorption
DGEBD:polymer	5% polymer solution, g	DGEBD, g	rate, BV/h	capacity for Cu(II) ions,
				mg/g
		PEI		
1:1	10	1.3271	377	105
1:2	10	0.6635	443	121
1:4	10	0.3317	485	172
1:6	10	0.2211	9	221
		РАА		
1:2	10	1.4784	307	63
1:4	10	0.7392	485	175
1:6	10	0.4928	485	162
1:8	10	0.3696	485	190
1:10	10	0.2956	485	198
1:12	10	0.2461	485	214

Table 1S. Cross-linking conditions for PAA and PEI cryogels fabrication and cryogels characteristics

Table 2S. Speciation of Cu(II) ionic forms in 1M CH₃COONH₄ solution and water. Calculations were performed using chemical equilibrium model Visual MINTEQ ver.3.0.

1M CH3COONH4, pH=5,		Water,		
Cu 100 mg/L (0.00156 M)		pH=5, Cu 100 mg/L (0.00156 M)		
Cu(II) forms	%	Cu(II) forms	%	
Cu ⁺²	0.101	Cu+2	98.806	
[Cu(Acetate)2] (aq)	23.328	[Cu(NO ₃)]+	0.371	
[Cu(Acetate) ₃]-	72.282	[Cu(OH)]+	0.513	
[Cu(NH ₃)] ⁺²	0.047	[Cu ₂ (OH)] ⁺³	0.013	
[Cu(Acetate)] ⁺	4.236	[Cu ₂ (OH) ₂] ⁺²	0.297	

Polymer matric	Cu, at%	Fe, at %	Cu/Fe	Average
(method of preparation)			Atomic Ratio	Cu/Fe atomic ratio
PAA-DGEBD 1:6 cryogel	71.98	28.02	2.57	2.5±0.2
(in situ)	72.18	27.82	2.59	
	69.10	30.90	2.23	
PEI-DGEBD 1:4 cryogel	66.37	33.63	1.97	2.0±0.3
(in situ)	60.80	39.20	1.55	
	65.34	34.66	1.88	
	69.41	30.59	2.27	
	64.10	35.90	1.78	
	71.26	28.74	2.48	
	66.31	33.69	1.974	
	65.58	34.42	1.90	
	69.35	30.65	2.26	
PAA-DGEBD 1:8 cryogel	65.10	34.90	1.86533	2.0±0.3
(precipitation)	66.56	33.44	1.99043	
	70.28	29.72	2.36474	

Table 3S. Elemental analysis of CuFCN-containing cryogels (SEM-EDX data)

Table4S. Mossbauer parameters for Cu(II) ferrocyanide and composite, T=298K*

Compound	δ (mm/s)	⊿ (mm/s)	Г (mm/s)	Assignment
CuFCN/PEI (in situ)	-0.09	-	0.38	Low spin Fe(II)
CuFCN	-0.10	-	0.36	Low spin Fe(II)
K ₄ Fe(CN) ₆	-0.05	_	0.31	Low spin Fe(II)

a isomer shift (δ), quadrupole splitting (Δ), linewidth (Γ). Values of δ are reported relative to α-Fe metal. Fitting error in the values of δ, Δ and Γ remained below 0.01 mm/s.