Affinity of Antifungal Isoxazolo[3,4-b]pyridine-3(1H)-Ones to Phospholipids in Immobilized Artificial Membrane (IAM) Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of IAM Chromatographic Data
2.2. Quantitative Structure–Retention Relationship Modeling
3. Materials and Methods
3.1. Reagents
3.2. Analytes
3.3. HPLC Analysis
3.4. QSRR Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chande, M.S.; Verma, R.S.; Barve, P.A.; Khanwelkar, R.R.; Vaidya, R.B.; Ajaikumar, K.B. Facile synthesis of active antitubercular, cytotoxic and antibacterial agents: A Michael addition approach. Eur. J. Med. Chem. 2005, 40, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Saczewski, J.; Kedzia, A.; Jalińska, A. New derivatives of 4,6-dimethylisoxazolo[3,4-b] pyridin-3(1H)-one: Synthesis, tautomerism, electronic structure and antibacterial activity. Heterocycl. Commun. 2014, 20, 215–223. [Google Scholar] [CrossRef]
- Padmavathi, V.; Venkata Subbaiah, D.R.C.; Mahesh, K.; Radha Lakshmi, T. Synthesis and Bioassay of Amino-pyrazolone, Amino-isoxazolone and Amino-pyrimidinone Derivatives. Chem. Pharm. Bull. 2007, 55, 1704–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saczewski, J.; Fedorowicz, J.; Kedzia, A.; Ziolkowska-Klinkosz, M.; Jalinska, A. Synthesis and Antifungal Activity of Some 4,6-Dimethylisoxazolo[3,4- b]pyridin-3(1H)-one Derivatives. Med. Chem. 2016, 12, 640–646. [Google Scholar] [CrossRef]
- Wierenga, W.; Evans, B.R.; Zurenko, G.E. Benzisoxazolones: Antimicrobial and antileukemic activity. J. Med. Chem. 1984, 27, 1212–1215. [Google Scholar] [CrossRef]
- Saidachary, G.; Veera Prasad, K.; Divya, D.; Singh, A.; Ramesh, U.; Sridhar, B.; China Raju, B. ChemInform Abstract: Convenient One-Pot Synthesis, Antimycobacterial and Anticancer Activities of Novel Benzoxepinoisoxazolones and Pyrazolones. ChemInform 2014. [Google Scholar] [CrossRef]
- Anwar, T.; Nadeem, H.; Sarwar, S.; Naureen, H.; Ahmed, S.; Khan, A.U.; Arif, M. Investigation of antioxidant and anti-nociceptive potential of isoxazolone, pyrazolone derivatives, and their molecular docking studies. Drug Dev. Res. 2020. [Google Scholar] [CrossRef]
- Queiroz, A.N.; Martins, C.C.; Santos, K.L.B.; Carvalho, E.S.; Owiti, A.O.; Oliveira, K.R.M.; Herculano, A.M.; da Silva, A.B.F.; Borges, R.S. Experimental and theoretical study on structure-tautomerism among edaravone, isoxazolone, and their heterocycles derivatives as antioxidants. Saudi Pharm. J. 2020. [Google Scholar] [CrossRef]
- Ishioka, T.; Kubo, A.; Koiso, Y.; Nagasawa, K.; Itai, A.; Hashimoto, Y. Novel Non-Steroidal/Non-Anilide Type Androgen Antagonists with an Isoxazolone Moiety. Bioorg. Med. Chem. 2002, 10, 1555–1566. [Google Scholar] [CrossRef]
- Zimecki, M.; Bachor, U.; Maczyński, M. Isoxazole derivatives as regulators of immune functions. Molecules 2018, 23, 2724. [Google Scholar] [CrossRef] [Green Version]
- Giovannoni, M.P.; Schepetkin, I.A.; Quinn, M.T.; Cantini, N.; Crocetti, L.; Guerrini, G.; Iacovone, A.; Paoli, P.; Rossi, P.; Bartolucci, G.; et al. Synthesis, biological evaluation, and molecular modelling studies of potent human neutrophil elastase (HNE) inhibitors. J. Enzyme Inhib. Med. Chem. 2018. [Google Scholar] [CrossRef]
- Giovannoni, M.P.; Crocetti, L.; Cantini, N.; Guerrini, G.; Vergelli, C.; Iacovone, A.; Teodori, E.; Schepetkin, I.A.; Quinn, M.T.; Ciattini, S.; et al. New 3-unsubstituted isoxazolones as potent human neutrophil elastase inhibitors: Synthesis and molecular dynamic simulation. Drug Dev. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pidgeon, C.; Ong, S.; Liu, H.; Qiu, X.; Pidgeon, M.; Dantzig, A.H.; Munroe, J.; Hornback, W.J.; Kasher, J.S. IAM chromatography: An in vitro screen for predicting drug membrane permeability. J. Med. Chem. 1995, 38, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Valko, K.; Du, C.M.; Bevan, C.D.; Reynolds, D.P.; Abraham, M.H. Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: Comparison with other lipophilicity measures. J. Pharm. Sci. 2000. [Google Scholar] [CrossRef]
- Grumetto, L.; Carpentiero, C.; Barbato, F. Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: Their role in membrane partition and their relationships with BBB passage data. Eur. J. Pharm. Sci. 2012, 45, 685–692. [Google Scholar] [CrossRef]
- Barbato, F.; La Rotonda, M.I.; Quaglia, F. Chromatographic indices determined on an immobilized artificial membrane (IAM) column as descriptors of lipophilic and polar interactions of 4-phenyldihydropyridine calcium-channel blockers with biomembranes. Eur. J. Med. Chem. 1996, 31, 311–318. [Google Scholar] [CrossRef]
- Barbato, F.; di Martino, G.; Grumetto, L.; La Rotonda, M.I. Prediction of drug-membrane interactions by IAM–HPLC: Effects of different phospholipid stationary phases on the partition of bases. Eur. J. Pharm. Sci. 2004, 22, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Reichel, A.; Begley, D.J. Potential of Immobilized Artificial Membranes for Predicting Drug Penetration Across the Blood−Brain Barrier. Pharm. Res. 1998, 15, 1270–1274. [Google Scholar] [CrossRef]
- Grumetto, L.; Russo, G.; Barbato, F. Indexes of polar interactions between ionizable drugs and membrane phospholipids measured by IAM–HPLC: Their relationships with data of Blood–Brain Barrier passage. Eur. J. Pharm. Sci. 2014, 65, 139–146. [Google Scholar] [CrossRef]
- Kotecha, J.; Shah, S.; Rathod, I.; Subbaiah, G. Prediction of oral absorption in humans by experimental immobilized artificial membrane chromatography indices and physicochemical descriptors. Int. J. Pharm. 2008, 360, 96–106. [Google Scholar] [CrossRef]
- Hollósy, F.; Valkó, K.; Hersey, A.; Nunhuck, S.; Kéri, G.; Bevan, C. Estimation of Volume of Distribution in Humans from High Throughput HPLC-Based Measurements of Human Serum Albumin Binding and Immobilized Artificial Membrane Partitioning. J. Med. Chem. 2006, 49, 6958–6971. [Google Scholar] [CrossRef] [PubMed]
- Nasal, A.; Sznitowska, M.; Buciński, A.; Kaliszan, R. Hydrophobicity parameter from high-performance liquid chromatography on an immobilized artificial membrane column and its relationship to bioactivity. J. Chromatogr. A 1995, 692, 83–89. [Google Scholar] [CrossRef]
- Ciura, K.; Fedorowicz, J.; Andrić, F.; Žuvela, P.; Greber, K.E.; Baranowski, P.; Kawczak, P.; Nowakowska, J.; Baçzek, T.; Saçzewski, J. Lipophilicity determination of antifungal isoxazolo[3,4-b]pyridin-3(1h)-ones and their n1-substituted derivatives with chromatographic and computational methods. Molecules 2019, 24, 4311. [Google Scholar] [CrossRef] [Green Version]
- Du, C.M.; Valko, K.; Bevan, C.; Reynolds, D.; Abraham, M.H. Rapid Gradient RP-HPLC Method for Lipophilicity Determination: A Solvation Equation Based Comparison with Isocratic Methods. Anal. Chem. 1998. [Google Scholar] [CrossRef]
- Valko, K.L. Application of biomimetic HPLC to estimate in vivo behavior of early drug discovery compounds. Future Drug Discov. 2019, 1, FDD11. [Google Scholar] [CrossRef] [Green Version]
- Saczewski, J.; Fedorowicz, J.; Korcz, M.; Saczewski, F.; Wicher, B.; Gdaniec, M.; Konopacka, A. Experimental and theoretical studies on the tautomerism and reactivity of isoxazolo[3,4-b]quinolin-3(1H)-ones. Tetrahedron 2015, 71, 8975–8984. [Google Scholar] [CrossRef]
- Kaliszan, R. QSRR: Quantitative Structure-(Chromatographic) Retention Relationships. Chem. Rev. 2007, 107, 3212–3246. [Google Scholar] [CrossRef]
- Pehourcq, F.; Jarry, C.; Bannwarth, B. Potential of immobilized artificial membrane chromatography for lipophilicity determination of arylpropionic acid non-steroidal anti-inflammatory drugs. J. Pharm. Biomed. Anal. 2003. [Google Scholar] [CrossRef]
- Barbato, F.; La Rotonda, M.I.; Quaglia, F. Interactions of nonsteroidal antiinflammatory drugs with phospholipids: Comparison between octanol/buffer partition coefficients and chromatographic indexes on immobilized artificial membranes. J. Pharm. Sci. 1997. [Google Scholar] [CrossRef]
- Ong, S.; Liu, H.; Qiu, X.; Pidgeon, C.; Bhat, G. Membrane Partition Coefficients Chromatographically Measured Using Immobilized Artificial Membrane Surfaces. Anal. Chem. 1995. [Google Scholar] [CrossRef] [PubMed]
- Lovrić, M.; Pavlović, K.; Žuvela, P.; Spataru, A.; Lučić, B.; Kern, R.; Wong, M.W. Machine learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity or predictive ability? Chemrxiv 2020. [Google Scholar] [CrossRef]
- Doucet, J.P.; Panaye, A. Three Dimensional QSAR: Applications in Pharmacology and Toxicology; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781420091168. [Google Scholar]
- Valkó, K.L. Lipophilicity and biomimetic properties measured by HPLC to support drug discovery. J. Pharm. Biomed. Anal. 2016, 130, 35–54. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009. [Google Scholar] [CrossRef] [PubMed]
- Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics; Wiley-VCH: Weinheim, Germany, 2010; Volume 2, ISBN 9783527628766. [Google Scholar]
Sample Availability: Samples of the pyrido- and quinolino-isoxazolones are available from the authors. |
No. | CHIIAM | logkw | Candida albicans | Candida parapsilosis | Candida glabrata | Candida lusitaniae | Candida tropicalis |
---|---|---|---|---|---|---|---|
1 | 12.04 | 2.36 | >128 | >128 | >128 | >128 | >128 |
2 | 12.92 | 3.98 | >128 | >128 | >128 | >128 | >128 |
3 | 24.85 | 2.87 | >128 | >128 | >128 | >128 | >128 |
4 | 22.02 | 2.79 | >128 | >128 | >128 | >128 | >128 |
5 | 11.60 | 3.76 | >128 | >128 | >128 | >128 | >128 |
6 | 34.01 | 3.68 | 100 | >200 | >200 | 100 | >200 |
7 | 14.91 | 2.53 | >200 | >200 | >200 | 100 | >200 |
8 | 22.14 | 2.90 | >200 | >200 | >200 | >200 | >200 |
9 | 29.99 | 2.77 | 50 | 50 | 50 | 50 | 50 |
10 | 16.92 | 2.58 | >200 | >200 | >200 | >200 | >200 |
11 | 33.98 | 3.83 | >200 | 100 | >200 | >200 | >200 |
12 | 11.40 | 3.14 | 100 | >200 | >200 | 100 | >200 |
13 | 34.30 | 3.69 | nt | nt | nt | nt | nt |
14 | nd | 2.07 | >200 | >200 | >200 | 50 | 100 |
15 | 28.65 | 3.28 | 100 | <6.2 | >200 | 50 | 25 |
16 | 21.39 | 2.81 | 100 | <6.2 | >200 | >200 | >200 |
17 | 7.29 | 3.70 | 50 | <6.2 | 100 | 25 | 100 |
18 | 28.04 | 3.67 | >200 | 100 | >200 | >200 | >200 |
19 | 28.10 | 3.14 | >128 | >128 | >128 | >128 | >128 |
20 | 26.61 | 2.97 | >128 | >128 | >128 | >128 | >128 |
21 | 33.40 | 3.33 | >128 | >128 | >128 | >128 | >128 |
22 | 33.78 | 3.50 | >128 | >128 | >128 | >128 | >128 |
23 | 15.46 | 2.95 | >128 | >128 | >128 | >128 | >128 |
24 | 29.78 | 3.21 | >128 | >128 | >128 | >128 | >128 |
25 | 27.84 | 3.23 | >128 | >128 | >128 | >128 | >128 |
26 | 30.37 | 3.24 | >128 | >128 | >128 | >128 | >128 |
No. | Symbol | Full Name | Descriptor Type |
---|---|---|---|
1 | PW3 | path/walk 3—Randic shape index | Topological indices |
2 | PW4 | path/walk 4—Randic shape index | Topological indices |
3 | RDF035v | Radial Distribution Function—035, weighted by van der Waals volume | RDF descriptors |
4 | Mor04u | signal 04, unweighted | 3D-MoRSE descriptors |
5 | Mor06u | signal 06, unweighted | 3D-MoRSE descriptors |
6 | G3u | 3rd component symmetry directional WHIM index, unweighted | WHIM descriptors |
7 | E2u | 2nd component accessibility directional WHIM index, unweighted | WHIM descriptors |
8 | E1e | 1st component accessibility directional WHIM index, weighted by Sanderson electronegativity | WHIM descriptors |
9 | R5V+ | R maximal autocorrelation of lag 5, weighted by van der Waals volume | GETAWAY descriptors |
10 | R6V+ | R maximal autocorrelation of lag 6, weighted by van der Waals volume | GETAWAY descriptors |
11 | H-052 | H attached to C0(sp3) with 1 × attached to next C | Atom-centered fragments |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciura, K.; Fedorowicz, J.; Žuvela, P.; Lovrić, M.; Kapica, H.; Baranowski, P.; Sawicki, W.; Wong, M.W.; Sączewski, J. Affinity of Antifungal Isoxazolo[3,4-b]pyridine-3(1H)-Ones to Phospholipids in Immobilized Artificial Membrane (IAM) Chromatography. Molecules 2020, 25, 4835. https://doi.org/10.3390/molecules25204835
Ciura K, Fedorowicz J, Žuvela P, Lovrić M, Kapica H, Baranowski P, Sawicki W, Wong MW, Sączewski J. Affinity of Antifungal Isoxazolo[3,4-b]pyridine-3(1H)-Ones to Phospholipids in Immobilized Artificial Membrane (IAM) Chromatography. Molecules. 2020; 25(20):4835. https://doi.org/10.3390/molecules25204835
Chicago/Turabian StyleCiura, Krzesimir, Joanna Fedorowicz, Petar Žuvela, Mario Lovrić, Hanna Kapica, Paweł Baranowski, Wiesław Sawicki, Ming Wah Wong, and Jarosław Sączewski. 2020. "Affinity of Antifungal Isoxazolo[3,4-b]pyridine-3(1H)-Ones to Phospholipids in Immobilized Artificial Membrane (IAM) Chromatography" Molecules 25, no. 20: 4835. https://doi.org/10.3390/molecules25204835
APA StyleCiura, K., Fedorowicz, J., Žuvela, P., Lovrić, M., Kapica, H., Baranowski, P., Sawicki, W., Wong, M. W., & Sączewski, J. (2020). Affinity of Antifungal Isoxazolo[3,4-b]pyridine-3(1H)-Ones to Phospholipids in Immobilized Artificial Membrane (IAM) Chromatography. Molecules, 25(20), 4835. https://doi.org/10.3390/molecules25204835